
Event Management Proposal for Distribution

Data Service Standard

José-Luis Poza-Luján, Juan-Luis Posadas-Yagüe and José-Enrique Simó-Ten

University Institute of Control Systems and Industrial Computing (ai2). Universitat

Politècnica de València (UPV). Camino de vera, s/n. 46022 Valencia (Spain).

{jopolu, jposadas, jsimo}@ai2.upv.es

Abstract This paper presents a proposal to extend the event management sub-

system of the Distribution Data Service standard (DDS). The proposal allows user

to optimize the use of DDS in networked control systems (NCS). DDS offers a

simple event management system based on message filtering. The aim of the pro-

posal is to improve the event management with three main elements: Events, Con-

ditions and Actions. Actions are the new element proposed. Actions perform basic

operations in the middleware, discharging the process load of control elements.

The proposal is fully compatible with the standard and can be easily added to an

existing system. Proposal has been tested in a distributed mobile robot navigation

system with interesting results.

1. Introduction

Currently, the Event-Based Control (EBC) paradigm technology (also called

event-driven control) is adopted to implement systems where the periodic sam-

pling is not possible (i.e. when no discrete-time model is available) or recom-

mended (i.e.: in distributed control systems to improve communications perfor-

mance decreasing the load of the network) [1].

In networked control systems (NCS), distributed control elements are connect-

ed by a network. A middleware enhances and offers to control elements a set of

services in order to facilitate the access to the network. Therefore, if EBC is used

in NCS, the middleware will be an essential component [2].

Middleware architecture is based on communications paradigms: message

passing, client-server, Publish/Subscribe (P/S) or blackboard. The Data Distribu-

tion Service for Real-Time Systems (DDS) is an Object Management Group

(OMG) standard based on the P/S paradigm. DDS offers time-controlled commu-

nications between components using Quality of Service (QoS) policies [3].

NCS needs certain event management, i.e.: to select only messages with a

meaningful value to trigger the control action. DDS can be used to send any kind

of Data, including event data. DDS allows the application (control component in

NCS) to perform flexible filtering of events but DDS does not define a built-in

2

event type and advanced event management. To provide support to NCS using

DDS we are developed an extension of the DDS event components. This article

presents the specifications of this extension. The proposal is fully compatible with

the DDS model and maintains the OMG philosophy of simplicity and ease of use.

The paper is organized as following. Next section outlines the DDS elements

involved on event management. Section 3 presents the proposal elements to add to

the current DDS model. Section 4 presents an example of the use of the proposed

elements, Section 5 the results of a simple experiment. Finally, evaluation and fu-

ture work are discussed in conclusions.

2. Data Distribution Service Event Management

Data Distribution Service (DDS) provides a platform independent model that is

aimed to real-time distributed systems. DDS is based on publish-subscribe com-

munications paradigm. Publish-subscribe components connect information pro-

ducers (publishers) and consumers (subscribers) and isolate publishers and sub-

scribers in time, space and message flow [4].

When an application (producer) wants to publish some information, it should

write it in a “Topic” by means of a component called “Data Writer” which is man-

aged by another component called “Publisher”. Both components, Data Writer and

Publisher, are included in another component called “Domain Participant”. On the

other side of the communication, a Topic can be received by two kinds of compo-

nents: “Data Readers” and “Listeners” by means a “Subscriber”. A Data Reader

provides the messages to application when the application requests them, A “Lis-

tened” sends the messages without waiting for the application request (Figure 1).

D
o

m
a

in
 P

a
rt

ic
ip

a
n

t

write read, takeon_data_available

Producer Consumer

Data

Writer

Data

Writer

P
u

b
lis

h
er

Data

Reader
Listener

Su
b

sc
ri

b
er

Topic

Data

Writer

Data

Reader

Su
b

sc
ri

b
er

P
u

b
lis

h
er

Data

Reader

Topic

Topic

D
o

m
a

in
 P

a
rt

ic
ip

a
n

t

D
o

m
a

in
 P

a
rt

ic
ip

a
n

t

read, take write

Consumer
Producer &

Consumer
Consumer

read, take

Fig 1. DDS elements and functions.

Entity

StatusCondition

1

0..1

statuscondition

ConditionWaitSet

* *

GuardCondition ReadCondition

3

Fig 2. UML class diagram of the DDS elements involved in event management: conditions and

WaitSet.

To configure communications, DDS uses QoS policies. A QoS policy describes

the service behaviour according to a set of parameters defined by the system char-

acteristics or by the administrator user. An Entity is the base class for communica-

tion components: Publisher, Subscriber, Data Writer, Data Reader and Listener.

Details about the protocol can be obtained from [5]. Figure 2 shows the main ele-

ments of DDS involved on the event management.

Entities apply for relevant information by creating one of the types of Condi-

tion objects (StatusCondition, GuardCondition or ReadCondition) and attaching it

to a WaitSet object. So that, a WaitSet object allows an Entity to wait until one of

the attached Condition objects has a “triggervalue” of TRUE or else until the

timeout expires.

3. Event Management Proposal

The event management used in DDS standard allows to perform a wide set of op-

erations, such as filtering messages to be transmitted from the middleware to the

application. The DDS QoS policies allow the application to change the character-

istics of the communications between nodes, such as the message frequency or the

deadline. When EBC is applied in a NCS, each control component sends messages

based on the internal events (i.e.: when a new control action is calculated) but in

distributed systems it is necessary that control nodes coordinates messages be-

tween them. In NCS, coordination requirements are based on the internal charac-

teristics of control algorithms. DDS offers adequate support to coordinate com-

munications between nodes, but it does not provide a mechanism to change the

internal characteristics. To extend the power of DDS, a new component, called

Action, is added.

Figure 3 shows the event management proposed. Main components are

“Events”, “Conditions” and “Actions”. Events are situations that are necessary to

be monitored. The Event component is similar to the Condition DDS element.

Conditions are group of events using logical operations; the Condition component

increases the WaitSet ability. Finally, Actions are the component that implements

the effects on the system that are associated with Conditions. Events are catego-

rized on three types: component operations, quality alarms and message filters.

4

···

Events

···

Actions

···

···

···

···

···

···

···

Conditions

Component
Operations

QoS Alarms

QoC Alarms

Message Filters

Component
Functions

QoS Configuration

QoC Configuration

Message Filtering

Fig. 3. Conceptual model of event management with the source of events, conditions and actions.

A component operation happens when a middleware or control component

method is called; for example, when a control component starts the control action

or when a middleware element is disconnected from a communications channel.

Alarms are events associated with the compliance of the quality parameters. In our

proposal we include the QoS and Quality of Control (QoC) parameters. QoC pa-

rameters [6] are associated to the efficiency of the control action and are directly

related with the QoS parameters [7]. Thus, both parameters are considered. An ex-

ample of QoS alarm is when a message arrives after the deadline. QoC alarm is re-

lated to the content of the message, for example when the reference value exceeds

the reference value. Finally, message filters events are triggered when the content

of the message is (or not) identical compared to a content pattern; for example,

when the message field “source” (user defined) corresponds to a particular control

node.

Conditions are associations of Events by using basic logic operations (AND,

OR). For example, if a message from the node one (message filter) arrives in time

(QoS alarm) and the internal value doesn’t exceed the reference value (QoC

alarm). The Condition is associated with a DDS element; so that, when the condi-

tion occurs, the element knows the existence. The method to trigger the alarm and

to filter the message is the same used on the Remote Network Monitoring protocol

(RMON) [8] due to its simplicity and efficiency.

When an element is triggered by a Condition, the element can run some func-

tion to process the trigger. In our proposal we add a new element called Action.

Actions are associated to a Condition and are processed internally in the middle-

ware. Initially four types of actions have been considered: component functions,

QoS and QoC configuration and message queue actions. Component functions are

the same functions that can produce events. For example, an action can be discon-

necting a middleware element.

The QoS and QoC configurations are the variation of the parameters. For ex-

ample, in order to increase the temporal limit of messages (QoS configuration) or

the control error (QoC configuration).

5

Entity

1

*

condList
Event

EventAlarm EventFilterEventComponent

Condition
eventList

*

Action
1 *

*

actList

Fig. 4. UML class diagram of the proposal elements.

Finally, message queue actions are functions that change the behaviour of the

queue, such as priority message, or message removal. So that, Actions discharge

elements by processing of simple operations. Figure 4 shows the UML class dia-

gram of the proposed elements. In our proposal Condition is similar to WaitSet

DDS element, Event is similar to Condition and Action is the new element.

4. Implementation in a Distributed Control Architecture

A distributed mobile robot navigation environment has been used to test the va-

lidity and usefulness of the proposed model. The environment has been used in

previous studies [9]. The mobile robot is controlled by a set of control algorithms.

Some algorithms, generally algorithms that implement the reactive behaviours, are

embedded within the robot and other algorithms, commonly the deliberative algo-

rithms, are implemented in distributed nodes. However, in the case of study, all

control algorithms are placed in distributed nodes in order to use a reduced da-

taset. The robot used in the study consisted of a simple two wheels and one dis-

tance eight sensors ring. The sensor distribution (figure 5) corresponds to a

Khepera robot [10], thus developed algorithms can be compared with existing al-

gorithms. The algorithm used is the “obstacle avoidance” based on Braitenberg

vehicles behaviours [11].

Mleft Mright

S0

S1

S2 S3

S4

S5

S6S7

Fig. 5. The sensor distribution model used.

6

The obstacle avoidance algorithm is based on the speed variation of the motor

depending on the distance detected by all sensors. For each motor, each sensor has

a weighting value depending on its position on the robot. The motor speed is ob-

tained combining the sensor weights by means the equation 1 where m is the con-

crete motor (left or right), K is the concrete weight factor applied to sensor i and

motor m.

i

i

im SKMotorSpeed ·
7

0




 (1)

The maximum linear speed of the robot depends on the distance to the nearest

obstacle and the sampling period to update motor velocities. The linear speed can

be obtained from the equation 2, where Sd is the obstacle distance detected on the

current robot path and T is the sampling period.

 TSdSpeedLimit  (2)

Figure 6, shows the results of the equation 2 to obtain the speed limit based on

the sampling period and different distances. The communication channel defines

the maximum sampling period, for example: a sampling period of 10 milliseconds

needs a bandwidth to transfer at least 100 messages by second. The frequency of

messages sent can be changed through the DDS QoS policies. Therefore Actions

objects can increase or decrease this value automatically without the intervention

of control components only with the distance value obtained from the sensors

messages. The error in the control of obstacle avoidance behaviour is based on

maximizing the distances to obstacles. Therefore, when the robot navigates far an

obstacle, the robot does not need a high sampling rate. So, it can decrease the

communications load without losing QoC.

This experiment is based on previous experiments performed in mobile robot

navigation; these experiments are detailed in [12]. In previous works [9], QoC has

been used to optimize the path regardless of the type of obstacle. The experiment

presented below does have in mind the type of obstacle.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
 li

m
it

 (
c
m

./
s
.)

Sampling peridod (ms.)

Speed limit related, to the sampling period, to different
distances d (cm.)

d=10

d=20

d=40

d=60

d=80

d=100

Fig. 6. Speed Limit obtained from the distance d and the sample period T.

7

5. Experiment and results

Two scenarios have been tested: robot navigation without event detection in the

middleware and the same navigation with event detection and one Action linked

by means a Condition. The Event detected in the middleware is the distance ob-

tained from the robot by means a filter. The Condition set involves comparing the

distance with the robot speed to obtain the optimal sampling period based on the

equation 2. When middleware doesn’t detect events, the sampling period is set to

10 milliseconds, and motor speed is obtained only with the equation 1. The exper-

iment measures the sampling period and distance to an obstacle along time. In the

case studied the sampling period changes internally in the middleware without the

control component intervention. Figure 7 shows the graphs obtained for two ob-

stacles and table 1 shows the summarised results.

Table 1. Experimental results for the two obstacles tested (average values).

Scenarios Sampling

period (1)

Distance

average (1)

Sampling

period (2)

Distance

average (2)

a. Robot in corridor 10,0 2,1 62,6 2,1

b. Wall in front of the robot 10,0 1,1 9,4 0,6

When the robot navigates through a corridor (scenario a) the average distance

is exactly the same for both middleware. This is because the corridor navigation

doesn’t involve avoiding an obstacle and the robot can run at maximum speed.

However, the absence of obstacles allows navigating with the same efficiency but

with fewer messages. Besides, robot reaches the target in less time. In this scenar-

io the proposal does not improve the robot navigation, but reduces the network

load. Scenario b is more complex, robot needs avoid an obstacle. As a result, the

sampling period is similar. Nevertheless, the robot has more accuracy performing

the manoeuvre.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0

10

20

30

40

50

60

70

80

90

100

0,0 1,0 2,0 3,0

Sampling Period (1) Sampling Period (2)

Distance (1) Distance (2)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0

10

20

30

40

50

60

70

80

3,0 4,0 5,0 6,0 7,0

Sampling Period (1) Sampling Period (2)

Distance (1) Distance (2)

Fig. 7. Sampling period and distance variations along time robot navigation, without the proposal

(1) and using the proposal (2) for two different obstacles.

8

6. Conclusions and Future Work

This article has presented a proposal to increase the event management system

proposed in the DDS standard. The most significant contribution is the inclusion

of a new object called Action. Actions automatically make changes on the mid-

dleware based on a combination of events.

The Action object has been tested with a simple mobile robot system. The test

is based on the automatic variation of the QoS settings in function of the distance

measured without control component intervention. The number of messages sent

is reduced, and, as a result, the communications load is also reduced.

Future work is to test the middleware with complex combinations of events that

generate different actions. The problem of generating different actions is the pos-

sibility to obtain contradictory actions, i.e.: increase and decrease the deadline

QoS Policy. This problem can be solved by using priorities in Conditions or in

Actions, but probably the inclusion of Actions in the middleware might be limited.

Acknowledgments The study described in this paper is a part of the coordinated project

COBAMI: Mission-based Hierarchical Control. Education and Science Department, Spanish

Government. CICYT: MICINN: DPI2011-28507-C02-01/02

References

1. Sánchez, J., Guarnes, M.Á., Dormido, S.: On the Application of Different Event-Based Sam-

pling Strategies to the Control of a Simple Industrial Process. Sensors. 9, 6795-6818. (2009).

2. J. H. Sandee, W. P. M. H. Heemels, P. P. J. van den Bosch. Case Studies in Event-Driven

Control. Lecture Notes in Computer Science, Vol. 4416, pages 762-765, Springer, 2007

3 Hadim S. and M. Nader, "Middleware Challenges and Approaches for Wireless Sensor Net-

works," IEEE Distributed Systems Online, vol. 7, no. 3, 2006.

4. Pardo-Castellote, G. OMG Data-Distribution Service: architectural overview. Proceedings of

23rd International Conference on Distributed Computing Systems Workshops. Providence,

USA. Vol. 19-22, pp. 200-206. 2003.

5. Object Management Group. Data Distribution Service for Real-time Systems Version 1.2.

2007 (http://www.omg.org/)

6. R.C. Dorf and R.H. Bishop, Modern Control Systems, 11th Edition, Prentice Hall (2008)

7. Poza-Luján, J., Posadas-Yagüe, J., Simó-Ten, J.: Quality of Service and Quality of Control

Based Protocol to Distribute Agents. ;In DCAI(2010)73-80.

8. Waldbusser, S. RFC 2819 - Remote Network Monitoring Management Information Base.

Network Working Group. Lucent Technologies. 2000

9. Poza-Luján, J., Posadas-Yagüe, J., Simó-Ten, J.: Relationship between Quality of Control

and Quality of Service in Mobile Robot Navigation. ;In DCAI(2012)557-564

10. K-Team Corporation. Khepera III robot. (http://www.k-team.com)

11. Braitenberg, V., 1984. Vehicles: Experiments on Synthetic Psychology. MIT Press, Cam-

bridge, Massachusetts

12 Poza-Luján, J. (2012). Propuesta de arquitectura distribuida de control inteligente basada en

políticas de calidad de servicio. Universitat Politècnica de València Press.

