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Abstract—A new observer-predictor algorithm (OP-A) to es-  sampling. The other one is the computational time requioed t
timate the roll and pitch angles in an aerial vehicle is propsed  run the estimation algorithm.
in this paper. The OP-A is based on a Kalman Filter (KF) and a .
discrete-time predictor. First, the KF estimates the desied states. It is well-known that measurement delays decrease the
It is well-known that an inherent delay is introduced during its ~ Phase margin and can even lead to the instability of the
computation. The predictor improves these measurements co-  controlled process [8]. The incorporation of delayed measu
teracting the delay. The algorithm is validated in real-time using ~ ments into the Kalman filter while preserving optimality is
gyroscopes and accelerometers of a low-cost inertial measment far from being trivial. When the delay consists only of a
unit. These results are compared with the measurements comj few sample periods, the problem can be handled optimally by
from a commercial IMU with good precision and the results shov augmenting the state vector [9]. However, for larger deltyes
that the proposed scheme improves substantially the anguia .m0 tational burden of this approach becomes too large. Th
measurements. topic has been investigated in [10]. More recent work on this
Keywords—Attitude estimation, Inertial Measurement Unit,  topic has been done in [11], where a general delayed Kalman
Kalman Filter, Discrete-Predictor, Real-time Validation filter framework is derived for linear-time invariant systs.

Dead-time compensation techniques are frequently used
. INTRODUCTION in the control of time-delay systems [12]-[14]. In [15] a
m’screte predictor for continuous-time plants with timdage

In the past years there has been an increasing interest L
Unmmane% Ae?/ial Systems (UAS). Among the UAg, quadro-'s proposed and the closed-loop stability is proved. Ldtes,

tors are of special interest in control from both perspestiv propos_ed predictor has been explored to perform in diferen
theoretical and applied [1]. Disregarding the controltsiyg, a scer|1_ar|qs [;6.]_[2'1]' Nowc?(lj)ays,_ almost any COQF“". system
high-performance attitude tracking subsystem is a reiguisr appdl_catlog IS |r(;1p emer|1te h y using a_computer,h Iscrete-t
developing any other high-level controlling task. The kegtes pre l_ctolr- aslt_e control schemes are increase their g&am
variables to be estimated are the attitude and the angutzo-ve practical applications [22], [23].

ity, as they are the primary variables used in attitude cbwoff The goal of this paper is to improve the estimation of the
the vehicle [2]. Inertial Measurement Units (IMUs), whictea pitch and roll angle with a low-cost IMU by proposing an
the core of lightweight robotic applications have expecgh  observer-predictor algorithm (OP-A). The proposed scheme
a proliferation, resulting in cheaper, and more accuratcds  uses a KF and a discrete-time predictor to fuse the measure-
[3]. Nevertheless, these cheaper devices usually provitie 0 ments coming from this sensor. The KF estimates the roll and
raw measurements from gyroscopes and accelerometers. pitch angles and corrects the bias of the gyroscopes, wigle t

. . L redictor counteracts the inherent delay in the estimatdds
Different approaches to the attitude estimation problemD y

have been reported in literature, e.g., Kalman filters [8], [ The paper is structured as follows. The problem statement
or complementary filters [6]. Although its convergence isis described in section Il. In this section, the mathemética
not guaranteed, the Extended Kalman Filter (EKF) has beeaquations of a quad-rotor aerial vehicle and the representa
the workhorse of real-time spacecraft attitude estimafmn  of the inertial sensors are given. Also the problem of deiays
quite some time [7]. On the other hand, some processeattitude estimation is presented. The proposed algorighde+
are internally performed before the observer algorithmes arscribed in Section Ill. This section deals with the prestéota
computed. For example, during the data acquisition proces3f the KF and the OP-A and the simulation validation. The
in an IMU, the signals are low-pass filtered to remove noiseproposed scheme is validated in flight tests and some graphs
and avoid aliasing effects. The filter introduces a time ylela are selected and shown in section IV to show the real-time
in the measurements, which results in an attitude estimatioresults. At the end of the paper in section V, some discussion
which is also delayed by the same amount of time. One of thabout this work are presented.
unavoidable sources of delay is the low-pass filtering teefor

Il.  PROBLEM FORMULATION

*This work has been partially supported by; PROMETEO prdjezt2008- . . . . .
088, Conselleria de Educacion GV, Universidad Politce Valencia PAID- In this section t.he kinematic and dynamic moc‘?b of
06-12 and CICYT Project DPI2011-28507-C02-01, Spain. the quadrotor are introduced. Moreover, some preliminar-



ies regarding to the sensor characterization considered faisually small compared to the gravity acceleration, neijgc
the Kalman filter derivation are also presented. Finallg th the linear accelerationof = 0) is a classical assumption
problematic of delays in attitude estimation is explained a [24]. Normalizing the vector of acceleration measurements

illustrated with an example. facilitates to express the roll and pitch angles as
A. Quadrotor model aB 5 sin 6
. . a=———=~—"R,.é3 = |—sin¢gcosf 6
Let us denote by{é;, ez, é3} the unit basis vectors of aB| E™3 _COS(;COSG (6)

the Earth-Centered Earth-fixed (ECEF) reference frafig,,

which is assumed to be inertial. Let us consider the following model for the inertial sensors
Let w = wg/E = [p,q,7]7 be the angular velocity of the w=w+pB,+mn,

aircraft with respect t4 £'} expressed in the body framés}. a

The rotational kinematic relating these angular velositie

the Euler anglesy = [¢p 0 )T, is expressed by

=a+n, )

where the velocity measuremeatis composed of its actual

1 singtand cos¢tanf valuew, plus the biag3,, and noise in the measuremers.
S & The same applies for the acceleration measurement but the
n= |0 cos ¢ sing | w (1)
0 sin cos & biases are not included. The measurement noises are subjec
cos f cos ¢ to a Gaussian representation as follows,
where ¢, 6, and ¢ denote the roll, pitch and yaw angle,
respectively. E[n,] =0 Em,nl] =2, =021; ®
. . . E[n,] =0 Engm,] = o = 013
The rotational dynamics of the quadrotor is governed by
Euler's law of motion according to whereX, and X, define the diagonal covariance matrices.
T=IN+wx Iw (2)
) The following random walk process,
wherer = [r4, 79, 74]T is the vector of external torques. It
has been showed in several works (and corroborated in flight 3. = )
tests) that the rotational dynamics of the quadrotor can be « Uf’ )
reduced to a double integrator on each axis as E[ngl =0,  Elngngl =3s =031, (10)
n=rt 3) is used to model the “slowly-varying” biases of the gyros,
where# denotes the new control inputs. wheren; is white noise and¥s is its diagonal covariance

) ) ) ) matrix. The variancerg determines how much the bias drifts.
The orientation of B} with respect to{ E'} is represented

by means of the rotation matriX,R ., which can be expressed
in terms of the Euler angles by

ey sy —s0
1 (4)

C. Time delays in inertial sensors

In practice, it is observed that attitude estimation ol&din
by applying fusing algorithms to the inertial sensors mea-
surements exhibit a delay with respect to their real value.

BRE = |s¢psOcth) — copsyp  spshsih + coc)p  spch
cpsfc) + spsyp  cpstsiy — copep  cpsh

using the conventional sequence of roll-pitch-yaw. For illustration purposes, the angular measurements @min
o from a commercial IMU (the Mircrostrain 3DM-GX2) are
B. Sensors characterization compared with those of set of encoders. It is well know that th

encoders are faster and more accurate than any IMU. Thus, the
delayed measurement of the commercial IMU is represented
ig. 1 along with the ideal value measured by encoders. The
erimental platform that allows taking these measurésnen
is described in detail in Section IV.

It is important to express in a mathematical form the
relationship between the external forces acting on theclehi .
and the accelerations and angular rate measurements comiwg
from the inertial sensors. Notice that, the acceleromdters <
strap-down configuration measure the specific force acting o
the vehicle expressed ifiB} as they are aligned with the
body-fixed reference frame. Thus, without loss of genetalit One of the unavoidable sources of delay is the low-pass
the measurement can be expressed by filtering before sampling. During the data acquisition Eex

1 in an IMU, the signals are low-pass filtered to remove noise
a? = — (fB ~ BRE(mg>é3) =% —PR,_ge; (5) and avoid aliasing effects. The other one is the computation
m time required to run the estimation algorithm, which is pfte
whered” is the acceleration vector due to the external forcesarried out in an on-board microcontroller. In addition, it
expressed in{ B}, m denotes the mass of the aerial vehicleis well-known that measurement delays decrease the phase
and £ represents the vector of external forces that act on théargin and can even lead to the instability of the controlled
guadrotor. Since the accelerations in stable flight regiares Process.



o , ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ B. h-step ahead Predictor

— — — encoder - e
"

LI il 3DM-Gx2 P ] The discrete-time predictor algorithm used to improve the
o KF estimation is described in this part. The predictor atfon

o compensates the delays in the estimated variables imgrovin
ol } considerably the closed-loop stability.

’>‘,='én‘<—40ms The state of the plant is fully accessible but there is a
0 known constant transmission delay which is assumed to

af S 1 be a multiple of the sampling period T, i.er,= Td. The

S measured state can be thus written as

roll (deg)

s Ty = Tp_q (13)

T An h-step ahead predicted staig,, with h € Z* being a
I : design parameter, is computed using the discrete-time imode
e of the plan [15] in order to counteract the delay

o
06 07 08 0.9 1 11 12 13 14 15
time (s) h—1

Tpyn = A&y + Z AT By, (14)
i=0
wherex € R", u € R™, A € R™*"™ and B € R"*™,

Figure 1. Time-delay comparison when estimating the amgadaition using
an encoder and the 3DM-GX2 commercial IMU.

Ill.  PREDICTOR-BASED KALMAN FILTER The proposed algorithm consists of applying the predictor
to the Kalman measurement, i.ec; = x,. The resulting
algorithm can be considered as a self-contained predictor-

The kinematics of an aerial vehicle and the measuremertased observer, which is depicted in Fig. 2.
model can be expressed by (1) and (6), respectively. An
advantage of the Euler formulation is that the yaw angleC. Simulations
can be removed from the equations. Let us denote the state
vector of estimated variables and the vector of measuremené ra
by & = [, Bs, 0, B,]T andy = [a,, a,, a.]’, respectively.
Thus, the a filter can be derived from (1), (6) and (9) as

A. Kalman filter

Due to paper length restrictions and without loss of gen-
lity, only the roll axis of the quadrotor is considered in
what follows. Therefore, the state of the plant is given by
x = [¢, #|T while the dynamic model is given by (3). Thus

[(We — Bz) + (0, — By,)sinp tan
[ )+ (@ = Fy) = {8 (1)] z + mu (15)
xr = - + w
(@y — fy) cos ¢ . :
i 0 (11) Wwhereu = 7, represents the external torque in the roll axis.
sin 6 A zero-order hold discretization of (15) leads to
y= |—singcosf| +v Ty = Axy, + Buy (16)
| — cos ¢ cos 6
with
with w and v denote the process and measurement noises, A= {1 T] B— [0] (17)
respectively. 0 1 T

The parametel is chosen to be equal to the number of delayed
Assuming small angle approximations and neglecting thesample periodg. In simulations,d is known, whereas in the
third axis of the accelerometer (the reader is referred & [2 experiments it has to be measured.
for details), the following dicrete-time filter can be olted

1 =T 0 0 T 0 u,
N 0O 1 0 0], 0 O
Tl =g 0 1 —T| %t o 7| @kT Wk
0 0 0 1 0 0 12)
u [0 0 1 o]i L
F= -1 0 0 o|7kT 7k ool - _
ceel. Kl . k+h
Ij ,?mn;?n . Predictor -
Wherei’k = [¢k7 ﬁ:ﬂ}w eka ﬁyk]T and Y = [a/d,ka ayk]T are Gyros -
the discrete state and measurement vectofS= [0y, , Wy, | .
defines the system input which consists of angular velsgitie Observer-Predictor

andwj, andvy, represent the discrete process and measurement
vectors, respectively. Figure 2. Observer-predictor scheme diagram
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Figure 3. Simulink model

Tiempo (s)

An h-step ahead prediction given by (14) is proposed td '9!r¢ 5 Simulated closed-loop response

compensate the delay in the system. Simulations were darrie
out using the simulink model depicted in Fig. 3. The nonlnea
quadrotor model in (2) is used to represent the plant. For the
sake of simplicity, only references in the roll angle areleggp
while pitch and yaw are driven to zero using PD controllers.
The predictor is applied to the estimation given by the Kailma
filter. The results are shown in Fig. 4. Notice that in this
figure the predictor algorithm improves the estimated value
and compensates the delay.
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IV. EXPERIMENTS
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As aforementioned, a delayed measurement decreases the
performance of a given controller. A simple state-feedback
controller with reference tracking was used

ur = [0k, 0 — Ky, = ky(éh — én) —kadn  (18)
Fig. 5 shows the output of the closed-loop system and the 0

roll rate (deg/s)
=
o
T

. : o
control action when the different state measurements drofe s o . . " : . |
the controller. Notice how oscillations arise when the geth ' time (5) '

measurement from the Kalman filter is used. However, the use

of the predictor improves the performance substantially] a Figure 7. Experimental state measurements

the response gets very close to that of the system when using

a non-delayed measurement. Some experiments were carried out using the platform
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Figure 8. Delay of the 3DM-GX2, a commercial IMU
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Figure 9. Experimental closed-loop response

shown in Fig. 6. It is thought of as a test bed platform of 4

surement obtained with the OP-A are analyzed. For this
purpose, the OP-A is implemented in real-time. The system
is brought to marginal stability by increasing the gain of th
controller, and a step referencesodleg is applied. The result is
shown in Fig. 9. Notice that, for a given controller, the syst
becomes unstable when the measurement of the 3DM-GX2 is
used. However, if the measurement obtained by the OP-A is
used, the system remains stable.

V. CONCLUSION

A new attitude estimation approach for quadrotor vehi-
cles based on an observer-predictor algorithm is presented
in this paper. The scheme consists of a Kalman filter that
estimates the desired states and an h-step ahead predicto
that improves the estimated measurement. Several sionsati
were carried out to validate the proposed schema and some
graphs were selected to illustrate its behavior. In addltio
real-time validation was also carried out. Experimentalies
show that the proposed algorithm improves significantly the
measurements of a commercial IMU. Finally, closed-loop
experiments evidence the importance of having a non-délaye
measurement in fast unstable system such as quadrotora. For
given state-feedback controller, the delayed measuresradnt
the commercial IMU resulted in an unstable response whée th
measurements obtained with the proposed algorithm suedeed
in stabilizing the system.
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