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a  b  s  t  r  a  c  t

In  this  work,  a non-uniform  multi-rate  controller  which  includes  an  RST  control  stage  is introduced.
Due  to  several  issues,  in  some  systems  the  use  of  non-uniform  (irregular)  multi-rate  sampling  becomes
inevitable.  When  using  a  uniform  (regular)  multi-rate  controller  in this  kind  of  situations,  control  perfor-
mance  is usually  degraded  (if it is  compared  to that  obtained  in  the  nominal,  uniform  sampling  context).
Thus,  the  design  of  a non-uniform  controller  proper  for this  sampling  scheme  is  needed  to keep  the perfor-
mance.  A  sequence  of  different  non-uniform  sampling  frames  can be considered,  and  different  controllers
must  be  designed  for  each  frame  using  appropriate  methods.  When  switching  among  these controllers,
stability  problems  can  appear.  So,  the  control  system  stability  will  be  assured  in terms  of Linear  Matrix
Inequalities  (LMIs).  To  achieve  some  advantages  at the  design  step,  the discrete-time  input–output  rep-
resentation  will be used.  But,  since  the  classical,  uniform  z−i delay  operator  could  not  be able  to represent
non-uniform  sampling  situations,  the  so-called  non-uniform  operator  will be required.  Simulation  results
illustrate  that  this  control  proposal  is  able  to keep  control  system  performance  and  preserve  stability.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There are some systems where the non-uniform (irregular)
sampling appears in a natural way. It can be shown in hard disk
drive head position control, where the location of damaged servo
sectors and the collision in the self-servo track writing process
make the feedback position error signal unavailable, resulting in
a non-uniform sampling rate [1]; in real-time operating systems,
where applications are implemented by decomposing them into
several tasks in such a way that, due to task priorities and resource
sharing, pre-emption and blocking may  appear, arising irregular-
ities in the sampling [2–4]; in networked control systems where
sensors, controllers and actuators are connected through a com-
mon  communication bus, which introduces timing variations in the
control loop due to network induced delays, packet dropouts, and
packet disordering [5–7]; in event-based systems where the samp-
ling is triggered by the occurrence of some events, which usually
appear following non-uniform patterns [8];  in many chemical pro-
cesses, where variables which indicate product quality by means
of chemical analyzers are infrequently and irregularly sampled
[9–11]; and so on.

As a consequence of most of these sampling irregularities, con-
trol updates and output feedback measurements work at different
rates. So, using multi-rate control techniques becomes a natural
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solution. In this work, feedback data is assumed to be scarce (which
can be a realistic assumption in most of the previous environ-
ments). Then, a Multi-Rate Input Control (MRIC) scenario will be
considered, where the control signal updating is faster than the
output one (as known, actuating at a faster rate than measuring
may  provide robustness advantages [12]). But some restriction will
be imposed to the MRIC approach: all the process inputs and out-
puts must be necessarily available at the slow rate time instants
(that is, at the initial time of the sampling frame). This is not a
hard restriction in most of the previous applications, except in net-
worked control systems as a consequence of disposing no direct
link among devices. Loss of packets, communication delays, etc.
could appear, and hence all the samples could not be available
at the required moments. In this particular case, some additional
solutions can be adopted depending on the problem to be treated.
For example, in [7] and [13] gain scheduling approaches were pro-
posed to deal with delayed slow rate process inputs (that is, control
actions). In [14], a non-uniform observer was  introduced to esti-
mate lost slow rate process outputs. These are two of the possible
scenarios faced in previous authors’ works, but other situations can
be found in [5,6], and literature therein.

Whereas the uniform multi-rate sampling case has been widely
studied (since the seminal work by Kranc [15] until current works
such as [16–20]), the non-uniform case has been less treated
(despite existing a lot of situations where it could be applied). To
the best of the authors’ knowledge, few research groups gather
the majority of works that deal with this kind of sampling, where
usually the non-uniform sampled-data system is represented as a
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Linear Periodically Time-Varying (LPTV) system. Refs. [1,3,21–23]
are some examples of the referred works. Only in few of these
works (such as [3,21])  the system is modeled by means of the
input–output representation. Nevertheless, most of the works use
the state–space representation, and more concretely, the well-
known lifting technique to model and design the multi-rate control
system. The main reason is because it facilitates the modeling step.
Nevertheless, this technique introduces two main drawbacks at
the design step: it could become more complex, and the conse-
quent controller presents time-varying gains, which worsen the
inter-sample behavior [24]. In the present work, these drawbacks
are solved by using a specific algebra based on the so-called skip-
expand operators [17,18,25].  As a consequence of using these
operators, three benefits are derived:

The closed-loop system is not represented by an augmented lifted
system, otherwise by a transfer function, which facilitates the
design step.
When using the expand operator followed by a desired linear sta-
tionary filter (in our case a digital Zero Order Hold, ZOH), the
slow-rate signal of the multi-rate control system can be approxi-
mated at a fast-rate signal, which enables to design the fast-rate
side of the multi-rate controller.
When considering skip-expand properties, the multi-rate design
complexity is reduced.

The non-uniform sampled-data modeling proposed in [3] is now
revised, and its notation is improved and adapted to be used when
designing the non-uniform multi-rate controller. The non-uniform
modeling is based on the non-uniform operator, whose aim is to
introduce some replacements on the uniform, classical operator z−i

in order to adapt the latter one to a non-uniform sampling pattern.
The multi-rate controller is designed via a model-based proce-

dure. In [17] the multi-rate design for the uniform sampling case
is introduced. In the present work, the non-uniform sampling sce-
nario is studied and, in addition, an RST control stage is included
in the multi-rate design. The RST controller is very popular due to
its good compromise between performance and complexity. It is
a two-degree-of-freedom controller obtained via an input–output
model-based pole placement method, which implies the resolution
of a diophantine equation. R–S–T is the names of each one of the
polynomials to be deduced by the design procedure. Its two degree
of freedom consists of a feedforward side defined by T/R, and of
a feedback side defined by S/R. In [26], the general design proce-
dure for the RST controller is introduced. In our work, this general
method is adapted so as to include this controller in the multi-rate
control system. The RST stage is designed to not cancel the numera-
tor of the process transfer function. This fact, together with the use
of the digital ZOH (commented previously), assures steady-state
ripple-free closed-loop response to step reference signal [17,18].
Including the RST stage in the multi-rate controller simplifies the
multi-rate control design. In [26], more details about this controller
can be found.

An interesting benefit of the present work is the consideration
of a sequence of different non-uniform sampling patterns (say, the
non-periodic case). That means designing several LPTV controllers
(one for each non-uniform sampling pattern) and switching among
them according to the current frame. As known, it is possible to
get instability by switching among asymptotically stable systems
[27]. Then, to assure stability, some Lyapunov conditions will be
formulated in terms of Linear Matrix Inequalities (LMIs).

The present paper is organized as follows: in Section 2 prelim-
inaries and notation are introduced. The input/output modeling
for non-uniform multi-rate sampled-data systems is reviewed. Its
notation is improved and adapted to be used in the design pro-
posal, yielding a theorem for the modeling step in Section 3. Section

Fig. 1. MRIC scenario.

4 presents another theorem, this one related to the design step,
which describes how the RST control stage is included in the non-
uniform multi-rate controller. Control system stability is studied
from two points of view: sensitivity to modeling errors and stabil-
ity for switching systems (which is enunciated in terms of LMIs). In
Section 5, a simulation example is shown. Results enable to observe
control performance degradation when using a (unique) uniform
multi-rate controller in a non-periodic environment. Nevertheless,
if different non-uniform multi-rate controllers (and the switching
among them) are considered, the performance is kept (compared
to a nominal, uniform sampling context) and stability preserved
(according to the appropriate LMI  analysis). Finally, in Section 6,
the main conclusions are exposed.

2. Preliminaries

Since notation used in [17,18] is becoming a standard fashion
to represent multi-rate sampled-data systems, this work will take
this notation to introduce preliminary concepts.

Two different Z-transforms can be expressed according to the
considered sampling and updating periods over a continuous time
signal x(t). So, if the sampling or updating is carried out each T time
units

XT (z)�=ZT [x(t)] =
∞∑

k=0

x(kT)z−k (1)

where X will be the sampled signal, and the variable z−1 represents
the T-unit delay operator.

In the same way, if the sampling and updating period is NT
(N ∈ ℵ +)

XNT (zN)�=ZNT [x(t)] =
∞∑

k=0

x(kNT)z−k
N (2)

where it is easy to see the relationship zN = zN.
In the MRIC scenario, the measurement period will be NT,

which is usually called metaperiod. Inside this metaperiod, N con-
trol updatings are produced at time instants ti (i = 0. . .N−1, where
t0 = 0), arising N subperiods �i (i = 1. . .N) among actuation instants
(see Fig. 1). The relationship between samplings and subperiods
yields

ti =
i∑

j=1

�j, i = 1 . . . N − 1 (3)

Two interesting operators are defined:
The skip operator, which is able to create a NT-sequence from a

T-sequence, as follows:[
XT (z)

]NT = XNT (zN)�=
∞∑

k=0

x(kNT)z−kN (4)
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The expand operator, which creates a T-sequence from a NT-
sequence, yielding[

XNT (zN )
]T

= X̂T (zN )
�=

∞∑
k=0

x̂(kT)z−kN

{
x̂(kT) = x(kT); ∀k = �N

x̂(kT)  = 0; ∀k /= �N
� ∈ Z+ (5)

Skip-expand properties can be found, for example, in [17,18,25].
Regarding an n-order single-input–single-output continuous

time system represented by the strictly proper transfer function
Gp(s), its Fast Sampling Discrete-Time (FSDT) model is defined by

GT (z) = BT (z)
AT (z)

=
∑n

i=1bi,T z−i

1 +
∑n

i=1ai,T z−i
(6)

and, in a similar way, the Slow Sampling Discrete-Time (SSDT)
model is defined as

GNT (zN) = BNT (zN)
ANT (zN)

=
∑n

i=1bi,NT z−iN

1 +
∑n

i=1ai,NT z−iN
(7)

Finally, the Z-transform for Gp(s) at a generic period t considering
a Zero Order Hold (ZOH) device Ht(s) will be used as

Zt

[
Ht(s)Gp(s)

]�=Gt(z̄) (8)

3. Input/output non-uniform modeling for multi-rate
sampled-data systems

In this section, a theorem which enunciates the input/output
modeling for non-uniform sampled-data systems is presented. This
theorem is defined after reviewing some previous results obtained
in [3], and improving and adapting notation to that presented in
Section 2.

3.1. Input/output uniform modeling

As known [17], the FSDT process GT(z) can be redefined by means
of a polynomial WT

A (z), whose convolution with the polynomial
AT(z) of the denominator produces a new denominator that con-
tains only terms in z−�N (� = 0, 1, . . .,  n). Therefore:

GT (z) = BT (z)
AT (z)

= BT (z)WT
A (z)

AT (z)WT
A (z)

= B̃T (z)[
ANT (zN)

]T
(z)

(9)

where

WT
A (z) =

[
ANT (zN)

]T
(z)

AT (z)
= ÂT (zN)

AT (z)
=

N−1∏
k=1

AT
(

z · e
−j2�k

N

)
(10)

From (9) and (10), the process can be modeled as a uniform
sampled-data system [17]. To model the behavior of a non-
uniformly sampled system the Z-transform can be also used, but
some additional definitions are required. These ones are possible
by introducing a suitable mathematical operator: the non-uniform
operator �N (i).

Definition: The non-uniform operator �N (i) is defined by

�N(i) =
N∑

k=1

exp

(
−s

i−1+k∑
l=k

�l

)
N

, i = 1 . . . N − 1 (11)

where, as usual, s is referred to the Laplace variable.
Theorem (input/output non-uniform modeling):  Given the FSDT

process GT(z) in (6) and its polynomial WT
A (z) in (10), then GT(z)

is modified by WT
A (z) resulting (9).  If the first N−1 powers of the

delay operator (i.e., z−i, i = 1. . .N−1) in (9) are replaced by the non-
uniform operator �N(i) as follows:

–  z−1 is replaced by

�N(1) =
(

e−s�1 + e−s�2 + · · · + e−s�N

N

)
(12)

– z−2 is replaced by

�N(2) =
(

e−s(�1+�2) + e−s(�2+�3) + · · · + e−s(�N+�1)

N

)
(13)

– and so on, up to

z−(N−1). (14)

Finally, z−N is replaced by e−sNT.

then GT(z) will be converted to G∗
p(s) (where ‘*’ means Laplace

transform of the sampled system). After this conversion, two  cases
can be treated:

– uniform sampling (�i = �): in this case some continuous zeros s̃ =
− �̃ ± jw̃p are obtained, whose discretization at period T yields the
discrete zeros included in B̃T (z).

– non-uniform sampling: here the continuous zeros change their
location [28], being now in ˜̃s = − ˜̃� ± j ˜̃wp. Then, the model of the
non-uniform sampled-data system will be defined as follows:

˜̃G
T
(z) = ˛ ˜̃B

T
(z)[

ANT (zN)
]T

(z)
(15)

where, by comparison with (9)

– ˜̃B
T
(z) includes the new discrete zeros, which come from the

appropriate discretization of the new continuous zeros ˜̃s = − ˜̃� ±
j ˜̃wp. This discretization is carried out from this new period ˜̃T:

˜̃T = w̃p

˜̃wp

T (16)

–  ̨ represents a suitable adjustment of the static gain

 ̨ = B̃T (1)

˜̃B
T
(1)

(17)

–
[
ANT (zN)

]T
(z) includes the same discrete poles than in (9). Poles

do not change their location under different sampling patterns
[28].

In this way, despite using the z−i delay operator, the non-
uniform sampled-data system can be modeled as a LPTV system,
where different �i can be considered inside the metaperiod NT.

Proof. Firstly, to determine the non-uniform operator �N(i), a
suitable study based on the frequency response of the process [28]
is required (see details in Appendix I), leading to:

G∗
p(jω) = 1

NT

N−1∑
i=0

GNT
i

(
ejwNT

) N∑
k=1

exp

(
−jw

i−1+k∑
l=k

�l

)
(18)

where

– zN = zN = ejwNT (remember (1) and (2)),

– GNT
i

(
zN
)�=
[
ZNT

[
HNT (s)Gp(s)esti

]]T
, that is, the expanded Z-

transform of the NT-period discretized impulse response,
advanced ti time instants and

– if l > N then � l = � l−N.
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If the expression (18) is enlarged, its first terms take the form

G∗
p(jw) = 1

T

[
GNT

0

(
ejwNT

)
+ GNT

1

(
ejwNT

)( e−jw�1 + e−jw�2 + · · · + e−jw�N

N

)
+ GNT

2

(
ejwNT

)( e−jw(�1+�2) + e−jw(�2+�3) + · · · + e−jw(�N+�1)

N

)
+· · ·

]
(19)

From (19), the non-uniform operator �N(i) can be defined by
using the Laplace variable s (=jw)  as follows:

�N(i) =
N∑

k=1

exp

(
−s

i−1+k∑
l=k

�l

)
N

(20)

Then, applying (20) to (19), a well-known result can be obtained
by drawing an analogy with [12]

G∗
p(s) ∼= GNT

0

(
esNT
)

+ GNT
1

(
esNT
)

�N(1) + GNT
2

(
esNT
)

�N(2) + · · · =

GNT
0

(
esNT
)

+ GNT
1

(
esNT
)( e−s�1 + e−s�2 + · · · + e−s�N

N

)
+GNT

2

(
esNT
)( e−s(�1+�2) + e−s(�2+�3) + · · · + e−s(�N+�1)

N

)
+ · · ·

(21)

where esNT ≡ zN represents the sampling of the process each kNT,
and the operator �N(i) implies an effective sampling each kNT −

N∑
x=i+1

�x, where k = 0, 1, 2, ... ; i = 1, 2, ..., N − 1.

In this way, from the process defined by (9),  then the replace-
ments (12)–(14) can be performed to obtain an expression like (21).
And finally, taking into account (16) and (17), the input/output
model for the non-uniform sampled-data system (15) can be
achieved.

4. Non-uniform multi-rate control system design: stability
analysis

4.1. RST controller design for a non-uniform multi-rate control
system

In this section the classical RST controller [26] is adapted to be
included in the multi-rate control system. As a consequence of this
inclusion, the multi-rate controller design can be simplified. Fig. 2
shows a block diagram in order to easily appreciate how the control
system is defined by two parts: a first side, where the RST con-
trol action is generated, and a second side that uses this action to
calculate the non-uniform multi-rate control updating.

Assumption:  As shown in Fig. 2, input and output samplers of the
process work synchronized according to the non-uniform sampling
pattern defined by �i. Then, the results are only valid under this
assumption. However, this is not a very restrictive consideration,
since at the process output only one of the N samples (the first one
for each metaperiod) is later used by the controller, being the other
ones, somehow, discarded from the point of view of the control
system. Hence, �i can be selected according to the desired input
(control) pattern.

4.1.1. RST controller
The RST controller [26] is a two-degree-of-freedom controller

obtained via an input–output model-based pole placement design
procedure, which implies the resolution of a diophantine equation.
In this work (as shown in Fig. 2) to avoid confusion, the RST poly-
nomials will be named as R̄S̄T̄ (since R is used for the reference
signal, and T for the sampling period). The polynomials R̄, S̄ are

deduced when solving the diophantine equation. The polynomial T̄
is designed to tune the control system gain, and to avoid unstable
zero cancellations. The R̄S̄T̄ control law in our proposal is designed
at period NT,  and yields

ŪNT = T̄NT (zN)
R̄NT (zN)

RNT − S̄NT (zN)
R̄NT (zN)

[
˜̃Y

T

DR

]NT

(22)

The general procedure to obtain this law can be found in [26].
Next, a particular (but usual) case based on the consideration of a
second order discrete-time process with a zero is detailed:

If the SSDT process model takes this form

GNT (zN) = k(zN + b)
(zN − a1)(zN − a2)

= k(zN + b)

(z2
N + ˛1zN + ˛2)

= BNT (zN)
ANT (zN)

(23)

the SSDT reference model (including the zero of the process to avoid
ripple problems) can be proposed as

MNT (zN) = (1 + t̄1 + t̄2)
(1 + b)

(zN + b)

(z2
N + t̄1zN + t̄2)

= BNT
M (zN)

ANT
M (zN)

= YNT (zN)
RNT (zN)

(24)

Then, the pole placement approach yields the following dio-
phantine equation

ANT (zN)R̄NT (zN) + BNT (zN)S̄NT (zN) = ANT
M (zN)ANT

o (zN) (25)

where ANT
o (zN) is the observer’s polynomial (locating its poles

usually in zN = 0), and R̄, S̄  will take this form

R̄NT (zN) = (zN + r̄1)

S̄NT (zN) = (s̄0zN + s̄1)
(26)

So, solving the diophantine equation

s̄0 = t̄1 − ˛1 − r̄1

k

s̄1 = −˛2 r̄1

kb

r̄1 = t̄2 − ˛2 + b˛1 − bt̄1

˛1 − ˛2

b
− b

(27)

being

T̄NT (zN) = 1 + t̄1 + t̄2

k(1 + b)
zN (28)

Remark 1. As known [26], disturbances are not used in the pole
placement design. They can be indirectly included as constraints
in the reference model, in the observer’s polynomial, and in the
control law.

4.1.2. Non-uniform multi-rate controller
Once the RST controller has been described, now the goal is

to redefine the multi-rate controller in order to include the RST
stage. As commented, the multi-rate controller will be designed
via a model-based procedure [17]. The RST control stage will be
included in the slow-rate side of the multi-rate controller, being
obtained via an input–output model-based pole placement method
[26] (as detailed in the previous section).

Theorem: Given a n-order single-input–single-output
continuous-time process Gp(s), whose closed-loop behavior
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Fig. 2. Block diagram for the control system: multi-rate controller including an RST stage.

must follow the next continuous-time reference model M(s),
assuming a non-uniform control updating rate according to the
subperiods �i, and the output being sampled at rate 1/NT;  if the

skipped fast output
[

˜̃Y
T

DR

]NT

should match the slow single-rate

control-loop output YNT(zN), that is, the slow-sampled output, then
the controller should be

GT,NT
R (z) = ˛M

˜̃B
T

M(z)

˛ ˜̃B
T
(z)

RT (z)[
RNT
]T

(z)

[
GNT

RST (zN)
BNT (zN)
BNT

M (zN)

]T

(z) (29)

where

– ˜̃G
T

2(z) = ˛M
˜̃B

T

M(z)/˛ ˜̃B
T
(z) is the fast side of the multi-rate con-

troller, being ˛M
˜̃B

T

M(z) the numerator of the FSDT reference model

(since it is defined as ˜̃M
T
(z) = ˛M

˜̃B
T

M(z)/
[
ANT

M

]T
(z)), and ˛ ˜̃B

T
(z)

the numerator of the FSDT process model (remember (15)),
– GNT

1 (zN) = BNT (zN) /BNT
M (zN) is the slow side of the multi-rate

controller, where BNT
M (zN) is  the numerator of the SSDT reference

model (remember (24)), and BNT (zN) the numerator of the SSDT
process model (remember (23)),

– GNT
RST (zN) represents the RST controller, whose output is defined

in (22),

– HT,NT (z) = RT (z)

[RNT ]T (z)
is a rate converter located after the expanding

block. It depends on the reference signal. So, for a step reference,
it acts as a digital ZOH, then HT,NT(z) = (1 − z−N)/(1 − z−1).

Note that the expand operation is applied to the slow side of

GT,NT
R (z), that is,

[
GNT

RST (zN) GNT
1 (zN)

]T
(z) (remember Fig. 2).

For the particular case in which a uniform control updating at
period T is considered, the controller should be

GT,NT
R (z) = B̃T

M(z)

B̃T (z)

RT (z)[
RNT
]T

(z)

[
GNT

RST (zN)
BNT (zN)
BNT

M (zN)

]T

(z) (30)

where only the fast side changes (GT
2(z) = B̃T

M(z)/B̃T (z)), being B̃T
M(z)

the numerator of the FSDT reference model (since it is defined in

this case as MT (z) = B̃T
M(z)/

[
ANT

M

]T
(z)), and B̃T (z) the numerator of

the FSDT process model (remember (9)).

Proof. From the well-known result about uniform multi-rate con-
trollers (see “main result” pp. 992 in [17])

GT,NT
R (z) = MT (z)

GT (z)
RT (z)[

RNT
]T

(z)

[
1

1 − MNT (zN)

]T

(z) (31)

where

– GT
2(z) = MT (z)/GT (z) is the fast side of the multi-rate controller

–
[
GNT

1 (zN)
]T

(z) =
[
1/(1 − MNT (zN))

]T
(z) is the expanded slow side

of the multi-rate controller
– HT,NT (z) = RT (z)/

[
RNT
]T

(z) is the rate converter located after the
expanding block

If the SSDT reference model in (24) is redefined as

MNT (zN) = GNT
RST (zN)GNT (zN)

1 + GNT
RST (zN)GNT (zN)

(32)

then the slow side of the multi-rate controller can be rewritten in
this way

1
1 − MNT (zN)

= GNT
RST (zN)

GNT (zN)
MNT (zN)

(33)
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So, the multi-rate controller can be redefined as follows:

GT,NT
R (z) = MT (z)

GT (z)
RT (z)[

RNT
]T

(z)

[
GNT

RST (zN)
GNT (zN)
MNT (zN)

]T

(z) (34)

where

– GNT
1 (zN) = GNT (zN) /MNT (zN) is the new slow side of the multi-

rate controller,
– GNT

RST (zN) represents the RST controller, whose output is defined
in (22).

Applying to the slow side GNT
1 (zN) both the expand operator (5)

and the definition for GT (z) in (9),  this slow side can be adapted in
this way

[
GNT

1 (zN)
]T =

[
GNT (zN)
MNT (zN)

]T

=
[
BNT (zN)

]T[
ANT (zN)

]T

[
ANT

M (zN)
]T[

BNT
M (zN)

]T

=
[
BNT (zN)

]T[
BNT

M (zN)
]T

AT
M (z) WT

MA
(z)

AT (z) WT
A (z)

(35)

In addition, using the non-uniform model (remember (15)), the

fast side ˜̃G
T

2 (z) can be represented by

˜̃G
T

2 (z) =
˜̃M

T
(z)

˜̃G
T

(z)
= ˛M

˜̃B
T

M (z)
AT

M (z) WT
MA

(z)

AT (z) WT
A (z)

˛ ˜̃B
T

(z)
(36)

So, as both sides of the multi-rate controller are now defined at
the same period, they can be multiplied

˜̃G
T

2 (z)
[
GNT

1 (zN)
]T = ˛M

˜̃B
T

M (z)
AT

M (z) WT
MA

(z)

AT (z) WT
A (z)

˛ ˜̃B
T

(z)

[
BNT (zN)

]T[
BNT

M (zN)
]T

×
AT

M (z) WT
MA

(z)

AT (z) WT
A (z)

= ˛M
˜̃B

T

M (z)

˛ ˜̃B
T

(z)

[
BNT (zN)

]T[
BNT

M (zN)
]T

(37)

Resulting

– GNT
1 (zN) = BNT (zN )

BNT
M

(zN )
(not including the expand operator)

– ˜̃G
T

2 (z) = ˛M
˜̃B

T
M (z)

˛ ˜̃B
T

(z)
, or GT

2 (z) = B̃T
M

(z)

B̃T (z)
(depending on the kind of

sampling pattern)

Remark 2. ˜̃G
T

2 (z) or GT
2 (z) contains at denominator the numerator

of the process model. Then, on the one hand, if this model is non-
minimum phase, an unstable control signal will be generated. So,
the proposed multi-rate controller is not appropriate for this case.
In [29], the reader can find a suitable dual-rate controller for unsta-
ble and non-minimum phase systems. On the other hand, if the
process is minimum phase, a safety region on the complex plain
that includes some desired relative and absolute damping values
can be defined. So, to avoid cancellation problems only those zeros
of the model located inside this region will be cancelled [26].

Remark 3. The proposed multi-rate controller design only implies
designing an RST controller at period NT,  since both the slow and
the fast sides are obtained from the corresponding modeling. It
reduces highly the complexity of the design stage and the controller
implementation.

4.2. Stability analysis

Once the control system is designed, now it is interesting to
study its stability. So, two  different stability aspects will be treated
in this section. The first one is related to sensitivity to modeling
errors. As known, mismatches between model and process can
imply some degradation of the control system performance and
stability. Theorem 5.4 in [26] is particularized to our case in order
to introduce some upper-bounded condition to evaluate the control
system stability in the presence of these mismatches.

The second aspect to be faced will be stability for switching
systems. In the previous section, the design of a non-uniform multi-
rate control system which includes an RST control stage is studied.
As a result, the control system can be represented as a LPTV system.
But, as commented, in some environments can appear different
non-uniform patterns (the non-periodic case). So, different LPTV
control systems must be designed in order to switch among them
according to the current pattern. Although each one of the conse-
quent LPTV control systems was stable, the switching among them
could imply instability. In this work, in order to assure stability for
the switching case, a LMI  analysis will be carried out. This analysis
requires the closed-loop system at NT-period, since, as well-known
(see for example in [12]), any LPTV system is globally defined at
metaperiod NT.

Lemma:  From the notation depicted in Fig. 2, the multi-rate
closed-loop system at NT-period is defined as[

˜̃Y
T

DR

]NT

RNT
(zN) =

[
˜̃G

T ˜̃G
T

2HT,NT
]NT

GNT
1 (T̄NT /R̄NT )

1 +
[

˜̃G
T ˜̃G

T

2HT,NT
]NT

GNT
1 (S̄NT /R̄NT )

(zN) (38)

Note that in a uniform case GT(z) and GT
2(z) will be used instead

of ˜̃G
T
(z) and ˜̃G

T

2(z), respectively.

Proof. From [17], if the RST controller is considered, the process
output for the non-uniform multi-rate controlled system will fulfill

˜̃Y
T

DR(z) = ˜̃G
T ˜̃G

T

2HT,NT
[
GNT

1

]T
[

T̄NT

R̄NT
RNT − S̄NT

R̄NT

[
˜̃Y

T

DR

]NT
]T

(z) (39)

If this output is skipped, and assuming the skip-expand proper-
ties in [17,25][

˜̃Y
T

DR

]NT

(zN ) =

[
˜̃G

T ˜̃G
T

2HT,NT
[

GNT
1

]T

[
T̄NT

R̄NT
RNT − S̄NT

R̄NT

[
˜̃Y

T

DR

]NT
]T
]NT

=
[

˜̃G
T ˜̃G

T

2HT,NT

]NT

GNT
1

[
T̄NT

R̄NT
RNT − S̄NT

R̄NT

[
˜̃Y

T

DR

]NT
]

(zN )

(40)

(39) is obtained.
Control system sensitivity to modeling errors:  When obtaining

˜̃G
T
(z) (or GT(z)), some modeling errors could be made, resulting dif-

ferences between the model ˜̃G
T
(z) and the real process ˜̃G

T

0(z). This
fact usually implies some degradation on the control system per-
formance and stability. Focusing on stability, from Theorem 5.4 in
[26] the mismatch between process and model is upper-bounded
according to the next well-known condition (Eq. (5.11) in [26], now
particularized to our case):∣∣HNT

lg (zN) − HNT
lg,0 (zN)

∣∣<
∣∣1 + HNT

lg (zN)
∣∣ (41)

where, remembering (38):

– HNT
lg (zN) =

[
˜̃G

T ˜̃G
T

2HT,NT
]NT

GNT
1 (S̄NT /R̄NT ) (zN) is the loop gain

when the model ˜̃G
T

(z) is considered.
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– HNT
lg,0 (zN) =

[
˜̃G

T

0
˜̃G

T

2HT,NT
]NT

GNT
1 (S̄NT /R̄NT ) (zN) is the loop gain

when the real process ˜̃G
T

0(z) is considered.

From (41), despite the presence of mismatches, the closed-loop

stability referred to ˜̃G
T

0(z) is assured for |zN | = 1 (as indicated by
theorem 5.4 in [26]). Since, zN = esNT

∣∣
s=jw

= cos(wNT) + j sin(wNT),

and |zN | =
√

cos2(wNT) + sin2(wNT) = 1, then (41) must be evalu-
ated for zN = 1 (that is, w = 0), and zN = −1 (that is, w = �/NT).

Remark 4. Since skip operations are included in (41), this expres-
sion is evaluated at period NT.  Thus, no noticeable differences
should be yielded when (41) is checked for the uniform model GT(z)

with respect to when it is checked for the non-uniform model ˜̃G
T
(z).

Both models present the same behavior at period NT.

Switching system stability: Let us convert (38) into state–space
representation, in such a way that the closed-loop matrix Acl
includes the eigenvalues of the LPTV system. But these eigenval-
ues will vary according to the non-uniform pattern considered in
each metaperiod, that is, Acl depends on a set of parameters �k ={

�1,k, �2,k, . . . , �N−1,k

}
, which includes the subperiods �i between

two consecutive time instants where the control updating is pro-
duced for each metaperiod kNT. So, Acl will be replaced by Acl(�k) to
express the non-periodicity feature of the system, and the closed-
loop system will be defined as

x[(k + 1)NT]  ≡ xk+1 = Acl(�k)xk (42)

In this work, a geometric decay rate 0 ≤  ̨ ≤ 1 will be used in
order to prove the stability condition. So, the next common Lya-
punov function

V(x) = xT Qx, Q > 0 (43)

must be found [30] so that V [(k + 1)NT] <  ˛2V [kNT].  Replacing
(42) in (43), the Lyapunov decrescence conditions can be written
as the following matrix inequality:

Acl(ϑ)T QAcl(ϑ) − ˛2Q < 0, ∀ϑ ∈ 
 (44)

where ϑ is a dummy  parameter ranging in a set 
 where the non-
periodic parameters �k are assumed to take values in, and matrix Q
is composed of decision variables to be found by the semidefinite
programming solver.

If Acl(�k) is an affine function of �k, and 
 is polytopic, then
(44) can be checked with a finite number of LMIs. Otherwise, a
LMI  gridding procedure [31] must be used to approximately check
for the above conditions. In [13] a stochastic approach for this LMI
procedure can be found.

Control system modeling and design procedure:  Finally, to com-
plete this Section 4, a schematic procedure which sorts out the
modeling and design steps to be followed is presented.

– Step 1: From Gp(s), obtain the FSDT model for the uniform case

GT(z) (by (9))  and for the non-uniform cases ˜̃G
T
(z) (by (15),

considering one model for each sampling pattern), and the SSDT
model GNT(zN) (by (7)).

– Step 2: Define a reference model M(s) and obtain the consequent
FSDT model for the uniform case MT(z) (defined after (30)) and for

the non-uniform cases ˜̃M
T
(z) (defined after (29), obtaining one

model for each sampling pattern), and the SSDT model GNT(zN)
(by (24)).

– Step 3: Design the RST control stage by solving the diophan-
tine equation in (25). So, the RST polynomials in (26), (28) are
obtained, and hence the control law in (22) can be stated.

–  Step 4: Design the multi-rate controller according to (30) for the
uniform case, and (29) for each non-uniform case.

– Step 5: Assure stability in term of LMIs (44) for the case in which
switching among non-uniform controllers is considered. Check
the condition (41) to evaluate sensitivity to modeling errors.

– Step 6: Use suitable performance indexes in order to compare the
behavior of each designed control system.

5. Simulation example

One of the aims of this example is to show how, when a pro-
cess is sampled in a non-uniform way, an accurate model for it can
be reached following the steps provided by theorem of Section 3.
Despite its reliability, sensitivity to modeling errors will be studied
too.

Another goal of the example is to compare three different sit-
uations. The first of them is the uniform sampling case. In this
context a uniform multi-rate controller is designed in order to
achieve some performance (the nominal one). If this controller is
used when a non-uniform sampling pattern appears, the perfor-
mance will be degraded. Thus, a non-uniform multi-rate controller
will be designed to keep the nominal control performance. In addi-
tion, if a sequence of different non-uniform patterns appears, a set
of non-uniform controllers must be designed in order to switch
among them according to the current pattern. With this strategy the
performance can be kept, whereas if a unique uniform multi-rate
controller is used, the performance becomes worst. This study will
be developed by simulating control system outputs and by checking
stability via LMIs.

5.1. Modeling steps

Given a continuous time process G(s) = (s + 3)/(s2 + 2s + 2), which
presents a settling time around 4 s (ts = 4 s), if an output sampling
period NT = 0.6 s (with N = 2) is considered, its SSDT and uniform
FSDT models are, respectively, defined by

GNT (zN) = 0.6656(z2 − 0.1092)

z2
2 − 0.9059z2 + 0.3012

= BNT (zN)
ANT (zN)

(45)

GT (z) = 0.3289(z − 0.3919)
z2 − 1.415z + 0.5488

= BT (z)
AT (z)

(46)

being WT
A (z) = z2 + 1.415z + 0.5488.

Two  different non-uniform patterns {�1, �2} will be consid-
ered:

{
0.45, 0.15

}
(that is, sampling at [0, 0.45] time instants for

each metaperiod) and
{

0.55, 0.05
}

(that is, sampling at [0, 0.55]
time instants for each metaperiod). The consequent non-uniform
FSDT process models take this form (after applying the modeling
introduced in Section 3)

for
{

0.45, 0.15
}

: ˜̃G
T
(z)

=
0.4877(z − 0.3945)

(
z2 + 0.7542z + 0.2537

)
z4 − 0.9059z2 + 0.3012

= ˛ ˜̃B
T
(z)[

ANT
]T

(z)
(47)

for
{

0.55, 0.05
}

: ˜̃G
T
(z)

=
0.6144(z − 0.3795)

(
z2 + 0.4630z + 0.0920

)
z4 − 0.9059z2 + 0.3012

= ˛ ˜̃B
T
(z)[

ANT
]T

(z)
(48)
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Fig. 3. Process outputs for different patterns.

Fig. 3 depicts the sequence of process output values which is
provided by each non-uniform model for a step reference. In addi-
tion, the uniform case and the continuous output are also shown.
The sampled values are located at the correct continuous output
response according to each sampling pattern. As expected, the first
value of each metaperiod (every NT = 0.6 s) coincides for all samp-
ling patterns.

In this example the goal of the design procedure is to achieve
some improvement in the settling time in such a way that it can be
reduced around 50% (ts = 2 s). So, the next reference model is con-
sidered M(s) = (s + 3)/(s2 + 4s + 8), being its SSDT and FSDT transfer
functions:

MNT (zN) = 0.3692(z2 − 0.1138)

z2
2 − 0.2183z2 + 0.09072

= BNT
M (zN)

ANT
M (zN)

(49)

MT (z) = 0.2439(z − 0.3922)
z2 − 0.9059z + 0.3012

= BT
M(z)

AT
M(z)

(50)

where WT
MA

(z) = z2 + 0.9059z + 0.3012.
For the non-uniform patterns considered in this example, the

non-uniform FSDT reference models yield

for
{

0.45, 0.15
}

: ˜̃M
T
(z)

=
0.3186(z − 0.3808)

(
z2 + 0.5384z + 0.1216

)
z4 − 0.2183z2 + 0.09072

= ˛M
˜̃B

T

M(z)[
ANT

M

]T
(z)

(51)

for
{

0.55, 0.05
}

: ˜̃M
T
(z)

=
0.3536(z − 0.3625)

(
z2 + 0.4050z + 0.0462

)
z4 − 0.2183z2 + 0.09072

= ˛M
˜̃B

T

M(z)[
ANT

M

]T
(z)

(52)

A similar figure to Fig. 3 could be shown to check the accu-
rateness of the non-uniform reference model according to each
sampling pattern. For brevity, now it is not shown.

Design steps: Once every model is presented, the design of the
RST control stage and the multi-rate controllers can be carried out.

Starting from the RST controller, solving (25) for the present exam-
ple, the RST polynomials in (26), (28) take this form

T̄NT (zN) = 1  + t̄1 + t̄2

k(1 + b)
z2 = 1.471404z2

S̄NT (zN) = 1.136755z2 − 0.286035

R̄NT (zN) = z2 − 0.069024

(53)

So, the RST control law in (22) will be

UNT (zN) =
(

1.471404z2

z2 − 0.069024

)
RNT (zN)

−
(

1.136755z2 − 0.286035
z2 − 0.069024

)  [
˜̃Y

T

DR

]NT

(zN) (54)

Now, from the SSDT and FSDT models for the process and for
the desired closed-loop function, the fast side of the multi-rate
controller can be obtained

– for the uniform sampling case:

GT
2(z) = B̃T

M(z)

B̃T (z)
= 0.2439 (z − 0.3922)

0.3289 (z − 0.3919)

(
z2 + 0.9059z + 0.3012

)(
z2 + 1.415z + 0.5488

)
≈

0.7415
(

z2 + 0.9059z + 0.3012
)(

z2 + 1.415z + 0.5488
) (55)

– for the non-uniform sampling case with
{

0.45, 0.15
}

:

˜̃G
T

2(z) = ˛M
˜̃B

T

M(z)

˛ ˜̃B
T
(z)

=
0.3186(z − 0.3808)

(
z2 + 0.5384z + 0.1216

)
0.4877(z − 0.3945)

(
z2 + 0.7542z + 0.2537

)
≈

0.6532
(

z2 + 0.5384z + 0.1216
)(

z2 + 0.7542z + 0.2537
) (56)

– for the non-uniform sampling case with
{

0.55, 0.05
}

:

˜̃G
T

2(z) = ˛M
˜̃B

T

M(z)

˛ ˜̃B
T
(z)

=
0.3536(z − 0.3625)

(
z2 + 0.4050z + 0.0462

)
0.6144(z − 0.3795)

(
z2 + 0.4630z + 0.0920

)
≈

0.5755
(

z2 + 0.4050z + 0.0462
)(

z2 + 0.4630z + 0.0920
) (57)

The slow side of the multi-rate controller is the same for every
case:

GNT
1 (zN) = BNT (zN)

BNT
M (zN)

= 0.6656(z2 − 0.1092)
0.3692(z2 − 0.1138)

≈ 1.8028 (58)

Note that, in both controller’s sides, a cancellation between orig-
inal zeroes of the process and of the reference model is considered
(there are negligible differences due to the discretization method).

5.2. Stability analysis

From some of the previous expressions, the condition (41) can
be evaluated for different situations. Seeing Fig. 3, Remark 4 can
be assumed, and then, for the sake of simplicity, let us only focus
on a uniform scenario in which a mismatch � between the model
gain and the process gain appears. So, from (46), the real process
GT

0(z) = �GT (z). Three different cases for � will be analyzed: � = 2,

2.2, 2.3. The right hand in (41),
∣∣∣1 + HNT

lg (zN)
∣∣∣, does not depend on

�,  yielding these upper-bounds:
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Table  1
Performance variation in LPTV scenarios.

Performance variation
∥

� (�i) − � (�)
∥∥∥�

({
0.45, 0.15

})
− � (0.3)

∥∥ ∥∥�
({

0.55, 0.05
})

− � (0.3)
∥∥

Non-uniform case 0.0033 0.0023
Uniform case applied non-uniformly 0.0649 0.1208

– for zN = 1 →2.36
– for zN = −1 → 0.55

But the left hand,
∣∣∣HNT

lg (zN) −  HNT
lg,0 (zN)

∣∣∣, does depend on �,

resulting the next three cases:

– for � = 2: zN = 1 →1.36, and zN = −1 → 0.44. That is, (41) holds.
– for � = 2.2: zN = 1 →1.63, and zN = −1 → 0.53. That is, (41) holds

but the control system is practically on the verge of instability
(the value obtained for zN = −1 is close to the upper-bound).

– for � = 2.3: zN = 1 →1.77, and zN = −1 → 0.57. That is, (41) does
not hold (the value obtained for zN = −1 is higher than the upper-
bound), and hence the closed-loop response becomes unstable.

The reader can check that there exist negligible differences
between the previous values and those obtained for a non-uniform
model (as commented in Remark 4; details omitted for brevity).
Figs. 4 and 5 show, respectively, the closed-loop outputs and con-
trol actions for each case compared to the nominal scenario (� = 1,
where no modeling errors are considered). The previous conclu-
sions can be stated in these figures. As expected, the higher � is,
the more degraded the control system performance will be.

Now, let us define the discrete-time control system performance
� by means of the dominant closed-loop poles zN =  ̨ ± ˇj. Then,
� ≡

{
 ̨ ± ˇj

}
. For a (non-uniform) LPTV control system, this perfor-

mance will be represented by � (�i) , i = 1, 2, . . . , N, and it will be
deduced from (38). If a uniform sampling case is treated, � (�i) will
be replaced by � (�),  since every subperiod is equally time spaced.
This last case will be named as the nominal, desired performance.

The goal is to compare the nominal performance with that
performance obtained in two different non-uniform sampling sit-
uations:

a) When the uniform controller is used (despite the non-uniform
actuation).

Fig. 4. Outputs for the uniform case with process gain mismatch.

Fig. 5. Control actions for the uniform case with process gain mismatch.

b) When the suitable non-uniform controller is used (for each non-
uniform pattern considered in the example, i.e.

{
0.45, 0.15

}
and

{
0.55, 0.05

}
).

To achieve the comparison, the norm of the difference of the
performance for a non-uniform sampling case and for the nominal
case is calculated, that is,

∥∥� (�i) −  � (�)
∥∥. Table 1 shows the results.

The variations on the performance are much lower (practically
negligible) when, in a non-uniform context, the appropriate non-
uniform controller is used. When using the uniform controller in
a non-uniform sampling situation, some performance degradation
is expected (the higher the first subperiod is, the more degradation
will be expected).

The previous study has been developed assuming the non-
uniform sampled-data system as a LPTV system. But, in a more
realistic context, different non-uniform patterns are expected to be
appeared. In this case, as switching among controllers is required,
control system stability must be assessed. So, applying the LMIs in
(44), a minimum  ̨ for which a feasible solution Q exists will be
obtained. The decay rate guaranteed from the LMIs will be stud-
ied for two different situations: switching among non-uniform
controllers, or using a unique uniform controller. Table 2 shows
the results. A smaller decay rate is obtained when the switching
among the different non-uniform controllers is carried out in a non-
periodic situation. If a (unique) uniform controller is used in this
context, the decay rate worsens around 18.5%.

Table 2
Decay rate for non-periodic scenarios.

Decay rate ˛

Non-uniform case 0.303
Uniform case applied non-uniformly 0.358
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Fig. 6. Outputs for the LPTV scenario with {0.45, 0.15}.

5.3. Closed-loop outputs

Now, in order to better compare the different scenarios (since
significant differences in overshoot can appear), closed-loop out-
puts are obtained. Fig. 6 shows the LPTV case when the pattern
is
{

0.45, 0.15
}

. Focusing on overshoot and settling time, differ-
ences between the uniform, nominal output and the non-uniform
one are practically negligible. Only the peak time for the latter
response is a bit lower. However, considering a uniform con-
troller in a non-uniform sampling context, its output shows some
overshoot degradation (around 8%). This result confirms that one
previously determined by the norm. In any case, as expected, ripple-
free closed-loop responses to step reference signal are depicted. In
Fig. 4, the control updating pattern can be observed (Fig. 7).

Similar conclusions can be deduced from Figs. 8 and 9, where the
pattern

{
0.55, 0.05

}
is simulated, but now a higher degradation in

terms of overshoot (around 16%) is reflected for the uniform con-
troller in a non-uniform sampling context (as expected according
to Table 1).

Finally, the simulation of the non-periodic scenario is presented
in Fig. 10.  From inspection of this figure, if the switching between
the two non-uniform controllers is carried out, the settling time
is similar than in the uniform case, and the overshoot is clearly
lower (a 6%). Nevertheless, if the uniform controller is used in the

Fig. 7. Control actions for the LPTV scenario with {0.45, 0.15}.

Fig. 8. Outputs for the LPTV scenario with {0.55, 0.05}.

Fig. 9. Control actions for the LPTV scenario with {0.55, 0.05}.

Fig. 10. Outputs for the non-periodic scenario.
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Fig. 11. Control actions for the non-periodic scenario.

non-periodic context, the response worsens in terms of overshoot
(around 15%). As assured by the LMIs, control system stability is
preserved despite switching between controllers. Fig. 11 shows the
non-uniform pattern alternation (firstly {0.55, 0.05} is considered,
and secondly {0.45, 0.15}; and so on cyclically).

5.4. A particular case

In slow dynamic processes, for example in chemical plants, the
interval of quality sampling is often close to or even longer than the
settling time of the process. In order to check if our design proposal
is still applicable under this consideration (that is, if control perfor-
mance and stability are preserved), the next case study is carried
out.

Given the previous continuous time process
G(s) = (s + 3)/(s2 + 2s + 2), which presents a settling time around
4 s (ts = 4 s). Now the output sampling period NT is taken as long
as ts (that is, NT = 4 s, with N = 2). The reference model is also the
previous one, that is, M(s) = (s + 3)/(s2 + 4s + 8) (which presents
ts = 2 s). For brevity, only the uniform sampling case is treated.
Then, the next multi-rate controller including the RST stage is
designed:

– RST stage

T̄NT (zN) = 0.7009z2

S̄NT (zN) = −0.0192z2 − 0.00016

R̄NT (zN) = z2 + 0.0055

(59)

– Fast side of the multi-rate controller:

GT
2(z) ≈

0.2481
(

z2 − 0.02394z + 3.355 · 10−4
)(

z2 − 0.1126z + 0.01832
) (60)

– Slow side of the multi-rate controller:

GNT
1 (zN) ≈ 4.0657 (61)

In Fig. 12,  the resultant control system output response is com-
pared to that obtained when NT = 0.6 s (shown in previous figures).
As depicted, closed-loop stability is preserved, but control system
performance decreases. Concretely, despite keeping the overshoot,
the desired settling time (ts = 2 s) is not reached. The reason can be
explained by Fig. 13,  where control actions are shown. The control

Fig. 12. Outputs for uniform scenarios at different process output sampling periods.

Fig. 13. Control actions for uniform scenarios at different process output sampling
periods.

signal magnitude for this particular case is much lower than in the
other case, which can reduce the convergence speed.

6. Conclusions

An approach to face the appearance of a sequence of different
non-uniform sampling patterns in multi-rate sampled-data sys-
tems is introduced. This approach is based on including an RST
control stage in the multi-rate control system. This inclusion sim-
plifies the multi-rate controller design, which is model-based. The
overall multi-rate control system is designed to avoid ripple closed-
loop responses to step references.

To develop the design proposal, a suitable input/output mod-
eling for non-uniform sampled-data systems is required. This
modeling is based on the so-called non-uniform operator, which
introduces some replacements for the classical, uniform z−i oper-
ator. In this way, z−i is able to represent the behavior of a
non-uniformly sampled system.

As a non-periodic scenario is assumed, switching among multi-
rate controllers will be needed. To assess stability in this situation,
an LMI  analysis must be carried out. Simulation results show how
control system performance can be kept, and stability preserved,
with this control strategy.
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Fig. 14. Vector switch decomposition for the non-uniform sampling pattern.
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Appendix I.

Fig. 14 illustrates the vector switch decomposition [15] for a
non-uniform sampling pattern, where input and output samplers
are synchronized (remember Fig. 2). From this method, the aim is
to find a representation for the non-uniformly sampled system.

As known, in a uniform scenario, the overall output sequence
YT(z) is obtained as

YT (z) =
N−1∑
m=0

z−mYNT
m (zN) (62)

where z−m is the uniform delay operator, and the m-th output
sequence is calculated as

YNT
m (zN) =

N−1∑
i=0

RNT
i (zN)GNT

m−i(zN) (63)

where

– RNT
i (zN)

�=ZNT [R(s)esti ],  that is, the Z-transform of the input
sequence at NT-period advanced ti time instants, and

– GNT
m−i (zN)

�=ZNT

[
HNT (s)Gp(s)es(tm−ti)

]
, that is, the Z-transform of

the NT-period discretized impulse response, advanced tm-ti time
instants.

But, in a non-uniform sampling scenario the z−m delay operator
cannot be used to represent the sampled process. In this case,
to finally obtain the process description, first of all the sampled

process output is needed to be defined in the Laplace domain. So,
if the input r(t) = ejwt is considered, the output will yield

Y∗(s) = 1
NT

{
N−1∑
m=0

N−1∑
i=0

ejwti GNT
m−i(e

jwNT )e−stm

} ∞∑
k=−∞

1
s − j (w + kw0)

(64)

where

– Y*(s) means Laplace transform of the sampled output,
– w0 = 2�

NT , zN = ejwNT , and
– e−stm is used to place each periodic output sequence in the cor-

responding time instant.

Letting k = 0 in order to eliminate sampling replicas, the gain of
the process is given by

G∗
p(jw) = 1

NT

N−1∑
m=0

N−1∑
i=0

ejwti GNT
m−i(e

jwNT )e−jwtm

= 1
NT

N−1∑
m=0

N−1∑
i=0

GNT
m−i(e

jwNT )e−jw(tm−ti) (65)

(65) can be reorganized in this way

G∗
p(jw) = 1

NT

N−1∑
i=0

[
i−1∑

m=0

GNT
m−i(e

jwNT )e−jw(tm−ti)

+
N−1∑
m=i

GNT
m−i(e

jwNT )e−jw(tm−ti)

]
(66)

For the first term in (66), m-i < 0. As the next equation holds
GNT

−k
(ejwNT ) = e−jwNT GNT

N−k
(ejwNT ), then G∗

p(jw) can be rewritten as
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G∗
p(jw) = 1

NT

N−1∑
i=0

[
i−1∑

m=0

e−jwNT GNT
N−(i−m)(e

jwNT )e−jw(tm−ti)

+
N−1∑
m=i

GNT
m−i(e

jwNT )e−jw(tm−ti)

]
(67)

Now, in the first term in (67), let N−(i−m) = x, and in the second
term let m−i = x. Then, (67) is rewritten as

G∗
p(jw) = 1

NT

N−1∑
i=0

[
N−1∑

x=N−i

GNT
x (ejwNT )e−jw(NT+tx+i−N−ti)

+
N−i−1∑

x=0

GNT
x (ejwNT )e−jw(tx+i−ti)

]
(68)

Note that in the first term in (68) the part of the exponent
NT + tx+i−N − ti is equal to tN + tx+i−N − ti = tx+i − ti, and hence it takes
the same form than in the second term. Instead of writing this
expression as time instants ti, let us write it as subperiods �i. Then
(68) is rewritten as

G∗
p(jw) = 1

NT

N−1∑
i=0

GNT
i (ejwNT )

N∑
k=1

exp

(
−jw

k+i−1∑
l=k

�l

)
(69)

where if l > N then � l = � l−N.
Remembering (1) and (2),  the relationship zN = zN can be derived.

As from (69) a FSDT model ˜̃G
T

(z) will be defined, GNT
i

(
zN
)

will be

used instead of GNT
i (zN).
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