
Deferred and Atomic Setting of Scheduling Attributes for Ada (*)

Sergio Sáez, Jorge Real, and Alfons Crespo
{ssaez|jorge}@disca.upv.es

Universitat Politècnica de València, Spain

Abstract

Deferred setting of scheduling attributes refers to a single operation that sets a new value for a scheduling
attribute of a task at some future time. Although deferred setting of scheduling attributes is possible in Ada 2012,
it is in a rather limited way: only deadline or CPU can be changed deferredly, either at a specified time or when
the task is released from a suspension object. And only one of those two attributes at a time. Other scheduling
attributes such as priority cannot have deferred setting by means of a single operation. This would be a convenient
feature to have for schemes such as job partitioning, task splitting, or mode changes. Another issue is the absence
of operations for atomically changing several parameters at a time, which would avoid scheduling issues specially
on multiprocessors.

In this paper we explore a proposal aimed at correcting these two drawbacks. On one hand, we want to
be able to change more attributes, not only deadlines, deferredly or immediately. On the other hand, we want
to atomically change (now or later) a set of attributes, thereby avoiding scheduling artifacts that arise from
sequentially changing several attributes, specially when the CPU is one of them. Rather than providing a number
of library operations for postponing the setting of a variety of scheduling attributes, we propose to encapsulate
the scheduling attributes of each task in a single tagged type that can be extended with more attributes for specific
applications if needed.

1 Introduction

Scheduling attributes refer to task attributes such as priority, CPU affinity, period, deadline, etc. Deferred setting
of scheduling attributes refer to the ability for the programmer to specify that one or more scheduling attributes
of a task need be set to a new value but not immediately, but at some point in time in the future, such as the next
activation time of the task. One example of deferred setting of a scheduling attribute for a task is the procedure
Delay Until And Set Deadline from the Ada 2005 standard package Ada.Dispatching.EDF. Simi-
larly, sporadic tasks can also have their deadline changed upon their next activation if they use a suspension object
for activation control. This can be achieved by means of Suspend Until True And Set Deadline from
package Ada.Synchronous Task Control.EDF.

At the 15th IRTAW, Mario Aldea, chairman of the workshop, summarized the discussion initiated around this
topic as follows [1]:

A presentation was made on the existing limitations of the current model of setting attributes (prior-
ity, deadline and affinity) that can cause undesirable effects when trying to change several of them
simultaneously for the same task. There was some discussion about whether these changes could be
performed atomically from inside a protected operation. The conclusion was that this is not a valid

Ada Letters, August 2013 97 Volume XXXIII, Number 2

∗ This work has been partialy funded by the Universidad Politènica de València (PAID-06-10-2397) and the

Spanish Government (COBAMI: DPI2011-28507-C02-02)

approach when changing other task’s attributes. The group sentiment was that a mechanism is re-
quired to allow deferred attribute setting for the next dispatching point of a task. Two alternative
implementations of the aforementioned mechanism were discussed: using an attributes object or us-
ing a set of procedures. It was agreed that this issue needs further investigation, modeling and trial
implementations.

From the two alternative implementations mentioned at the end of this quote, we want to propose a model that
uses the first approach and encloses the setting of several scheduling parameters in a single operation that can
be executed atomically. By doing so, undesirable artifacts are avoided at run time, specially on multiprocessor
platforms. A single container object for all relevant scheduling attributes has also advantages if it is tagged, as we
will show.

The rest of this paper is structured as follows. Section 2 describes the problem context. Section 3 defines
our proposal. Section 4 discusses implementation issues related to the proposal and that need be solved. A use
example is given in Section 5. Finally, Section 6 concludes the paper.

2 Context and problem description

The problems we are trying to solve with this proposal were already described in [5]. For convenience, we
give here a brief description. The following actions are sources for scheduling decisions and also for potential
scheduling issues:

1. Changing a single task’s scheduling parameter.

2. Changing a single scheduling parameter in the future.

3. Changing a set of scheduling parameters, either now or in the future.

By scheduling parameters we mean task parameters that have an impact on how the system schedules that task,
including priority, deadline and CPU, and possibly other user-defined attributes.

The first case is solved in Ada by delaying the actual effect of the parameter change until the task’s next dis-
patching point. The second case involves a parameter change plus the execution of a delay until statement.
Ada allows the deferred setting of scheduling attributes for the cases of deadline and CPU by means of sub-
programs Delay Until And Set Deadline and Delay Until And Set CPU. The third case, however,
cannot be cleanly solved in Ada. The case is particularly problematic in the context of multiprocessor platforms,
when the CPU attribute is one of the parameters to be changed. In other words, tasks or jobs need to (dynamically)
migrate to a different processor. This is the case of multi-moded systems and also in multiprocessor scheduling
approaches such as job partitioning and task splitting [2, 3], to give some examples.

Figures 1 and 2 (reproduced from [5]) show how a task can miss its deadline when it tries to simultaneously
change both its priority and its target CPU. In both scenarios, the task T0 migrates from one CPU to another, but
uses a different priority in the target CPU. The expressions TX/PY in these figures denote task X / priority Y.

In Figure 1, task T0 misses its deadline while executing the Set Priority + Set CPU sequence. The
expected execution would be that task T0 migrates to CPU1 and preempts T2, while T1 becomes the highest
priority task in CPU0, as shown in the expected execution side of the figure. However, right after T0 changes
its priority, the task T1 has the highest priority on CPU0, preempts T0 and therefore impedes it to execute the
Set CPU statement until it is too late (after deadline D0). Figure 2 shows a different situation where the incorrect
behavior is caused by the sequence Set CPU + Set Priority. In this second case, T0 migrates to CPU1
with the wrong priority, hence it can not preempt T2 and is dispatched too late to meet its deadline. The only
solution to these situations is to provide a mechanism to simultaneously change the priority and the target CPU.
Similar issues arise under multiprocessor EDF dispatching with respect to Set Deadline and Set CPU.

Ada Letters, August 2013 98 Volume XXXIII, Number 2

CPU 0

CPU 1

Expected execution

Se
t_
CP
U

Se
t_
Pr
io
ri
ty

CPU 1

CPU 0

Task release

Task deadline

TaskId / Task Prio

Real execution

D0 D2

T0/P1

T0/P3 T1/P2

T2/P0

D1

D0

T2/P0 T0/P1

T0/P1T0/P3 T1/P2
D2

D1

Figure 1. Expected and real executions of a Set Priority + Set CPU sequence.

Task release

Task deadline

TaskId / Task Prio

Se
t_
CP
U

Se
t_
Pr
io
ri
ty

CPU 1

CPU 0CPU 0

CPU 1

Real executionExpected execution

D0

T0/P3

T0/P1 T1/P0
D2

D1

T0/P1

T2/P2

D0 D2

T0/P3

T0/P1 T1/P0

T2/P2

D1

Figure 2. Expected and real executions of a Set CPU + Set Priority sequence.

Although the scenarios shown in Figures 1 and 2 can be solved by encapsulating both Set CPU and Set -
Priority within a protected operation, this cannot be done when the change of priority or deadline, and target
CPU is combined with a delay until statement. As shown in the two following code examples, no correct
sequence of code can be found using the current multiprocessor support in Ada. Note that these sequences of code
are natural ways to implement job partitioning schemes, for setting the CPU where the next job is going to be
executed before the current job finishes; and also task splitting, for resetting the original CPU at the end of the job.

loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_Deadline(Next_Time + Relative_Deadline);
Delay_Until_And_Set_CPU(Next_Time, Next_CPU);
-- Similar to scenario with Set_Priority + Set_CPU sequence

end loop;

loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_CPU(Next_CPU);
Delay_Until_And_Set_Deadline(Next_Time, Relative_Deadline);
-- Similar to scenario with Set_CPU + Set_Priority sequence

end loop;

Ada Letters, August 2013 99 Volume XXXIII, Number 2

3 Proposal

The main ideas behind our proposal are:

• An object of a tagged type contains the relevant scheduling parameters (or attributes) for any given task.
Let’s call this type Sched Params. In principle, Sched Params contains only the CPU and priority of
the task.

• The first natural extension to Sched Params is to add a field for representing the deadline of a task. This
is useful only for tasks scheduled under deadline-based policies such as EDF, hence we propose it as an
extension to the root type.

• The Sched Params type can also be extended by the user with other parameters that are relevant for a
particular application. For example urgency level, offsets, capacity in server tasks, etc.

• The following operations are possible over Sched Params objects:

Set Attribute Sets the new value for a given attribute in the Sched Params object. The Attribute part of
this setter refers to the attributes priority or CPU for the root type. Derived types may define setters
for additional parameters, such as deadline for the Sched Params of an EDF task (see later).

Get Attribute Obtains the current value of a given attribute from the Sched Params object.

Apply Sched Params As the name indicates, makes the scheduling parameters effective immediately
and atomically. This procedure can be applied to the currently executing task or to another given task.

Delay Until And Apply Sched Params This is to delay the task until a given time and atomically
apply the set of scheduling parameters defined in a Sched Params object.

Suspend Until True And Apply Sched Params For symmetry with the existing procedure Sus-
pend Until True And Set Deadline, in Ada.Synchronous Task Control.EDF.

The following listings give the profiles and location (new Ada library packages) for the proposed functional-
ities. We will first consider the type Sched Params, a tagged record that holds a minimal set of scheduling
attributes, and can be extended with more attributes if needed. In listing 1 we propose a new library package
Ada.Scheduling Parameters for the definition of this type.

Listing 1. Definition of the root type Sched Params
with System, System.Multiprocessors, Ada.Task_Identification, Ada.Real_Time;
use System, System.Multiprocessors, Ada.Task_Identification, Ada.Real_Time;

package Ada.Scheduling_Parameters is

type Sched_Params is tagged private;

procedure Set_Priority (SP: in out Sched_Params; Prio: Any_Priority);
function Get_Priority (SP: Sched_Params) return Any_Priority;

procedure Set_CPU (SP : in out Sched_Params; CPU_Nr: CPU_Range);
function Get_CPU (SP : Sched_Params) return CPU_Range;

Ada Letters, August 2013 100 Volume XXXIII, Number 2

procedure Apply_Sched_Params (SP: Sched_Params; T_Id: Task_Id := Current_Task);
procedure Delay_Until_And_Apply_Sched_Params (

SP: Sched_Params;
Delay_Until_Time: Time);

private
type Sched_Params is

record
Prio: Any_Priority := Default_Priority;
CPU_Nr: CPU_Range := Not_A_Specific_CPU;

end record;

end Ada.Scheduling_Parameters;

A first extension to the root type Sched Params will include a deadline parameter, useful for EDF tasks.
In listing 2 we propose a new child package of Ada.Scheduling Parameters to include the new type
Sched Params EDF, derived from Sched Params, and setter and getter subprograms for the new deadline
parameter. The package also provides new procedures to apply these extended scheduling parameters to EDF
tasks. Note that we also include a new scheduling parameter At Time that we explain below.

Listing 2. Extension of root scheduling parameters for EDF
with Ada.Real_Time; use Ada.Real_Time;

package Ada.Scheduling_Parameters.EDF is

type Sched_Params_EDF is new Sched_Params with private;

procedure Set_Deadline (SP: in out Sched_Params_EDF; D: Time_Span);
function Get_Deadline (SP: Sched_Params_EDF) return Time_Span;

procedure Set_At_Time (SP: in out Sched_Params_EDF; At_Time: Time);
function Get_At_Time (SP: Sched_Params_EDF) return Time;

procedure Apply_Sched_Params (SP: Sched_Params_EDF; T_Id: Task_Id := Current_Task);
procedure Delay_Until_And_Apply_Sched_Params (

SP: Sched_Params_EDF;
Delay_Until_Time: Time);

private
type Sched_Params_EDF is new Sched_Params with

record
Relative_Deadline: Time_Span := Time_Span_Last;
At_Time: Time := Time_Last;

end record;

end Ada.Scheduling_Parameters.EDF;

We propose the deadline parameter to be of the type Time Span. The semantics of Delay Until And -
Apply Sched Params would be that the new absolute deadline is set for the time Delay Until Time plus
the relative deadline given in the Sched Params EDF object. The absolute deadline is not so obvious in the
case of Apply Sched Params. It could be the result of adding the relative deadline to the real-time clock value
during the execution of Apply Sched Params. But that clock value is uncertain. We therefore propose to

Ada Letters, August 2013 101 Volume XXXIII, Number 2

include the additional scheduling parameter At Time, an absolute time taken as the reference to calculate the
next absolute deadline for the task.

We considered the possibility of using such an absolute time reference as an additional, third parameter passed
to Apply Sched Params. What makes that approach unattractive is that the profile for the primitive Apply -
Sched Params defined in package Ada.Scheduling Parameters would no longer be valid for all cases,
since that primitive does not include such parameter. Note that the functionality provided by such At Time
attribute is not achievable with Delay Until And Apply Sched Params. For example, we may want to
promote a task by shortening its absolute deadline after a certain time of the task’s execution. Hence the task
cannot delay until a certain time and then shorten its deadline, since it needs to be executing code meanwhile.

Finally, a link between Ada’s synchronous task control and scheduling parameters would be useful for spo-
radic tasks whose activation is regulated by a suspension object. This is in line with the existing subprogram
Suspend Until True And Set Deadline, which is limited to setting only the deadline for the next reacti-
vation of a task waiting on a suspension object. In listing 3 we propose a child package Ada.Synchronous -
Task Control.Scheduling Parameters to contain the new functionality1.

Listing 3. Synchronous task control and scheduling attributes
with Ada.Scheduling_Parameters; use Ada.Scheduling_Parameters;
package Ada.Synchronous_Task_Control.Scheduling_Parameters is

procedure Suspend_Until_True_And_Apply_Sched_Params (
S : in out Suspension_Object; -- See new type proposed in section 4.3
SP: Sched_Params’Class);

end Ada.Synchronous_Task_Control.Scheduling_Parameters;

Note that SP, the Sched Params parameter for this procedure, is class-wide. Hence it can dispatch to root-
type, EDF-extended or user-extended scheduling parameters.

4 Implementation issues

The operations presented above, Apply_Sched_Params and Delay_Until_And_Apply_Sched_Params,
allow the application to atomically change several task scheduling parameters. The underlying Operating System
(OS) has to provide specific support in order to allow the Ada Run-Time Support to implement these operations
adequately. Although the required behaviour within the operating system kernel is simple, as it will be shown
bellow, this support is not present in any POSIX-like operating system (to the best of our knowledge) including
those that add non-portable extensions, such as the Linux kernel.

Any change in one scheduling parameter implies that the operating system removes the implied thread from the
current run queue and inserts it again in a (possibly different) run queue in a different position. As one or more
system run queues are modified, the system scheduler has to be invoked to determine the new highest priority
thread. Furthermore, if the CPU of a thread is changed, then some kind of Inter-Processor Interrupt (IPI) has to
be sent to inform the affected CPU or CPUs that they have to execute the scheduler. Therefore, the change of a
scheduling parameter has to be considered always a thread dispatching point.

If an application needs to change several scheduling parameters of a task at the same time, e.g. its priority
and CPU, it has to invoke several system calls to change them. For example, if the underlying OS is the Linux
kernel, the application has to invoke sched setparam and sched setaffinity system calls. Each of these
system calls is a thread dispatching point, since they may imply changes in the system run queues. The scheduling
artifacts presented in section 2 are due to the sequential execution of these system calls and their corresponding
thread dispatching points. Each time the application changes a single scheduling parameter, the scheduler can

1For clarity, we are using the existing type Suspension Object in listing 3. In section 4.3 we will justify why we are proposing a
new type of suspension object that implements modification of scheduling parameters.

Ada Letters, August 2013 102 Volume XXXIII, Number 2

dispatch a different thread in one or more CPUs, and therefore, the thread that is changing the parameters can
lose the CPU or the thread with the new scheduling parameter can temporarily disturb other running threads. This
undesired behaviour could be avoided if the scheduling parameters were changed atomically.

The actions the OS kernel has to perform to support the simultaneous modification of several scheduling pa-
rameters are relatively simple:

1. Remove the thread from the run queue where it is currently located.

2. Change all the scheduling parameters specified by the application.

3. Insert the thread in a new task queue according to the new set of scheduling parameters. This queue could be
a new priority queue in a new CPU or it could be the timer or mutex queue if the thread has to be suspended.

The main implementation issue is how to offer this kernel functionality to the application. We’ll now explore
the POSIX case and see what extensions would be needed.

4.1 POSIX support and proposed extensions

Although the POSIX standard does not provide support to simultaneously changing several scheduling parame-
ters on a running process or thread (other than scheduling policy and priority using the sched setscheduler
system call), it provides a similar functionality for establishing all the scheduling parameters for the creation of a
new thread. This functionality is offered through the structure pthread attr t and the following C functions
that allow the application to specify the full set of thread attributes before creating it with pthread create.

Listing 4. Thread attributes manipulation functions

pthread_attr_init/destroy // initialize and destroy thread attributes object
pthread_attr_set/getdetachstate // set/get detach state attribute in thread attributes object
pthread_attr_set/getinheritsched // set/get inherit scheduler attribute in thread attributes object
pthread_attr_set/getschedparam // set/get scheduling parameter attributes in thread attributes object
pthread_attr_set/getschedpolicy // set/get scheduling policy attribute in thread attributes object
... // Other attributes not directly related with scheduling

In the case of the Linux kernel, a small set of non-portable extensions exist that support setting and getting the
CPU affinity of a thread. In addition, Linux also provides the non portable function pthread getattr np for
retrieving the current attributes of an already created thread.

Listing 5. Linux specific non portable extension to thread attributes

pthread_attr_set/getaffinity_np // set/get CPU affinity attribute in thread attributes object
pthread_getattr_np // get attributes of created thread

We propose to extend this API with the corresponding pthread setattr np function to allow the applica-
tion to specify various scheduling attributes that have to be simultaneously applied to an already created thread.
However, in order to support the operations that imply a possible suspension of the thread, i.e. Delay Until -
And Apply Sched Params, it is required that the new API offers the possibility of deferring the setting of the
attributes until the thread wakes up, either from a delay statement or from a suspension object. We propose the
following specification, from the two alternatives given in [4]:

Ada Letters, August 2013 103 Volume XXXIII, Number 2

Listing 6. Proposed POSIX extensions

#include <pthread.h>

int pthread_setattr_np(pthread_t thread, pthread_attr_t *attr);
int pthread_setattr_on_wakeup_np(pthread_attr_t *attr);

The next section assumes the existence of these non portable functions to show how the Ada Run-Time Support
could implement the main operations of the new Sched Params type.

4.2 Implementation of Sched Params operations

Based on these new OS functionalities and taking the source code GNAT GPL 2012 as a reference, the imple-
mentation of the new proposed operations could be as follows:

procedure Apply_Sched_Params (SP: Sched_Params; T_Id: Task_Id:= Current_Task) is
Attributes: aliased pthread_attr_t;
Result: Interfaces.C.int;

begin
-- Retrieve the current thread attributes
Get_Task_Attributes (Attributes’Access, T_Id);
-- Modify the task attributes
Set_Attr_Priority(Attributes’Access, SP.Prio);
Set_Attr_CPU(Attributes’Access, SP.CPU_Nr);
-- Set the new thread attributes immediately
Result := pthread_setattr_np (T_Id.Common.LL.Thread, Attributes’Access);
pragma Assert (Result = 0);

end Apply_Sched_Params;

procedure Delay_Until_And_Apply_Sched_Params
(SP: Sched_Params;
Delay_Until_Time: Ada.Real_Time.Time)

is
Attributes : aliased pthread_attr_t;
Result : Interfaces.C.int;

begin
-- Retrieve the current thread attributes
Get_Task_Attributes (Attributes’Access, T_Id);
-- Modify the task attributes
Set_Attr_Priority(Attributes’Access, SP.Prio);
Set_Attr_CPU(Attributes’Access, SP.CPU_Nr);
-- Take note of the new thread attributes to be applied on thread wakeup
Result:= pthread_setattr_on_wakeup_np (Attributes’Access);
pragma Assert (Result = 0);
delay until Delay_Until_Time; -- New attributes take effect on wakeup

end Delay_Until_And_Apply_Sched_Params;

In order to simplify the implementation, it is supposed that the Ada run-time system will provide proce-
dures to retrieve and manipulate the Attributes type. In the current GNAT GPL 2012, the Attributes

type is an opaque type that is manipulated using the POSIX interface only. The procedures used above (i.e.
Get_Task_Attributes, Set_Attr_Priority and Set_Attr_CPU), will use these existing POSIX functions
and the thread information maintained by the Ada run-time system, to prepare the Attributes object. This
object represents the thread scheduling parameters at operating system level.

Ada Letters, August 2013 104 Volume XXXIII, Number 2

4.3 Implementation of Suspension Objects

The implementation of Suspend Until True And Apply Sched Params needs a different approach to
Delay Until And Set Sched Params. In this second case, it is clear in advance when the task will be
awakened (at the specified absolute time) and hence have its new parameters applied. But in the case of using a
suspension object, the task calling the suspension operation may either go through immediately (if the object’s state
is True) or it may have to wait for another task to set the object state to True. In the first case, the attributes need
be changed as part of the call to the suspension operation; whereas in the second case, it is the call to Set True
that has the effect of enforcing the new scheduling parameters. So we need to store the task identification and new
scheduling parameters to apply them at the proper time.

We therefore propose a new type of suspension object (Suspension Object With Sched Params) for
sporadic tasks that use deferred setting of scheduling attributes. This new type contains, as part of its internal state,
two fields to store the scheduling parameters (SP) and the task identification (T Id).

type Suspension_Object_With_Sched_Params is record
State : Boolean; -- Boolean that indicates whether the object is open
pragma Atomic (State);

-- Flag showing if there is a task already suspended on this object
Waiting : Boolean;

-- Protection for ensuring mutual exclusion on the Suspension_Object
L : aliased System.OS_Interface.pthread_mutex_t;

-- Condition variable used to queue threads until condition is signaled
CV : aliased System.OS_Interface.pthread_cond_t;

-- Task suspended within the Suspension Object
T_Id : Task_Id;

-- Scheduling Parameters to be applied to the suspended task
SP : access all Sched_Params’Class;

end record;

When a sporadic task invokes Suspend_Until_True_And_Apply_Sched_Paramswith a new set of schedul-
ing parameters, if the suspension object state is true, the scheduling parameters are applied immediately within the
suspension object. Then the sporadic task continues with its next activation using the new scheduling parameters.

If the suspension object state is false, the sporadic task will be suspended until the state becomes true. In
this case, Suspend_Until_True stores the task identifier of the sporadic task and scheduling parameters for its
next activation. The task that invokes the Set_True procedure will apply the new scheduling parameters to the
sporadic task before signaling the conditional variable within the suspension object, and therefore, before waking
up the sporadic task. When the sporadic task wakes up, it already has its new scheduling parameters.

The Suspension_Object_With_Sched_Params type will also offer the Suspend_Until_True opera-
tion, that allows a task to be suspended until the suspension object state becomes true, but without modifying its
scheduling parameters.

Based on the source code from GNAT GPL 2012, the new suspension object operations could be implemented
as follows:

Ada Letters, August 2013 105 Volume XXXIII, Number 2

procedure Suspend_Until_True_And_Apply_Sched_Params
(S : in out Suspension_Object_With_Sched_Params;
SP : access all Sched_Params’Class)

is
Result : Interfaces.C.int;

begin
SSL.Abort_Defer.all;
Result := pthread_mutex_lock (S.L’Access);
pragma Assert (Result = 0);
if S.Waiting then

Result := pthread_mutex_unlock (S.L’Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
raise Program_Error;

else
if S.State then

S.State := False;

SP.Apply Sched Params;
else

S.Waiting := True;

S.T Id := Current Task;

S.SP := SP;
loop

Result := pthread_cond_wait (S.CV’Access, S.L’Access);
pragma Assert (Result = 0 or else Result = EINTR);
exit when not S.Waiting;

end loop;
end if;
Result := pthread_mutex_unlock (S.L’Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;

end if;
end Suspend_Until_True;

procedure Set_True (S : in out Suspension_Object_With_Sched_Params)
is

Result : Interfaces.C.int;
begin

SSL.Abort_Defer.all;
Result := pthread_mutex_lock (S.L’Access);
pragma Assert (Result = 0);
if S.Waiting then

S.Waiting := False;
S.State := False;
if S.SP /= null then

S.SP.Apply Sched Params(S.T Id);
end if;
Result := pthread_cond_signal (S.CV’Access);
pragma Assert (Result = 0);

else
S.State := True;

end if;
Result := pthread_mutex_unlock (S.L’Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;

end Set_True;

Ada Letters, August 2013 106 Volume XXXIII, Number 2

5 Use example

This section shows a brief example where this new funcionality is used to implement a task subject to job
partitioning. With this scheduling scheme, a periodic task could decide to use a different CPU and priority for
each job (i.e., each activation of the task). In the example below, this design decision is represented by a cyclic
plan of scheduling parameters, Params_List. At the end of each job execution, the task retrieves the next set
of scheduling parameters from its plan, and calls Delay_Until_And_Apply_Sched_Params. This allows the
task to change the scheduling parameters for its next job atomically and avoids the scheduling artifacts mentioned
in section 2.

Listing 7. Periodic task with job partitioning based on delay until
task body Periodic_With_Job_Partitioning is

type List_Range is mod N;
-- List of scheduling parameters, decided at design time
Params_List: array (List_Range) of Sched_Params := (...);
Params_Iter: List_Range := List_Range’First;
Next_Params: Sched_Params;
Next_Release: Ada.Real_Time.Time;
Period: Time_Span := ...;

begin
Task_Initialize;

-- First job parameters
Next_Release := Ada.Real_Time.Clock;
Next_Params := Param_List(Param_Iter);
-- Scheduling parameters for the first activation
Next_Params.Apply_Sched_Params;
loop

Task_Main_Loop_Actions;

-- Next job preparation
Params_Iter := Params_Iter’Succ;
Next_Params := Params_List(Params_Iter);
Next_Release := Next_Release + Period;

-- Suspends the task until the next job activation
Delay_Until_And_Apply_Sched_Params(Next_Params, Next_Release);
-- Next job will wake up with the next scheduling parameters applied

end loop;
end Periodic_With_Job_Partitioning;

6 Conclusion

The deferred, atomic setting of a set of scheduling attributes is a useful feature that is currently absent in Ada.
It provides a clear semantics and avoids scheduling artifacts and wrong effects derived from sequentially applying
one attribute after another, specially when the underlying hardware is a multiprocessor platform. In this paper we
have proposed changes in the direction of including this feature in Ada.

All changes proposed are additions to the standard library, with no modification proposed to any other part of
the language. The changes are also user-extensible since they are based on the use of tagged types. Perhaps the

Ada Letters, August 2013 107 Volume XXXIII, Number 2

major change proposed is a new type of suspension object to give support to deferred, atomic setting of attributes
of sporadic tasks. The fact that a sporadic task may have its parameters changed either immediately upon calling
Suspend Until True (when the object’s state is True) or deferredly when another task calls Set True (in
case the object state was False when the task called Suspend Until True) makes it necessary to provide a
different type of suspension object, augmented with the capability of setting the waiting task’s parameters.

These proposed extensions are mainly directed towards multiprocessor platforms, since the intended semantics
is feasibly implementable on single-processors in Ada. However, some single-processor scheduling approaches
could benefit from the changes proposed here, if only aesthetically (e.g., dual-priority scheduling, existing schemes
for control tasks structured as Initial-Mandatory-Optional-Final, etc).

We want to finally note a gracious side effect of this proposal. With the proposed set of procedures, there would
be strictly no need to use the existing procedure Delay Until And Set CPU from package System.Multi-
processors Dispatching Domains. The nice effect is that, if that procedure did not exist, then there
would be no dependence with Ada.Real Time, and therefore System.Multiprocessors Dispatch-
ing Domains could be preelaborable. But, unfortunately, changing the standard for this reason would introduce
backward incompatibility.

References

[1] M. Aldea. 15th International Real-Time Ada Workshop (IRTAW-15). Ada User Journal, 32(4):276–279,
December 2011.

[2] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned Scheduling of Sporadic Task Systems on Multipro-
cessors. In IEEE Computer Society, editor, 21st Euromicro Conference on Real-Time Systems - ECRTS, pages
249–258, 2009.

[3] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned Fixed-Priority Preemptive Scheduling for Multi-
core Processors. In IEEE Computer Society, editor, 21st Euromicro Conference on Real-Time Systems -
ECRTS, pages 239–248, 2009.

[4] S. Sáez and A. Crespo. Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems. In J. Real
and T. Vardanega, editors, 15th International Conference on Reliable Software Technologies – Ada-Europe
2010, volume 6106 of Lecture Notes in Computer Science, pages 68–82. Springer, 2010.

[5] S. Sáez and A. Crespo. Deferred Setting of Scheduling Attributes in Ada 2012. Ada Letters, To appear.

Ada Letters, August 2013 108 Volume XXXIII, Number 2

