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Abstract—A new observer-predictor algorithm (OP-A) to es-
timate the roll and pitch angles in an aerial vehicle is proposed
in this paper. The OP-A is based on a Kalman Filter (KF) and a
discrete-time predictor. First, the KF estimates the desired states.
It is well-known that an inherent delay is introduced during its
computation. The predictor improves these measurements coun-
teracting the delay. The algorithm is validated in real-time using
gyroscopes and accelerometers of a low-cost inertial measurement
unit. These results are compared with the measurements coming
from a commercial IMU with good precision and the results show
that the proposed scheme improves substantially the angular
measurements.

Keywords—Attitude estimation, Inertial Measurement Unit,
Kalman Filter, Discrete-Predictor, Real-time Validation

I. I NTRODUCTION

In the past years there has been an increasing interest in
Unmmaned Aerial Systems (UAS). Among the UAS, quadro-
tors are of special interest in control from both perspectives,
theoretical and applied [1]. Disregarding the control strategy, a
high-performance attitude tracking subsystem is a requisite for
developing any other high-level controlling task. The key state
variables to be estimated are the attitude and the angular veloc-
ity, as they are the primary variables used in attitude control of
the vehicle [2]. Inertial Measurement Units (IMUs), which are
the core of lightweight robotic applications have experienced
a proliferation, resulting in cheaper, and more accurate devices
[3]. Nevertheless, these cheaper devices usually provide only
raw measurements from gyroscopes and accelerometers.

Different approaches to the attitude estimation problem
have been reported in literature, e.g., Kalman filters [4], [5]
or complementary filters [6]. Although its convergence is
not guaranteed, the Extended Kalman Filter (EKF) has been
the workhorse of real-time spacecraft attitude estimationfor
quite some time [7]. On the other hand, some processes
are internally performed before the observer algorithms are
computed. For example, during the data acquisition process
in an IMU, the signals are low-pass filtered to remove noise
and avoid aliasing effects. The filter introduces a time delay
in the measurements, which results in an attitude estimation
which is also delayed by the same amount of time. One of the
unavoidable sources of delay is the low-pass filtering before
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sampling. The other one is the computational time required to
run the estimation algorithm.

It is well-known that measurement delays decrease the
phase margin and can even lead to the instability of the
controlled process [8]. The incorporation of delayed measure-
ments into the Kalman filter while preserving optimality is
far from being trivial. When the delay consists only of a
few sample periods, the problem can be handled optimally by
augmenting the state vector [9]. However, for larger delays, the
computational burden of this approach becomes too large. This
topic has been investigated in [10]. More recent work on this
topic has been done in [11], where a general delayed Kalman
filter framework is derived for linear-time invariant systems.

Dead-time compensation techniques are frequently used
in the control of time-delay systems [12]–[14]. In [15] a
discrete predictor for continuous-time plants with time delay
is proposed and the closed-loop stability is proved. Later,the
proposed predictor has been explored to perform in different
scenarios [16]–[21]. Nowadays, almost any control system
application is implemented by using a computer, discrete-time
predictor-based control schemes are increase their internes in
practical applications [22], [23].

The goal of this paper is to improve the estimation of the
pitch and roll angle with a low-cost IMU by proposing an
observer-predictor algorithm (OP-A). The proposed scheme
uses a KF and a discrete-time predictor to fuse the measure-
ments coming from this sensor. The KF estimates the roll and
pitch angles and corrects the bias of the gyroscopes, while the
predictor counteracts the inherent delay in the estimated states.

The paper is structured as follows. The problem statement
is described in section II. In this section, the mathematical
equations of a quad-rotor aerial vehicle and the representation
of the inertial sensors are given. Also the problem of delaysin
attitude estimation is presented. The proposed algorithm is de-
scribed in Section III. This section deals with the presentation
of the KF and the OP-A and the simulation validation. The
proposed scheme is validated in flight tests and some graphs
are selected and shown in section IV to show the real-time
results. At the end of the paper in section V, some discussions
about this work are presented.

II. PROBLEM FORMULATION

In this section the kinematic and dynamic models of
the quadrotor are introduced. Moreover, some preliminar-



ies regarding to the sensor characterization considered for
the Kalman filter derivation are also presented. Finally, the
problematic of delays in attitude estimation is explained and
illustrated with an example.

A. Quadrotor model

Let us denote by{ê1, ê2, ê3} the unit basis vectors of
the Earth-Centered Earth-fixed (ECEF) reference frame,{E},
which is assumed to be inertial.

Let ω = ωBB/E = [p, q, r]T be the angular velocity of the
aircraft with respect to{E} expressed in the body frame{B}.
The rotational kinematic relating these angular velocities to
the Euler angles,η = [φ θ ψ]T , is expressed by

η̇ =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



ω (1)

where φ, θ, and ψ denote the roll, pitch and yaw angle,
respectively.

The rotational dynamics of the quadrotor is governed by
Euler’s law of motion according to

τ = Iη̈ + ω × Iω (2)

whereτ = [τφ, τθ, τψ]
T is the vector of external torques. It

has been showed in several works (and corroborated in flight
tests) that the rotational dynamics of the quadrotor can be
reduced to a double integrator on each axis as

η̈ = τ̃ (3)

whereτ̃ denotes the new control inputs.

The orientation of{B} with respect to{E} is represented
by means of the rotation matrix,BRE , which can be expressed
in terms of the Euler angles by

BRE =

[

cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − cφcψ cφsθ

]

(4)

using the conventional sequence of roll-pitch-yaw.

B. Sensors characterization

It is important to express in a mathematical form the
relationship between the external forces acting on the vehicle
and the accelerations and angular rate measurements coming
from the inertial sensors. Notice that, the accelerometersin
strap-down configuration measure the specific force acting on
the vehicle expressed in{B} as they are aligned with the
body-fixed reference frame. Thus, without loss of generality,
the measurement can be expressed by

aB =
1

m

(

fB − BRE(mg)ê3

)

= v̇B − BREgê3 (5)

wherev̇B is the acceleration vector due to the external forces
expressed in{B}, m denotes the mass of the aerial vehicle
andfB represents the vector of external forces that act on the
quadrotor. Since the accelerations in stable flight regimesare

usually small compared to the gravity acceleration, neglecting
the linear acceleration (v̇B = 0) is a classical assumption
[24]. Normalizing the vector of acceleration measurements
facilitates to express the roll and pitch angles as

a =
aB

|aB|
≈ −BRE ê3 =

[

sin θ
− sinφ cos θ
− cosφ cos θ

]

(6)

Let us consider the following model for the inertial sensors,

ω̄ = ω + βω + ηω
ā = a+ ηa

(7)

where the velocity measurementω̄ is composed of its actual
valueω, plus the biasβω and noise in the measurementηω.
The same applies for the acceleration measurement but the
biases are not included. The measurement noises are subject
to a Gaussian representation as follows,

E[ηω] = 0 E[ηωη
T
ω ] = Σω = σ2

ωI3

E[ηa] = 0 E[ηaη
T
a ] = Σa = σ2

aI3

(8)

whereΣω andΣa define the diagonal covariance matrices.

The following random walk process,

β̇ω = ηβ, (9)

E[ηβ] = 0, E[ηβη
T
β ] = Σβ = σ2

βI3, (10)

is used to model the “slowly-varying” biases of the gyros,
whereηβ is white noise andΣβ is its diagonal covariance
matrix. The varianceσ2

β determines how much the bias drifts.

C. Time delays in inertial sensors

In practice, it is observed that attitude estimation obtained
by applying fusing algorithms to the inertial sensors mea-
surements exhibit a delay with respect to their real value.
For illustration purposes, the angular measurements coming
from a commercial IMU (the Mircrostrain 3DM-GX2) are
compared with those of set of encoders. It is well know that the
encoders are faster and more accurate than any IMU. Thus, the
delayed measurement of the commercial IMU is represented
in Fig. 1 along with the ideal value measured by encoders. The
experimental platform that allows taking these measurements
is described in detail in Section IV.

One of the unavoidable sources of delay is the low-pass
filtering before sampling. During the data acquisition process
in an IMU, the signals are low-pass filtered to remove noise
and avoid aliasing effects. The other one is the computational
time required to run the estimation algorithm, which is often
carried out in an on-board microcontroller. In addition, it
is well-known that measurement delays decrease the phase
margin and can even lead to the instability of the controlled
process.
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Figure 1. Time-delay comparison when estimating the angular position using
an encoder and the 3DM-GX2 commercial IMU.

III. PREDICTOR-BASED KALMAN FILTER

A. Kalman filter

The kinematics of an aerial vehicle and the measurement
model can be expressed by (1) and (6), respectively. An
advantage of the Euler formulation is that the yaw angle
can be removed from the equations. Let us denote the state
vector of estimated variables and the vector of measurements
by x̂ = [φ, βx, θ, βy]

T andy = [āx, āy, āz]
T , respectively.

Thus, the a filter can be derived from (1), (6) and (9) as

˙̂x =







(ω̄x − βx) + (ω̄y − βy) sinφ tan θ
0

(ω̄y − βy) cosφ
0






+w

y =

[

sin θ
− sinφ cos θ
− cosφ cos θ

]

+ v

(11)

with w and v denote the process and measurement noises,
respectively.

Assuming small angle approximations and neglecting the
third axis of the accelerometer (the reader is referred to [25]
for details), the following dicrete-time filter can be obtained

x̂k+1 =







1 −T 0 0
0 1 0 0
0 0 1 −T
0 0 0 1






x̂k +







T 0
0 0
0 T
0 0






ωk +wk

yk =

[

0 0 1 0
−1 0 0 0

]

x̂k + vk

(12)

where x̂k = [φk, βxk
, θk, βyk ]

T and yk = [āxk
, āyk ]

T are
the discrete state and measurement vectors,ωk = [ω̄xk

, ω̄yk ]
T

defines the system input which consists of angular velocities,
andwk andvk represent the discrete process and measurement
vectors, respectively.

B. h-step ahead Predictor

The discrete-time predictor algorithm used to improve the
KF estimation is described in this part. The predictor algorithm
compensates the delays in the estimated variables improving
considerably the closed-loop stability.

The state of the plant is fully accessible but there is a
known constant transmission delayτ , which is assumed to
be a multiple of the sampling period T, i.e.,τ = Td. The
measured state can be thus written as

x̃k = xk−d (13)

An h-step ahead predicted statex̄k+h, with h ∈ Z
+ being a

design parameter, is computed using the discrete-time model
of the plan [15] in order to counteract the delay

x̄k+h = Ahx̃k +

h−1
∑

i=0

Ah−i−1Buk+i−h (14)

wherex ∈ R
n, u ∈ R

m, A ∈ R
n×n andB ∈ R

n×m.

The proposed algorithm consists of applying the predictor
to the Kalman measurement, i.e.,x̃k = x̂k. The resulting
algorithm can be considered as a self-contained predictor-
based observer, which is depicted in Fig. 2.

C. Simulations

Due to paper length restrictions and without loss of gen-
erality, only the roll axis of the quadrotor is considered in
what follows. Therefore, the state of the plant is given by
x = [φ, φ̇]T while the dynamic model is given by (3). Thus

ẋ =

[

0 1
0 0

]

x+

[

0
1

]

u (15)

whereu = τφ represents the external torque in the roll axis.
A zero-order hold discretization of (15) leads to

xk+1 = Axk +Buk (16)

with

A =

[

1 T
0 1

]

B =

[

0
T

]

(17)

The parameterh is chosen to be equal to the number of delayed
sample periodsd. In simulations,d is known, whereas in the
experiments it has to be measured.
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Figure 2. Observer-predictor scheme diagram
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Figure 3. Simulink model

An h-step ahead prediction given by (14) is proposed to
compensate the delay in the system. Simulations were carried
out using the simulink model depicted in Fig. 3. The nonlinear
quadrotor model in (2) is used to represent the plant. For the
sake of simplicity, only references in the roll angle are applied
while pitch and yaw are driven to zero using PD controllers.
The predictor is applied to the estimation given by the Kalman
filter. The results are shown in Fig. 4. Notice that in this
figure the predictor algorithm improves the estimated value
and compensates the delay.
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Figure 4. Simulated measurements

As aforementioned, a delayed measurement decreases the
performance of a given controller. A simple state-feedback
controller with reference tracking was used

uk = [φ∗k, 0]
T −Kxk = kp(φ

∗

k − φk)− kdφ̇k (18)

Fig. 5 shows the output of the closed-loop system and the
control action when the different state measurements are fed to
the controller. Notice how oscillations arise when the delayed
measurement from the Kalman filter is used. However, the use
of the predictor improves the performance substantially, and
the response gets very close to that of the system when using
a non-delayed measurement.
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Figure 5. Simulated closed-loop response

Figure 6. Experimental platform

IV. EXPERIMENTS
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Figure 7. Experimental state measurements

Some experiments were carried out using the platform



0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

1

2

3

4

5

6

7

8

time (s)

ro
ll 

(d
eg

)

 

 

encoder
3DM−GX2
Kalman + Predictor

Figure 8. Delay of the 3DM-GX2, a commercial IMU
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Figure 9. Experimental closed-loop response

shown in Fig. 6. It is thought of as a test bed platform of
control algorithms for vertical lift off vehicles, so that the
translational degrees of freedom are clamped for convenience.
The orientation of the vehicle is measured by means of optical
encoders with an accuracy of 0.04 deg. These encoders provide
almost-true non-delayed angular measurements in three axis.
The angular rate was computed offline from the encoder
measurement by using central difference approximation and
filtering. The same controller structure as in the simulations
(18) was used for the experiments.

In order to illustrate the performance of the proposed
algorithm, two experiments are carried out. First, the system
is controlled via state feedback, according to (18), using the
measurements coming from the 3DM-GX2. The different state
estimations are shown in Fig. 7. A detail of the rising phase of
the response can be seen in Fig. 8. The delay of the 3DM-GX2
is quantified as40 ms, while the delay if the proposed OP-A
is used is almost negligible.

In the second experiment, the benefits of using the mea-

surement obtained with the OP-A are analyzed. For this
purpose, the OP-A is implemented in real-time. The system
is brought to marginal stability by increasing the gain of the
controller, and a step reference of8 deg is applied. The result is
shown in Fig. 9. Notice that, for a given controller, the system
becomes unstable when the measurement of the 3DM-GX2 is
used. However, if the measurement obtained by the OP-A is
used, the system remains stable.

V. CONCLUSION

A new attitude estimation approach for quadrotor vehi-
cles based on an observer-predictor algorithm is presented
in this paper. The scheme consists of a Kalman filter that
estimates the desired states and an h-step ahead predictor
that improves the estimated measurement. Several simulations
were carried out to validate the proposed schema and some
graphs were selected to illustrate its behavior. In addition,
real-time validation was also carried out. Experimental results
show that the proposed algorithm improves significantly the
measurements of a commercial IMU. Finally, closed-loop
experiments evidence the importance of having a non-delayed
measurement in fast unstable system such as quadrotors. Fora
given state-feedback controller, the delayed measurements of
the commercial IMU resulted in an unstable response while the
measurements obtained with the proposed algorithm succeeded
in stabilizing the system.
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