
Integration of Mobile Robot Navigation on a
Control Kernel Middleware based system

Eduardo Munera Sánchez, Manuel Muñoz Alcobendas, Juan L. Posadas Yagüe,
Jose-Luis Poza-Luján, J. Francisco Blanes Noguera

Institute of Control Systems and Industrial Computing
Polytechnic City of Innovation

Polytechnic University of Valencia, Spain,
emunera@ai2.upv.es, mmunoz@ai2.upv.es, jposadas@disca.upv.es,

jopolu@disca.upv.es, pblanes@ai2.upv.es

www.ai2.upv.es

Abstract. This paper introduces how mobile robots can perform navi-
gation tasks by implementing a system based on the control kernel mid-
dleware (CKM), and how can take benefit of this. Smart resources are
also included into the topology of the system, improving the distribu-
tion of the computational load required by the system tasks. The CKM
and the smart resources are both highly reconfigurable, even on exe-
cution time, and they also implement fault detection mechanisms and
Quality of Service (QoS) policies. By combining of these capabilities, the
system can be dynamically adapted to the requirements of its tasks. Fur-
thermore, this solution is designed to be implemented by almost every
type of robot. The distribution of load make this system suitable even
for those configurations which are provided with a low computational
power. All these benefits are improved by exploiting the smart resources
capabilities, and the dynamic performance of the system.

Keywords: Distributed Control Systems, Control Kernel, Robot Navi-
gation, Limited Resources Management, Embedded Systems

1 Introduction

A navigation system is a must for every kind of robot which has to perform
in an autonomous way and deal with an uncertain dynamic environments [14].
Although navigation is a well known topic, it is always associated to a high
computational load in comparison with other tasks. Thus many researches have
been focused on how to deal with this load, or the way to reduce it. In every
case, computational capabilities of the robot have to be designed for being able
to face its execution in a proper way.

Besides, navigation system also implies a strong requirement of data acquisi-
tion. Even more, these data may be particularly complex in those cases in which
visual information is used[4]. Therefore, the type of sensor, the reliability of the



provided data, and its supplying rate will affect on the performance of the nav-
igation system. So, should be considered a proper acquisition and management
of the perceptual data, which is required for nourishing the navigation system.

Finally, a middleware-based implementation will improve the performance
and the reliability of the system. It also offers the possibility of working with
high level abstraction, and produce portable and reusable code. Therefore, this
implementations provide a great support for developing robot architectures [6].

1.1 Related works

There are many middleware solutions focused on how to deal with sensor man-
agement(data acquisition) and navigation system. One of the more used frame-
work in robotics is Robot Operating System (ROS) [13], which offers high level
capabilities. ROS is known to work properly with collaborative robot networks,
and for improving in many aspects of communications between robots and data
management. But shows a lack of generality on low level robot configuration,
and does not provide a real-time core.

Another example is Open RObot COntrol Software (OROCOS) [3] where
main features are compiled in two libraries: one for kinematics and dynamics,
and other for bayesian filtering methods. It is distinguished for offering hard
real-time control, data exchange tools and event-driven services. However it has
a lack of capabilities on behavior management for mobile robot operations. Is
usually extended by frameworks like Robot Constrution Toolkit (Rock) [1].

It also can be introduced the middleware Yet Another Robotic Platfform
(YARP) [5]. YARP offers a set of libraries and tools for establishing a decou-
pled configuration of the robotic platform. For this purpose devices are isolated
in a similar way that is done in the architecture proposed in this work. But
YARP excludes the control system management, which relies on an underlying
operating system.

Some robotic-specific frameworks offers more concrete capabilities, such as
CArnegie MEllon Navigation (CARMEN) [7], which is focused on navigation. It
offers a full support for navigation tasks like sensor control, obstacle avoidance,
localization or path planning. Despite of this, it disregards low level control,
behaviour, or real-time management. Instead, there can be found behaviour-
specific framework for robotic platforms just as Integrated Behaviour-Based
Control (IB2C) [12], used for generation, fusion, and management of behaviours.

As a conclusion, there is no framework with full support for the navigation
process, ranging from the lowest level real-time system, to the highest behaviour
management. That support is need in order to adapt of the requirements of the
navigation process and the behaviour tasks. This adaptability is bounded, in
every case, by the reconfiguration capability offered by the system devices.

1.2 Outline

This paper is structured as follows: Section 2 shows a brief description of the
structure of the used control kernel middleware (CKM) and the integration of



smart resources into the CKM topology. The main contribution is introduced
along section 3, introducing the advantages of using the CKM and the smart
resources as the support of the navigation method. The paper ends with some
conclusions about the work in section 4, and the future lines are collected in
section.

2 Framework

In this section is depicted the current implementation of the CKM evolved form
the proposal described in [2]. The CKM is responsible of core tasks, and offers
mechanisms to support the navigation process.

2.1 Control Kernel Middleware

Fig. 1. Topology of a CKM based system .

This topology, as is is shown on Fig. 1, is characterized as a distributed
control system such as is defined in [8]. Main elements of this system are:

– Full Middleware (FMW): A full version of the CKM. Implements full services
support.

– Tiny Middleware (TMW): This reduced version of the CKM implements
basic control and communication services. A detailed description of tiny and
full midddleware can be found on [8].

– Physical sensors and actuator: Physical elements connected with a low profile
TMW implementation for data management and communication.

– TCP & RS-485 connections: Provide communication capabilities to the sys-
tem. RS-485 is used for control data, while the TCP is employed for system
configuration and communication between RS-485 subnetworks. Both con-
nections must offer Quality of Service (QoS) capabilities.



– RS-485 resources: Devices which can be communicated by RS-485 without
implementing CKM. More devices are usually sensors or actuators.

– Smart resources: Are introduced in next section.

2.2 Smart Resources

Smart resources are devices with specific computational capabilities that offer a
TCP interface in order to access to provide services. This services are usually
related to sensorization or actuation tasks that works with big amount of data
and requires advance processing.

In the case of navigation tasks, smart sensors will be only considered. Navi-
gation implies the acquisition and management of several data, usually provided
by different kind of sensors. The processing of all this information is a highly
resource consuming task in both, memory and computational power. An smart
sensor can reduce this situation by a simple TCP interface which offers prepro-
cessed information about the environment leaving only to the CKM the data
fusion step.This sensors will take profit of the QoS advantages.

3 Robot navigation

Once the framework has been introduced, the main contribution of this work is
detailed: the Integration of a CKM-based support for mobile robot navigation.
In order to validate this proposal is presented a use case. In this example is
detailed how this integration can improve the performance of the system by its
implementation on a certain robot.

3.1 Middleware support

The CKM is a highly suitable solution for robotic platforms. As is detailed in
[9], the CKM can be used for establishing a mission-based control on several
robotic platforms. Mission oriented tasks are in most cases extremely related
with the navigation process, which is defined as a ”non-goal oriented tasks”.
This paradigm allow the robot behaviours to be influenced by the navigation
task needs during the fusion process.

This implementation is oriented to offer a future support for a localization
method derived from the one presented in [10]. This method is characterized as
a reliability-based particle filter, where a reliability factor provides a statistical
computation of how accurate is the position estimation. A proper configuration
of the middleware, and the use of smart sensors leads to a distribution of the
computational load, and consequently a better performance of the navigation
tasks.

For improving execution of the navigation algorithm, the reliability factor
(R) is designed to affect the operation mode of the smart sensors. That way,
sensor is dynamically reconfigured to suit the localization requirements. In eq.
1 is computed the coefficient factor (fmode) according to he reliability R. Both



values must be normalized between 0 and 1, and and weighted according to the
values of (wR) and (wmode). The obtained fmode is used to select the operation
mode which is bounded by a threshold such as is shown on eq. 2.

fmode(t) =
R.wR + fmode(t− 1).wmode

wR + wmode
(1)



0 ≤ fmode(t) < thres1 →MODE = 0
...
thresx < fmode(t) < thresx+1 →MODE = X
...
thresn < fmode(t) ≤ 1 →MODE = N

(2)

3.2 Use Case

For this case of study it has been chosen a wheeled mobile robot called Kertrol-
Bot, which main characteristics can be reviewed in [15]. This platform is im-
proved by the addition of a depth camera (a common device for robot naviga-
tion) integrated as a Smart Sensor. Smart Sensor is composed by an Asus Xtion
camera is connected to a Raspberry Pi, which provides a TCP interface. Ac-
cording to this interface, it can be applied for some concrete information about
the environment, just as information about the closest object, or distance to a
certain colour object. Consequently is avoided to process raw camera data in the
main CKM device, running on the core of the KertrolBot.

Fig. 2. Diagram of the use case.



The proposed configuration is illustrated in Fig 2 where the following ele-
ments can be distinguished:

– KertrolBot on Board:
• Core: This main unit implements a CKM verison for behaviours control.
• Infrared Sensors (IR): Reduced CKM implementation which acquires

raw data form IR sensors and offer the core unit a processed value of it.
• Motors: Reduced CKM which interprets control signals from the core

unit and executes a low level control on each wheel motor.
• Smart Sensor: Offers high-level services about sensorial information con-

cerning the depth camera.
– FMW: Full middleware implementation running on an external PC that

manages the configuration of the system.

Main objective of this implementation is to bring the robot the capability of
being localized in the environment, and performing an optimum management of
the resources. This goal is achieved by the integration of the Smart Resources into
the CKM topology. In this case, data acquisition is optimized by being adapted to
the dynamic of the localization algorithm and its requirements. This adaptation
is feasible thanks to the implementation of a CKM support. It manages the
reconfiguration of system services, like the data acquisition tasks. Furthermore
it offers a proper execution support for the localization process, being defined as
a ”non-goal oriented task”.

Therefore the Smart Sensor (depth camera), as the main provider of environ-
mental data, must be adapted to the localization performance. According to its
different requirements, the camera can switch between these operation modes:

– Mode 1: Used on lost robot situation. Aims to obtain as much environmental
information as is possible. For that purpose maximum resolution (VGA -
640x480) is used for a better landmarks detection, and 10 frames per second
(FPS) for a longer processing between frames.

– Mode 2: Localization is not fully reliable. Offers same resolution, but im-
proves the frame rate up to 20 FPS.

– Mode 3: Localization is reliable (most common mode). It deals with a smaller
resolution (QVGA - 320x240) for improving the processing time, and 20 FPS.

– Mode 4: System reactivity is required regardless of the localization. QVGA
resolution remains, but frame rate is increased to 33 FPS.

Mode switching is triggered by the value of the mode factor (fmode) described
on the equation 2 and according to the threshold value for each mode 1. As far
as fmode depends on the localization reliability factor, and its previous values, it
reflects the quality of the system and its requirements.The relation between the
reliability and the active mode is detailed in Fig 3.

The integration of QoS mechanisms will improve the reliability in this system.
For a localization method, QoS helps to detects unexpected situations on data
acquisition on Smart Sensor. This will affect to the computed reliability factor,
and be reflected in the dynamic of the localization method. This variation will
trigger mode switching on Smart Sensor trying to solve the acquisition problem.



Fig. 3. Mode selection on Xtion smart sensor.

4 Conclusions

According to the work previously exposed, the use of Smart Resources as a part
of a CKM system helps to improve the optimization level of the localization
process. A proper management of mode switching on the Smart Sensor based on
the localization reliability provides a sensorial adaptation to the requirements of
the localization algorithm. This integration also allow to distribute the compu-
tational load increasing the capacity of the system. Furthermore it offers a solid
support for future QoS integration that will improve system reliability.

5 Future lines of work

As future work, it must be implemented a reliability-based particle filter, as
an evolution of the one presented in[10]. This process will take profit of the
support architecture here described. One of the main goals to achieve, is to
proper management of the relation between the reliability factor and the mode
switching on the Smart Sensor. It also must be characterized how this relation
will affect the dynamic of the system, and the navigation needs. Finally, will
be studied how QoS may help to detect malfunctions, and the way it can be
managed in the localization [11].

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and
Competitiveness under the CICYT project Mission Based Control (COBAMI):
DPI2011-28507-C02-02.



References

1. Rock (Robot Constrution Toolkit) http://www.rock-robotics.org/.
2. P Albertos, A Crespo, and J Simó. Control kernel: A key concept in embedded

control systems. In 4th IFAC Symposium on Mechatronic Systems, 2006.
3. Bob Bruyninckx, Herman and Soetens, Peter and Koninckx. The Real-Time Mo-

tion Control Core of the Orocos Project. In IEEE International Conference on
Robotics and Automation, pages 2766—-2771, 2003.

4. Guilherme N DeSouza and Avinash C Kak. Vision for mobile robot navigation:
A survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24(2):237–267, 2002.

5. P Fitzpatrick, G Metta, and L Natale. Towards long-lived robot genes. Robotics
and Autonomous systems, 2008.

6. Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. Middleware for robotics:
A survey. In Robotics, Automation and Mechatronics, 2008 IEEE Conference on,
pages 736–742. IEEE, 2008.

7. Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspectives on stan-
dardization in mobile robot programming: The carnegie mellon navigation (car-
men) toolkit. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, volume 3, pages 2436–2441. IEEE,
2003.

8. M. Muñoz, E. Munera, J. Francisco Blanes, José E. Simo, and G. Benet. Event
driven middleware for distributed system control. XXXIV Jornadas de Automatica,
page 8, 2013.

9. Manuel Muñoz, Eduardo Munera, J. Francisco Blanes, and Jose E. Simó. A hi-
erarchical hybrid architecture for mission-oriented robot control. In Manuel A.
Armada, Alberto Sanfeliu, and Manuel Ferre, editors, ROBOT2013: First Iberian
Robotics Conference, volume 252 of Advances in Intelligent Systems and Comput-
ing, pages 363–380. Springer, 2014.

10. Eduardo Munera Sánchez, Manuel Muñoz Alcobendas, Juan Fco Blanes Noguera,
Ginés Benet Gilabert, and José E Simó Ten. A reliability-based particle filter for
humanoid robot self-localization in RoboCup Standard Platform League. Sensors
(Basel, Switzerland), 13(11):14954–83, January 2013.

11. Jose-Luis Poza-Lujan, Juan-Luis Posadas-Yagüe, and José-Enrique Simó-Ten. Re-
lationship between Quality of Control and Quality of Service in Mobile Robot Nav-
igation. Distributed Computing and Artificial Intelligence, pages 557–564, 2012.

12. M Proetzsch, T Luksch, and K Berns. Development of complex robotic systems
using the behavior-based control architecture iB2C. Robotics and Autonomous
Systems, 58(1):46–67, 2010.

13. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, 2009.

14. Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. Coastal
navigation-mobile robot navigation with uncertainty in dynamic environments. In
Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference
on, volume 1, pages 35–40. IEEE, 1999.

15. Vicente Nicolau, Manuel Muñoz, and Jose Simó. KertrolBot Platform. SiDiReLi:
Distributed System with Limited Resources. Technical report, Institute of Control
Systems and Industrial Computing - Polytechnic University of Valencia, Valencia,
Spain, 2011.


