
Schedulability analysis of hierarchical systems with arbitrary scheduling in the
global level

Ana Guasque∗, Patricia Balbastre∗,Vicent Brocal† and Alfons Crespo∗

∗Institute of Control Systems and Industrial Computing (ai2), Valencia, Spain
anguaor, patricia, acrespo@ai2.upv.es

†Fent Innovative Software Solutions (FentISS)
vbrocal@fentiss.com

Abstract

Schedulability analysis of hierarchical real-time systems
is based in the previous knowledge of the scheduling
algorithms both in the local and the global levels.

In a partitioned system with safety and security issues
and certification assurance levels, the global scheduling
is usually generated using a static table. Therefore, each
partition must allocate task jobs only in the temporal win-
dows reserved for that partition. Even if the static table can
come originally from a periodic server or other scheduling
policy, the final plan can suffer from modifications due to
changes in the system requirements. As a consequence, the
CPU assignment to a partition does not have to correspond
to any known policy. In this case, it is not possible to
use existing scheduling analysis for hierarchical systems.
This paper provides a schedulability analysis when the
global level policy is not known but provided as a set
of arbitrary time windows. The paper also provides a
method to determine the more restrictive CPU assignment
for a task set, as a mean of stablishing minimum temporal
requirements for the partition.

I. Introduction

In the last years, modern computing systems have
increased its processing capabilities and its computational
resources in such a way that they are capable of executing
several concurrent real-time applications that would for-
merly have required several embedded systems. Schedul-
ing different real-time applications in a mono-processor
not only achieves a cost reduction but it also offers
the possibility of performance enhancement and closer
integration of distinct applications [1].

In many domains such as avionics, space or indus-
trial control systems, hard real-time constraints, safety
and security issues and certification assurance levels are
commonly required. Integrated Modular Avionics (IMA)
was an architectural proposal emerged as a design concept
to integrate in a hardware platform several applications
with different levels of criticality. IMA approach proposes
to encapsulate functions into partitions configuring a par-
titioned system. Partitioned architectures isolate software
components into independent partitions whose execution
shall not interfere with that of other partitions, preserv-
ing temporal and spatial isolation. Several projects have
successfully developed using this approach in the avionic
market.

For the last decade, the European space sector has
adapted the initial IMA approach for the space require-
ments for the new satellite generation [2]. The IMA-SP
project was focused on mono-processors [3]. The platform
defines a virtualization layer (hypervisor) that permits the
execution of several partitions. Each partition can contain a
guest operating system and the application software. The
hypervisor is in charge of assuring temporal and spatial
isolation of partitions.

An IMA development process involves several roles as:
• System Architect (SA): The SA has responsibility to

define the overall system requirements and the sys-
tem design, including the optimal decomposition into
hosted partitions jointly with the detailed resource
allocation per partition.

• System Integrator (SI): The SI is responsible for
verifying the feasibility of the system requirements
defined by the SA, as well as responsible for the
configuration and integration of all components.

• Application Suppliers (AS): An AS is responsible for
the development of an application according to the

** This work has been partially funded by the Spanish Government in the frame of the project COBAMI: DPI2011-28507-C02-02
*** This paper has been submitted to IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in
Control CESCIT'15

overall requirements from the SA and the SI. AS shall
verify that the allocated budget and safety parame-
ters are respected. Assuming that each application is
located in a partition and a partition can have only
one application, an AS can also be called Partition
Developer (PD).

There are other roles in the process but due to space
restrictions we only detail those interesting for the purpose
of the paper. For a complete description of the main roles
and responsibilities see ([4]).

A key element in the development process and the final
execution is the configuration of the system defined by the
SA, which includes the components description and the
resource allocation. This is identified as configuration data
or configuration file. In order to preserve the confidentiality
of the developing process, a configuration data is split and
delivered to each PD with the required information for the
application development.

Regarding the allocation of temporal resources, the SI
is responsible for CPU allocation to applications while the
PD shall manage the time budget assigned to its tasks by
the SI.

Then, a partition does not have all the time assigned
to schedule its tasks, but only certain slots throughout
the hyper-period. To satisfy the temporal resource require-
ments of the partition, the system must supply sufficient
computational resources.

The list of assigned slots is provided by the SI, that is in
charge of assuring the feasibility in the global level. Thus,
PD’s give to the SI its temporal requirements, normally in
the form of CPU bandwidth. The SI calculates and assigns
this bandwidth to partitions using a well known bandwidth
server or it can assign it using a cyclic scheduling. ARINC
653 standard [5] defines a hierarchical scheduling where a
static cyclic executive scheduler is used in the global level.

If the assignment is made using a bandwidth algorithm,
the corresponding feasibility tests are available in the
literature so the PD can apply them to know if its tasks
are schedulable with this slots assignment (see section V).
On the contrary, if the assignment is made by the SI in an
arbitrary way (i.e. not following any existing scheduling
algorithm) the authors are not aware of any paper that
addresses and solves this problem.

Moreover, schedulability tests for hierarchical systems
are based on calculating the worst case response time of
tasks in the local level and adding the worst case overhead
due to the global level. But, if the scheduling policy is
not known in the global level, existing schedulability tests
can not apply. Our aim is to generalized the global level
model characterizing it by a slots assignment (arbitrary
CPU supply as we will comment later).

A. Contributions and outline

The problem to be addressed is concerned with the
schedulability of a hierarchical system composed of two
levels. The global level policy is not known but provided
by the SI as a set of arbitrary time slots. By arbitrary we
understand that are not derived from any known scheduling
algorithm in the global level. We provide a schedulability
analysis so the PD can accept the slots assignment. In the
local level, we will assume EDF. Obviously, our results
can be used even if the scheduling algorithm in the global
level is known.

The results presented in this paper are also useful in the
other direction. This paper provides a method to determine
the more restrictive assignment slots for a task set, as a
mean of minimum requirements that the SI assignment
must meet. If the global level policy is known and based
on a periodic server, our contributions will provide an
alternative way of deducing the solution space for the
server parameters.

The paper is organized as follows: Section II presents
the model and notation used, while in section III the calcu-
lation of the minimum supply bound function is explained.
The schedulability test is presented in section IV.Section
V presents the most important works in the field of
hierarchical scheduling. Finally, section VI summarizes the
contributions of the paper and future lines of work.

II. System model and notation

Our model is concerned with the pre-emptive schedul-
ing of real-time applications on an uniprocessor. Each
application consists of a number of partitions P1, .., Pm.
Each partition comprises a number of tasks. Thus, our
hierarchical system has two levels, the partition (or global)
level and the task (or local) level, each of them with its
own scheduling policy. In this work, we will assume that
the local level is scheduled under EDF scheduling policy
and the global level is scheduled under any scheduler. The
information regarding the global scheduling is provided as
temporal windows or slots in which a partition is allowed
to execute.

In what follows, we will omit the sub index used to refer
to a partition to simplify the notation. Therefore, formally,
a partition P can be defined1 as a tuple P = {τ,R} where:
• τ = {τ1, τ2, .., τn} is a set of n tasks. A task τi is

characterized by a tuple τi = {φi, Ci, Di, Ti} where
φi is the offset, Ci is the worst case computation time,
Di is the relative deadline and Ti is the period. When
all parameters to the system are integers, we may
assume without loss of generality that all preemptions

1In the definition of the partition we omit all non-temporal resources

occur at integer time values. We then assume, for
the remainder of the paper, that all parameters are
indeed integers. Moreover, constrained deadlines are
assumed so Di ≤ Ti.

• An arbitrary CPU supply R is represented by a se-
quence of intervals I1, I2, ..., Ip. Every Ii / 1 ≤ i ≤ p
is a closed interval Ii =: [si, ei] repited every lcmτ

2,
so that 0 ≤ si < ei < si+1 and ep ≤ lcmτ .
Therefore, ∀t exists a unique interval Ii so that si ≤
t ≤ ei. The CPU supply R for a partition determines
the p temporal slots in which tasks allocated to the
partition are allowed to execute.

The problem to solve is concerned with the schedula-
bility of the partition, that is, if task set τ can be scheduled
without deadline misses in the slots defined by R.

A. Supply bound function

Although we have characterized R as a set of intervals,
it can also be defined as a function.

Given a CPU supply R and interval of length t, the
supply bound function gives the minimum amount of
resource that model R is guaranteed to supply in any time
interval of length t [6]. We can define the supply bound
function of R, accordingly with the above definition.

Definition 1: The supply bound function (sbfR(t)) of
an arbitrary supply R expressed as a set of intervals is:

sbfR(t) =



j∑
i=0

(ei − si) + t− ej if ∃j/t ∈ [sj , ej],

j∑
i=0

(ei − si) if ∃j/ej < t < sj+1.

Then, a CPU supply R can be characterized either by
a set of intervals Ii or by its sbfR(t).

A basic schedulability condition is:

∀t sbfR(t) ≤ t

III. Minimum CPU supply for a task set

The goal of this section is to determine the minimum
CPU supply for a task set τ while maintaining feasibility.
To do this, we will base our method in the demand bound
function for a task set.

If tasks are simultaneously activated at time t = 0 (i.e.
φi = 0 for all the tasks so teh task set is synchronous),
then:

Definition 2: [7] The maximum cumulative execution
time requested by jobs of τ whose absolute deadlines are
less than equal to t is:

dbfτ (t) =

n∑
i=1

Ci

⌊
t+ Ti −Di

Ti

⌋
2Least Common Multiple of T1, .., Tn

It is a positive and increasing function that only in-
creases in the so-called scheduling points i.e., when a
deadline arrives.

The minimum supply bound function (msbfτ (t)) is
the more restrictive set of temporal windows that can
successfully schedule τ . We will show in the next results
how to obtain the first two intervals of the function and,
then, msbfτ (t) will be generalized.

Theorem 1: Let t1 ∈ N so that:

t1 − dbfτ (t1) = min
t

(t− dbfτ (t)) ∀t ∈ (0, lcmτ]

Then,

msbfτ (t) =

{
t− t1 + dbfτ (t1) if t ∈ [t1 − dbfτ (t1), t1],
0 if t ∈ [0, t1 − dbfτ (t1)).

Proof: We will base the proof on adding a new
task τn+1. This task will execute only where τ is not
allowed to execute, that is, in [0, t1 − dbfτ (t1)) and we
will demonstrate that the new set is schedulable. Then, we
will increase the computation time of τn+1 to see that the
new set is not schedulable.

Let
τ ′ = τ

⋃
τn+1

where
Cn+1 = t1 − dbfτ (t1)

Dn+1 = t1 − dbfτ (t1)

Tn+1 = lcmτ

To prove schedulability of τ ′, the condition dbfτ ′(t) ≤
t must hold in all the scheduling points in [0, t1]. Let’s
suppose that a is a scheduling point in [0, t1]. If a < Dn+1

clearly dbfτ ′(a) = dbfτ (a) ≤ a. If a ≥ Dn+1 the demand
bound function of the new task set τ ′ is:

dbfτ ′(a) = dbfτ (a) + Cn+1

= dbfτ (a) + t1 − dbfτ (t1)

As t1 − dbfτ (t1) = min
t

(t− dbfτ (t)) then

t1 − dbfτ (t1) ≤ (a− dbfτ (a))

So,

dbfτ ′(a) ≤ dbfτ (a) + a− dbfτ (a)
≤ a

Now, let’s suppose

τ ′′ = τ
⋃
τn+1

and
Cn+1 = t1 − dbfτ (t1) + ε

Dn+1 = t1 − dbfτ (t1) + ε

Tn+1 = lcmτ

being ε a small positive number such that 0 < ε ≤ 1.
Following the same reasoning:

dbfτ ′(t1) = dbfτ (t1) + t1 − dbfτ (t1) + ε

= t1 + ε

so τ ′′ is not schedulable.

As a result of the previous theorem, msbfτ (t) until
t1, expressed as a set of intervals, is msbfτ (t) = I0 =
[t1−dbfτ (t1), t1]. Using a similar approach we will derive
the next interval.

Lemma 1: Let t2 ∈ N, t1 < t2 so that:

t2 − dbfτ (t2) = min
t

(t− dbfτ (t)) ∀t ∈ (t1, lcmτ]

Then

msbfτ (t) =



t− t1 + dbfτ (t1) if t ∈ [t1 − dbfτ (t1), t1],

dbfτ (t1) if t ∈ (t1,

t2 − dbfτ (t2) + dbfτ (t1))

t− t2 + dbfτ (t2) if t ∈ [t2 − dbfτ (t2)

+dbfτ (t1), t2],

0 if t ∈ [0, t1).

Proof:
Schedulability in [0, t1] is assured due to Theorem 1.

Following the same reasoning than Theorem 1, we are
going to add a task which computation time coincides with
the idle time between I0 and SI1 and a deadline equal to
the start time of I1 (s1).

Let
τ ′ = τ

⋃
τn+1

⋃
τn+2

where
Cn+1 = t1 − dbfτ (t1)

Dn+1 = t1 − dbfτ (t1)

Tn+1 = lcmτ

Cn+2 = t2 − dbfτ (t2) + dbfτ (t1)− t1

Dn+2 = t2 − dbfτ (t2) + dbfτ (t1)

Tn+2 = lcmτ

Let’s suppose that a is a scheduling point in (t1, t2]. If
a < Dn+2, then dbfτ (a) = dbfτ ′(a), so the new task set is
schedulable. If a ≥ Dn+2, following the same reasoning
than in Theorem 1, we add to sbfτ ′(t) the computation
time of τn+1 and τn+2:

dbfτ ′(a) = dbfτ (a) + t1 − dbfτ (t1)+
+ t2 − dbfτ (t2) + dbfτ (t1)− t1
= dbfτ (a) + t2 − dbfτ (t2)

As,
t2 − dbfτ (t2) ≤ (a− dbfτ (a))

then

dbfτ ′(a) ≤ dbfτ (a) + a− dbfτ (a)
≤ a

Theorem 1 and Lemma 1 provide a method to obtain the
first two intervals of msbfτ (t) function. Figure 1 shows
graphically how the function is obtained.

Figure 1. Calculation of msbfτ (t) in [0, t2]

It is straightforward to recursively construct all the
minimum supply slots needed by τ to maintain feasibility
by finding tj points in where it holds that tj − dbfτ (tj)
is the minimum value in (tj−1, lcmτ]. We will call this
points the minimum scheduling points tj . Therefore, the
msbfτ (t) is defined as in definition 2 but now we can
give specific values to sj and ej :

msbfτ (t) =



j∑
i=0

(ei − si) + t− ej if ∃j/t ∈ [sj , ej],

j∑
i=0

(ei − si) if ∃j/ej < t < sj+1.

where sj = tj − dbfτ (tj) + dbf(tj−1) and ej = tj .
Replacing the values of sj and ej in the previous

definition we find that:

j∑
i=0

(ei − si) = t1 − t1 + dbfτ (t1)− dbf(t0)+

+t2 − t2 + dbfτ (t2)− dbf(t1) + ...

Assuming that t0 = 0 and dbfτ (0) = 0:
j∑
i=0

(ei − si) = dbfτ (tj)

Therefore, we can provide a more compact definition
for msbfτ (t):

msbfτ (t) =


t− tj + dbfτ (tj) if ∃j/t ∈ [sj , ej],

dbfτ (tj) if ∃j/ej < t < sj+1.

The previous function is obtained from the dbfτ (t) in
definition 2, particularized for synchronized tasks. If we
assume the possibility of asynchronism (i.e., exists any
φi 6= 0) between tasks, another function dbfτ (t) must be
defined.

IV. Schedulability analysis

Once msbfτ (t) is obtained the following theorem pro-
vides the schedulability condition of {τ,R}.

Theorem 2: A task set τ is schedulable under a CPU
supply R if and only if:

∀t sbfR(t) ≥ msbfτ (t)

Proof:
We will prove that for any time point a :

msbfτ (a) ≥ dbfτ (a) ∀a ∈ [0, lcmτ]

We will suppose two cases:
• Case 1: a /∈ [sj , ej].
• Case 2: a ∈ [sj , ej].
Case 1: If a /∈ [sj , ej], then ∃j so ej < a < sj+1.

Applying the second case in the msbfτ (t) definition:

msbfτ (a) = dbfτ (a)

Case 2: If a ∈ [sj , ej], applying the first case of the
msbf definition:

msbfτ (a) = a− tj + dbfτ (tj)

As dbfτ (t) is a positive and monotonic increasing
function it holds that [8]:

If a ≤ tj then dbfτ (a) ≤ dbfτ (tj)
And, as τ is schedulable then dbfτ (tj)− tj ≤ 0.
Therefore:

msbfτ (a) ≥ dbfτ (a)− dbfτ (tj)− tj
≥ dbfτ (a)

In any case: msbfτ (a) ≥ dbfτ (a), so:

sbfR(a) ≥ dbfτ (a)

V. Related work

In a partitioned architecture, partitions can be viewed
as components that consist of a real-time workload and
a scheduling policy for the workload. This definition
coincides with a compositional system hierarchically or-
ganized. Different works in compositional scheduling have
been proposed for a variety of real-time task models ([9],
[10], [11], [6]).

Hierarchical scheduling has been a topic of research
interest in recent years. One of the first works on this area
is the one presented by Deng and Liu [12], based on a two-
level real-time scheduling framework. Kuo and Li [13] pre-
sented an exact schedulability condition for this framework
assuming fixed priority pre-emptive scheduling. Lipari and
Baruah [14] presented a similar work with EDF. Saewong
et al. [15] provided a response time analysis for fixed-
priority hierarchical systems. This analysis was pessimistic
as it was showed by Davis and Burns in [16]. However,
Davis and Burns gave an exact response time calculation
only for the partition with the highest priority. Almeida
and Pedreiras [17] improved the analysis by Saewong et
al. but, again it was not an exact analysis. In [18], Bril et
al. show that the worst case response time of a task is not
necessarily assumed for the first job with the conditions of
critical instant provided by Davis and Burns. They claim
that the existing analysis could be improved but they do
not provide an alternative analysis. The exact response
time was provided by Balbastre et al. in [19]. Lipari and
Bini [20] provide a kind of sensitivity analysis of the
global level for a two-level hierarchical system, providing
a methodology for calculating the domain parameters that
makes the task set feasible. Lorente and Palencia [21]
presented a worst-case response time analysis for the tasks
in a two level hierarchical EDF systems.

VI. Conclusions

This paper has considered the case of a two level
hierarchical real-time system, in which tasks in the local

level are scheduled under EDF policy but the global level
does not follow a known scheduling policy but the only
information is provided as a set of CPU slots. The first
contribution is a schedulability analysis to know if given
a certain sequence of CPU slots the task set is schedu-
lable. The second contribution is the calculation of the
more restrictive sequence of slots (minimum supply bound
function) of a task set in the local level. Our model can
also be used with any existing server in the global level,
however our model is a generalization of any scheduling
in the global level. Although we initially apply our results
to static scheduling, further work will be focused on
providing on-line algorithms to calculate msbfτ (t) in a
specific window. This could be specially useful in flexible
environments, where even if the scheduling algorithm is
known a priori, jitter or latencies makes the final slots
execution difficult to predict.

Improvements in the msbfτ (t) calculation are also
foreseen. The proposed algorithm needs all the hyperperiod
space to be exact but we expect to dramatically reduce the
calculation cost by obtaining an upper bound for msbfτ (t).

References

[1] F. Zhang and A. Burns, “Analysis of hierarchical edf pre-
emptive scheduling,” in 28th IEEE International Real-Time
Systems Symposium, 2007. RTSS 2007., Dec 2007, pp. 423–
434.

[2] J. Windsor and K. Hjortnaes, “Time and space partitioning
in spacecraft avionics,” in IEEE Conference on Space
Mission Challenges for Information Technology, July 19-
23. Pasadena (USA) 2009.

[3] “IMA-SP Integrated Modular Avionics for Space. ESA
project 4000100764,” 2011-13.

[4] IMA-SP. Integrated Modular Avionics for Space, “IMA
Development Process, Roles and Tools,” IMA-SP D08-11,
2011-13.

[5] Avionics Application Software Standard Interface (ARINC-
653)., March 2006 2006, Airlines Electronic Eng. Commit-
tee.

[6] A. Easwaran, I. Lee, I. Shin, and O. Sokolsky, “Com-
positional schedulability analysis of hierarchical real-time
systems,” in ISORC, 2007, pp. 274–281.

[7] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling
hard real-time sporadic tasks on one processor,” in IEEE
Real-Time Systems Symposium, 1990, pp. 182–190.

[8] I. Ripoll, A. Crespo, and A. Mok, “Improvement in fea-
sibility testing for real-time tasks,” Journal of Real-Time
Systems, vol. 11, pp. 19–40, 1996.

[9] S. Marimuthu and S. Chakraborty, “A framework for com-
positional and hierarchical real-time scheduling,” in 12th
IEEE Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2006, pp. 91 –96.

[10] G. Lipari and E. Bini, “Resource partitioning among real-
time applications,” in Real-Time Systems, 2003. Proceed-
ings. 15th Euromicro Conference on, July 2003, pp. 151–
158.

[11] I. Shin and I. Lee, “Periodic resource model for composi-
tional real-time guarantees,” in Real-Time Systems Sympo-
sium, 2003. RTSS 2003. 24th IEEE, Dec 2003, pp. 2–13.

[12] Z. Deng and J. W.-S. Liu, “Scheduling real-time applica-
tions in an open environment,” in IEEE Real-Time Systems
Symposium, 1997.

[13] T.-W. Kuo and C.-H. Li, “A fixed priority driven open
environment for real-time applications,” in IEEE Real-Time
Systems Symposium, 1998.

[14] G. Lipari and S. Baruah, “Efficient scheduling of real-time
multi-task applications in dynamic systems,” in IEEE Real-
Time Tecnology and Applications Symposium, 2000.

[15] S. Saewong, R. Rajkumar, and J. Lehoczky, “Analysis of
hierarchical fixed-priority scheduling,” in Euromicro Con-
ference on Real-Time Systems, 2002.

[16] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-
emptive scheduling,” in IEEE Real-Time Systems Sympo-
sium, 2005.

[17] L. Almeida and P. Pedreiras, “Scheduling within temporal
partitions: response-time analysis and server design,” in
Fourth ACM International Conference on Embedded Soft-
ware (EMSOFT), 2004.

[18] R. J. Bril, W. F. J. Verhaegh, and C. C. Wust, “A cognac-
glass algorithm for conditionally guaranteed budgets,” in
IEEE Real-Time Systems Symposium, 2006.

[19] P. Balbastre, I. Ripoll, and A. Crespo, “Exact response time
analysis of hierarchical fixed-priority scheduling,” in 15th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, 2009. RTCSA
’09., Aug 2009, pp. 315–320.

[20] G. Lipari and E. Bini, “A methodology for designing
hierarchical scheduling systems,” Journal of Embedded
Computing, vol. 1, no. 2, pp. 257–269, 2005.

[21] J. Lorente and J. Palencia, “An edf hierarchical schedul-
ing model for bandwidth servers,” in Proceedings. 12th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, 2006., 2006, pp.
261–266.

