Use of XtratuM in an Automotive Application ¢)

J. Sanchez , S. Peiré, A. Crespo, J. Sim6, M. Masmano, P. Balbastre
Instituto de Automatica e Informatica Industrial
Universidad Politecnica de Valencia, Spain
{jsanchez,mmasmano,speiro}@ai2.upv.es, {jsimo,acrespo,patricia}disca.upv.es

Abstract

Virtualization is playing a key role in many of
today software systems. At first used mainly to
improve resource utilization, this technology is ex-
panding and has reached the market of embedded
systems. In this scope, XtratuM offers a virtual-
ization solution capable of running mixed-purpose
applications. This paper presents the key contribu-
tions to the OVERSEE project, whose architecture
depends on the availability of this technology. This
project has the goal of offering an appropriate in-
frastructure for the information technology systems
of the upcoming smart vehicles.

1 Introduction

The OVERSEE project [2] aims to provide a de-
pendable and secure infrastructure for the execu-
tion of mixed criticality applications on automotive
systems. To meet this challenge, an architecture
based on virtualization has been selected. XtratuM
[1] offers an ideal foundation for enforcing a strong
level of isolation, both temporal and spatial, thus
ensuring that vehicle functionality and safety can-
not be harmed by any OVERSEE application.

It is worth to mention that this project uses
the Common Criteria Separation Kernel Protec-
tion Profile [3], which considers virtualization as
a main technique to achieve a high level of robust-
ness and data protection. Therefore, the benefits
of virtualization in OVERSEE are reflected in two
aspects, namely, to enforce rules for authorized in-
formation flows between virtual machines and to
ensure a strong temporal isolation capable of run-
ning critical real-time applications.

XtratuM offers a virtualization layer very close
to the native hardware. This hypervisor relies on

(*) This work has been partially granted by the
project COBAMI: DPI2011-28507-C02-02

the paravirtualization technique, which means that
software running on top of it must be modified in
order to interact with the hypervisor and not with
the underlying hardware. Therefore, virtualization
support cannot be limited to creating virtual ma-
chines but it has to be extended to provide support
for any run-time environment wanted to be run over
XtratuM.

| system Partition | | Application Partitions

Human
Sgg‘r‘tflo'a o Machine ecall GPS
Interface

J | J

Figure 1: OVERSEE architecture overview.

Communication

Hardware
Modules

Human Machine
Security Module

Interface

Ultimately, this project has pushed forward the
cloud of available facilities in order to face the de-
sign of a XtratuM-based system. The most inter-
esting developments are presented in this paper,
which are those related with run-time environment
support (mainly Linux), a new technique intro-
duced to allow dynamic scheduling over XtratuM
and a novel device virtualization layer based on the
use of an I/O server partition.

2 Virtualization Layer

The hypervisor abstracts the hardware and offers
a software interface in order to create several vir-
tual machines. Each of this virtual machines will

be referred to as a partition. Each partition is run
spatial and temporarily isolated from each other,
hence the term partition is very convenient to de-
pict this very fact.

The selected processor for this project has been
an Intel Atom 7530 single core 1.6 GHz. XtratuM
for x86 architecture has been taken as a starting
point, so the main efforts in the OVERSEE project
have been focused on providing a good support for
paravirtualization implementation. Linux is an in-
creasingly popular solution for embedded systems,
so it’s been the primary target of the paravirtu-
alization efforts. Thanks to the Xen group, the
Linux kernel provides an interface, which simpli-
fies enormously the task of porting the kernel to a
hypervisor, known as paravirt-ops.

Implementing the full set of paravirt-ops is only
half way to provide a running virtualized environ-
ment. The privilege levels of the segments need
be modified, as well as several other patches inside
the kernel as, for example, those regarding the In-
terrupt Descriptor Table (IDT) entry points.

3 Dynamic Scheduling

In order to ensure a strong temporal isolation,
the scheduler relies on a cyclic plan statically de-
fined. Besides providing a predictable behaviour,
this scheduling technique has a counterpart which
is the lack of flexibility. Hard real-time applica-
tions benefit from this fact, but non real-time con-
strained applications may be impaired when a con-
siderable amount of CPU time is wasted.

Considering the use cases defined for the project,
among which is video playback, a technique to al-
low dynamic scheduling has been successfully intro-
duced, which was presented on [10]. With this new
service, it is possible to define on the cyclic plan
specific time windows where the dynamic schedul-
ing of partitions is allowed. The goal has been to
provide a way to improve CPU utilization by dy-
namically sheduling partitions.

The implemented dynamic scheduling facility re-
lies on a scheduling technique known as Application
Defined Scheduling. Basically, the hypervisor does
not know anything about the scheduling policies,
its only task is to perform the context switches.
The decision about which partition is scheduled
next is left to a trusted partition with special per-

missions, known as Spare Host.

In order to be scheduled in spare time, the par-
titions must send to the Spare Host a measure of
the CPU utilization. For this project, the Linux
kernel has been patched in order to implement a
method of measuring CPU usage. Linux provides
a measure of CPU which is based on an unreliable
method; each time the kernel receives an interrupt
it logs which was the interrupted context to estab-
lish the CPU utilization. However, this method is
not exact and has been avoided in OVERSEE. In-
stead, the Linux kernel scheduler has been patched
to have an exact measure of CPU utilization.

In order the hypervisor to decide which partition
is to be scheduled next a list known as spare plan
is used. This list contains pairs partition,duration
that inform the hypervisor how it should sched-
ule the partitions inside the defined slots of the
cyclic plan. The spare plan is calculated by the
spare host using whatever policy is considered con-
venient. Hence, the architecture of the dynamic
scheduling facility can be divided in two layers.
The lowermost and closest to the hypervisor layer
that takes the spare plan and performs the context
switches, and the uppermost layer taking political
decisions about which partition is to be scheduled.
In summary, the current available policy of the
spare plan is designed for maximizing CPU usage,
but other policies could be implemented as well.

4 Device virtualization

Finally, device virtualization has been the biggest
part of the OVERSEE project concerning resource
virtualization. Device virtualization is considered
as a state of the art problem. Solutions can be
found in the scope of Intel processors for main-
frames [11], but no standard solutions for embed-
ded systems are available. Therefore, the imple-
mented device virtualization engine is a completely
novel system which relies on the concept of I/0
server.

Device management is a very extense subject it-
self and, specifically, in Intel systems. On this pro-
cessor, there is an I/O address space which can be
accessed by special instructions. Chunks of this
space can be individually assigned to partitions so
partitioning can be applied here. However, the I/0
address space is only one of several ways of driv-

ing devices in Intel. The ISA bus, the standard
VGA raster or the PCI address spaces are accessed
via memory mapped regions that have to be con-
trolled in a different way. Among other reasons,
the PCI devices have access to DMA engines that
bypass the MMU and can break spatial isolation.
The developed device virtualization facility is used
to overcome the problem of memory mapped de-
vices.

The current architectures under study for device
virtualization make some assumptions that do not
hold to a virtualized system based on XtratuM.
Specifically, they assume that there is an I/O server
which has full access to the guest partition memory
address space or that the system has an available
IOMMU. Among these solutions can be found Vir-
tio. Virtio [8] is the first effor to build a standard in-
terface for device virtualization so it has been taken
as a starting point.

The first implementation efforts for the device
virtualization were published in [9]. This was the
first attempt to implement an I/O server and pro-
vide a set of virtualized devices to Linux parti-
tions. However, this architecture has been re-
designed from scratch, in order to have a device
virtualization engine capable of offering devices to
any kind of partition, whether Linux based or not.

Secure 1/0 1/0O Client 1/0O Client
Partition Partition Partition
(Linux) (non Linux)
Virtio Drivers
XMIO Devices XMIO to Virtio XMIO Drivers

—

XMIO Transport J [XMIO Transport J [XMIO Transport J
T

J
Shared
Memory
Shared
\ Memory
Physical Devices

Figure 2: XtratuM device virtualization engine
(XMIO) overview.

Due to the XtratuM design policies, implement-
ing device drivers at the hypervisor level is not con-
sidered. The current version of XtratuM I/O vir-
tualization engine (XMIO) is based on the use of
shared memory. As stated, there is still no hard-
ware support for Intel embedded processors, which

binds the data transfers between I/O server and
I/0O clients to memory copies. This decreases sig-
nificantly the device performance and increases the
burden of the CPU. Efforts have been made to op-
timize the performance of the memory copies by
using the SSE2 Intel extensions and minimize the
impact of the data transfers.

5 Conclusions

This paper presents the main results regarding vir-
tualization issues on the OVERSEE project. This
project has been a success regarding the virtualiza-
tion infrastructure provided, capable of being used
on commercial systems. Current efforts are tar-
geted to include additional policies for the dynamic
scheduler and for the design and implementation of
a new version of the device virtualization engine ca-
pable of running as a standalone application.

References
[1] XtratuM: Baseline Software Specification,
http://www.xtratum.org.

OVERSEE Project: Open Vehicular Se-
cure Platform. FP7-ICT-2009-4. Project Id:
248333, 2010-12. http://oversee-project.org/

2]

Separation Kernel Protection Profile In-
formation Assurance Directorate June 2007

http://www.commoncriteriaportal.org/files/ppfiles/pp_skpp_hi

The XEN hypervisor. http://www.xen.org.

The Lguest
http://lguest.ozlabs.org.

Hypervisor.

The KVM Hypervisor, http://www.linux-
kvm.org.

Virtio PCI Card Specification v0.8.10
DRAFT. http://ozlabs.org/Tusty/virtio-
spec/virtio-spec.pdf.

8] Virtio: Towards a De-Facto Stan-
dard For Virtual I/0 Devices.
http://ozlabs.org/Tfusty /virtio-spec/virtio-
paper.pdf.

http://www.xtratum.org
http://oversee-project.org/
http://www.commoncriteriaportal.org/files/ppfiles/pp_skpp_hr_v1.03.pdf
http://www.xen.org
http://lguest.ozlabs.org
http://www.linux-kvm.org
http://www.linux-kvm.org
http://ozlabs.org/~rusty/virtio-spec/virtio-spec.pdf
http://ozlabs.org/~rusty/virtio-spec/virtio-spec.pdf
http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

[9]

Device Virtualization in a Partitioned System:
the OVERSEE approach. S. Peird, J. Sanchez,
M. Masmano. Jornadas de Tiempo Real 2011.
polaris.dit.upm.es/ str/jtrll/papers/019.pdf.

Planificaciéon dinamica de tiempo libre en sis-
temas particionados basados en XtratuM. J.
Sanchez, A. Crespo, J. Sim6, M. Masmano
Jornadas de Automaética 2011

Intel Virtualization Technol-
ogy for Directed I/0. Intel.
http://download.intel.com/technology /itj/2006 /v10i3/v10-
i3-art02.pdf

http://download.intel.com/technology/itj/2006/v10i3/v10-i3-art02.pdf
http://download.intel.com/technology/itj/2006/v10i3/v10-i3-art02.pdf

	Introduction
	Virtualization Layer
	Dynamic Scheduling
	Device virtualization
	Conclusions

