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Abstract— Attitude estimation for an aerial vehicle using the  measurements coming from accelerometers, gyroscopes and
Kalman Filter - KF- with experimental validation is presented magnetometers.
in this paper. The data fusion is made using simplified rep-

resentations of the kinematics of the aerial vehicle and the Th | hes t Ive the attitude esiimati
accelerometer measurement model. The resulting algorithm is ere are several approaches 1o solve the attitude esimati

computationally efficient as it can be run at up to 500 Hz on a  Problem. Despite the lack of convergence and optimality
low-cost microcontroller. The observer is improved by choosing guarantees, the Extended Kalman Filter (EKF) has been the
the appropriate covariance and noise matrices. Numerical and  workhorse of real-time spacecratft attitude estimationgjaite
in-flight validation are carried out using two prototypes and some time [6]. The earliest published application was [7]
the experimental results are compared online with the measure . .
coming from a commercial IMU -Inertial Measurement Unit. in 1970 by Farrell and several Oth?rs have followed smpe.
Index Terms— Attitude estimation, observers, real-time valida- ~ Lefferts, Shuster, and Markley published a thorough review
tion, EKF of the topic [8] in 1982 and since then Markley, Crassidis,
and several others have kept Kalman filtering an active topic
|. INTRODUCTION of research in the space industry [9]-[11]. Several difiere
Unmanned Aircraft Systems (UAS) are systems whose comattitude representations have been used in Kalman filtering
ponents include the necessary equipment, network, and pewrith varying degrees of success.
sonnel to control an unmanned aircraft. Growth in unmanned
platforms of all sizes and shapes has been substantial, with In this paper, a computationally efficient algorithm to
a corresponding increase in payload numbers and capabilitgstimate the attitude of a rotorcraft is proposed and vaditia
Several of these systems were developed using the delilgerat in flight tests. The approach consists of a Kalman filter
requirements and acquisitions processes. applied to the kinematics of the vehicle represented by
Jpeans of the Euler formulation, and including the biases
r%f the gyroscopes into the vector of estimated variables.
I% addition, the experimental results are compared with the
data coming from a commercial IMU showing the good
ehavior of the estimation algorithm. The methodology
ollowed in this paper is similar to that of [12]. However, in
contrast to the method proposed in this paper, the work in
[12] does not estimate the biases of the gyroscopes, which
With dramatic increases in battery life and computercan lead to important errors after several minutes of ojmerat
processing; reduction in size and complexity of sensors;

The pace of technological advances across the broad sp
trum of unmanned systems applications has allowed what we
once rather cumbersome vehicles and systems outside t
"circle of civil applications” to shoulder tasks in civil ssion
areas only a few years ago. Nowadays it is possible to use UA
for civil purposes like ground traffic inspection [1], fotdse
monitoring [2] or real-time irrigation control [3].

and improvements in reliability, maintainability, autotioa, The paper is structured as follows. Basis and notation
and operator interfaces, unmanned systems are now vitah introduce the main concepts are described in section II.
components of a civil applications tool kit [4]. The attitude estimation algorithm is explained in sectitin |

Numerical validation results in a fixed-platform are présen
When it comes to civil applications, reducing the cost ofin Section 1V, while flight tests are analyzed and described
the UAS to a minimum is a must. Inertial Measurement Unitsin Section V. Finally, some discussions about this work are
(IMUs), which are the core of lightweight robotic vehicles presented in section VI.
usually represent a large portion of their total cost [5]e3@
devices provide an estimation of the vehicle attitude byniyis Il. BASIS AND NOTATION

. . _ The basis for analysis, computation or simulation of the
*This work has been partially supported by; PROMETEO prdjézt2008- d . f fliah hicle i h h ical
088, Consellén de Educacin GV, Universidad Polécnica de Valencia PAID- unsteady motlon§ or a _'g t vehicle Is the mat Qmatlca
06-12 and CICYT Project DPI2011-28507-C02-01, Spain. model of the vehicle and its subsystems. The velocities and



accelerations must of course be relative to an inertial, or Let us consider the following model for the inertial sensors

Newtonian, frame of reference. ~
w=w+ IB(.U +n,

Thus, let us denote bfe,, é;, és} the unit basis vectors of — )
the Earth-Centered Earth-fixed (ECEF) reference frahig,, a
which is assumed to be inertial. where the velocity measuremedtis composed of its actual

valuew, plus the biag3,, and noise in the measuremeny.

The same applies for the acceleration measurement but the
biases are not included. These errors are not so critical as
they are not integrated over time. The measurement noises ar
subject to a Gaussian representation as follows,

Let w = wg/E = [p,q,7]T be the angular velocity of the
aircraft with respect t E'} expressed in the body fram{é3}.
The rotational kinematic relating these angular velositie
the Euler anglesy = [¢ 0 )", is expressed as

1 singtané cos¢tanf

=0 coso —sing | w 1) E[n,] =0 Eln.ni]l =2, =013 ©)
0 %5 g E[n,] =0 E[n,m.] = Za = 0013

where ¢, ¢, and ¢ denote the roll, pitch and yaw angle, whereX,, and X, define the diagonal covariance matrices.

respectively. .
P y The following random walk process,

The orientation of{ B} with respect to{ E'} is represented

by means of the rotation matriX,R ;,;, which can be expressed Bw =g, (7
in terms of the Euler angles as Elng) =0 JE[an?;] =% = o315 8)
ey s —sb

is used to model the “slowly-varying” biases of the gyros,
wheren; is white noise and®; is its diagonal covariance
matrix. The variancerg determines how much the bias drifts.

BRE = |spsOc) — cpsyp  spsOsih + copep  spch (2)
costcp + spsp  cpss — cocp  copsh
using the conventional sequence of roll-pitch-yaw. Recall that the Kalman filter is derived for a system de-
Notice that the representation in (2) has a singularity ascribed by
0 = 180°. A quaternion-based representation can solve this ) -
inconvenient, however, the civil missions usually do nojuies T = Axr +w Elww’] =Q ©)
to perform acrobatic maneuvers. Therefore, Euler angles ar y=Czx+v Elvo'] =R

valid for these purposes. In addition, the estimation wél b .
restricted to the roll and pitch angles, as they are resptensi Wherew andv are the process and the measurement noises,

for keeping the aerial vehicle at hover. Hence the yaw angl&eSPectively, which are assumed to be Gaussian, with covari
is not considered for this work. ance matrice€) and R. Observe that, it is thus necessary to

o ) ) . estimate and correct the biases of the sensors as they alg nea
Itis important to express in a mathematical form the refatio oonsiant errors which are not removed in the Kalman filtering

between the external forces acting on the vehicle with theygcess. Moreover, it is convenient to identify the stotibas
accelerations and angular rate measurements coming frofjggel of the sensors for achieving a good performance.
the inertial sensors. Notice that, the accelerometersrapst

down configuration measure the specific force acting on the i

vehicle expressed ifiB} as they are aligned with the body-

fixed reference frame. Thus without loss of generality, the The kinematics of an aerial vehicle and the measurement

measurement can be expressed as model can be expressed by (1) and (4), respectively. An
1 advantage of the Euler formulation is that the yaw angle can

af = — (fB - BRE(mg)ég) =9% ~BR_gée; (3) be removed from the equations. Let us denote the state vector

m of estimated variables by = [¢, 5., 0, 5,]. Thus, the filter

where” is the acceleration vector due to the external forcesan be written as

expressed i B}, m denotes the mass of the aerial vehicle -

. PROPOSED ALGORITHM

and £” represents the vector of external forces that act on the (@2 = Be) + (@y — By) sin g tan o
quadrotor. Since the accelerations in stable flight regiares T = N 0 + w
usually small compared to the gravity acceleration, neglgc (@y — By) cos ¢
the linear accelerationv€ = 0) is a classical assumption L 0 (10)
[13]. Normalizing the vector of acceleration measurements sin ¢
facilitates to express the roll and pitch angles as y= |—singcosf| +v
— cos ¢ cos 0
aB sin 0 -
a= E ~ —BREé3 = | —sin¢cosf 4) Moreover, it is reasonable to simplify the equations by assu

— cos ¢ cos 0 ing small angles approximationsin« ~ « andcosa =~ 1,



with a = {¢, 6}, which leads to the following linear equations in memory. Using (13) and (14), the following equations for
the Kalman filter of the roll angle can be derived

0 -1 0 0 10 B ]
. o0 0 o0 00 b = k-1 +T(@x — Bay)
=1lo o o —1|*Tjo 1"t a =B,

oo 00 Pir, = Py — 2TP1oy +T2pao , + i, (15)
v= |:—01 8 (1) 8:| vt prk =DPi2p-1 — Tp22k—1

Dag, = P22, , T 22,
where the input vector consists of the angular velocity mea-
surement = [w,, w,|, andy = [a,, a,] contains the accel-

eration measurements. The third equation of the measutemen L= (1= ag)d, — asy
model which involves the third accelerometer axis has been = B — yy(ay + b))
Tk T o\ly k

removed, as it has very low sensitivity with respect to the ro (1= ay)pr (16)
pitch orientation for small angles. p}rlk o /P11,
= (1 —ag)p;:
These simplifications result in a smaller-size linear syste pfk ( _¢)p12k_
thus reducing the computational load substantially. Fasth P2, = ~VeP12,, + P2z,

more, it will be shown next how the structure of the matriceswhere

can be also exploited to reduce the Kalman filter to a set o i
of simple equations. The continuous-time system (11) can be g = % Yo = # a7)
discretized with sample time T, assuming zero-order hold of Piy, T Piy, T Ty
the input, as follows In a very similar way, the derivation of the Kalman filter
- equations for the pitch angle leads to the following set of
Tp1 = Apxy + Brug + wy, Blwywy ] = Qy (12) equations
_ Ty _
Y = Hk’mk + vy E[vkvk] - Rk 9]: — ek—l +T(@L _ ﬁ.Lk)
where oo o o = Bur_a
0o 1 0 o0 pr1, = P11y — 2Tp12,_, + T?poo,, + as3, (18)
_ AT _ _
Ar=e¢""=10 o 1 _7T P12, = P12, — Iz,
0 0 0 1 Daa, = P22,y T a4,
T 0 -
T
0 0
By= [ *dr= - _
F /0 0 T 0 = (1 — ay)f;, + apay
00 e = By +76(az — 0;)
w0 rh = 10, @
+ 1— ) -
P12, ( Qg )P12,
Notlcg that, as a consequence of the S|mpI|f|caF|ons, the p2+2k = —Yop1a, + P22,
resulting system is decoupled. Therefore, one can implemen h
two different Kalman filters separately for roll and pitchhér where
equations of the EKF can be found in [14] and are summarized Pﬂk pfzk
as Qg = —J/—— —— Yo = T (20)
— B P11, T T22; P11, T 722,
T = Ab-1Th—1 + D111 (13) IV. NUMERICAL VALIDATION

— T
Py = A1 Py Al + Qy The Kalman filter algorithm proposed for attitude estimatio
E— has been first validated using the platform shown in Fig. 1. It
is thought of as a test bed platform of control algorithms for
vertical lift off vehicles, so that the translational degseof

. =H,P_H} .
Sk wby Hi, + 1, freedom are clamped for convenience.

Ky = P;HZS? (14) The orientation of the vehicle is measured by means of
w? =z, + K (yk — Hk:c,;) optical encoders with an accuracy of 0.04 deg. These ensoder
PZ‘ = (I- K H)P; provide a reliable pattern for the evaluation and compariso

of the algorithms. In addition, a commercial IMU (3DM-
One can take advantage of the fact that the malixis GX2) and a low cost inertial sensor (MPU6050) were also
symmetric, so that only three of its entries need to be storethcluded in the platform in order to validate and compare the



measurements. The 3DM-GX2 runs at 200 Hz and output

directly the orientation in Euler angles representatiohe T 2 ]
MPU6050 is composed of a 3-axis gyroscope and a 3-axi 5 K
accelerometer. It does not provide the angles of the rigic g 0 3
body but only the raw measurements of the sensors. Th = 0T ‘;A”;S‘;grso
characteristics of the both devices are given in table I. o -2r  aM-GX2 7
TABLE | % 5 10 15
IMU S SPECIFICATIONS Time (s)
Microstrain 3DM-GX2 MPU-6050
Size 63 x 41 x 32 21 x 17 x 2
Weight 50 g 69 a - 4
Gyro range +75 to +£1200 deg/s | +250 to £2000 deg/s o
Gyro bias +0.2 deg/s +20 deg/s e
Gyro nonlinearity 0.2 % 0.2% ~ 0 -
Gyro noise performance 0.17 deg/s (rmsyf’ 0.025 deg/s/ (rms) 6
Accel. bias +5 mg +50 mg 2 =2 7
Accel. nonlinearity 0.2 % 0.5 % o
Accel. noise performance 0.6 mg (rms)? 1.3 mg (rms) -4 ! ! !
0 5 10 15
@ Measured from static output of the sensor Time (S)
A PD controller was used to stabilize the system to constant Fig. 2. Attitude estimation

references of pitch and roll. The system was then perturbed
applying disturbances by hand. All data was collected at 33
Hz and the algorithm described in Section Il was compute
offline using Matlab. A trial and error tuning process resdlt
in the following covariance matrices

erformance indexes were chosen, i.e., the root mean stjuare
error, the maximum absolute error and the delay, all of
them computed with respect to the estimation given by the
encoders. Table Il gathers the information of these indexes

[0.94-1076 0 00 for an experiment of several minutes. One can see how the
Q, — 0 0.91-107° 0 0 proposed algorithm performs even better than the 3DM-GX2.
k= 0 0 0 0
0 0 00
(037 0
.= 1 ‘
Ry, | 0 039 —estimated
w L ---"true"
The estimation obtained by means of this procedure ca %} 05
be seen in Fig. 2. At first sight, it can be noticed that the & ¢ 1
proposed algorithm performs fairly well, thus validating gx
the simplifications made on its derivation. As it is difficult = 05 N 1
to visually evaluate the quality of both estimations, some 1 ‘ ‘ ‘
0 5 10 15 20
Time (s)
0.2 ,
—estimated
@ 01 ---"true"
(=2
]
E o0 8
g>~
8 01— —— .
02 5 10 15 20
Time (s)

Fig. 3. Bias estimation

Fig. 3 shows the evolution of the bias estimation. The
real bias of the gyroscopes was computed averaging the first
few seconds during which the system remains steady. It is
Fig. 1. Experimental platform possible to see how the estimated bias converges to the real




TABLE Il
PERFORMANCE INDEXES

rmse lerrofimax | delay

j roll 0.3 deg | 1.56 deg
3DM-GX2 pitch | 0.27 deg | 1.46 deg 25 ms
MPU 6050 roll 0.14 deg | 0.72 deg 15 ms

pitch | 0.19 deg | 0.91 deg

value within a few seconds.

The accelerations measured by the MPU6050 are depicted
in Fig. 4 along with the ideal measurements, which were built
by computing (4) using the angular measurements from the
encoders and adding Gaussian noise. It is pointed out that
the accelerometers are easily affected by the vibratioribeof
motors.

Fig. 5. Quadrotor prototype

The basic hardware consists of a MikroKopter frame, YGE

01 —y— 25i electronic speed controllers, RobbeRoxxy 2827-35trus
™ —— ideal less motors and 10x4.5 plastic propellers. All the compariat
5 0 are made onboard using an Arduino Due which is based on an
2 Atmel SAM3X8E ARM Cortex-M3 microcontroller running
01 at 84 MHz, and an Igep v2 board running Xenomai real-time
"0 5 10 15 operating system at 1 GHz. .
01 Time {3 The Arduino Due is in charge of reading every sensor,
' running the Kalman filter algorithm for attitude estimatiand
T the attitude control algorithm, controlling the motor'sesgl,
2 0 ' and sending the data to the Igep board. The control algorithm
< consists of a PD controller with nested saturations. Sohar t
~0.1 ‘ ‘ ‘ Igep board is only used as Wifi bridge.
° ° Timel(()s) o Although the proposed algorithm itself takes ordlymil-
-0.95 liseconds to run, the main loop in the microcontroller ruhs a
- 333 Hz restricted by the communications with the 3DM-GX2
L and the Igep board.
o -1
N
< Experiments
_1'050 5 1‘0 1‘5 The quadrotor was controlled in roll and pitch angles

Time (s) using the estimated valueg, § and ¢, §, computed using the

proposed algorithm. The yaw angle was stabilized with the

measurement of the Microstrain sensor.
Fig. 4. Accelerometer responses . . . .
In the lack of a motion capture system, the in-flight attitude

estimation of the proposed algorithm is compared to the 3DM-
GX2. Fig. 6 shows the attitude estimation during one minute
of flight. One can see that both estimations are very similar.
Quadrotor prototype Although the 3DM-GX2 is not a fully reliable pattern, it

Although the platform described above is a suitable scenari®@" be seen tha_t the proPose_d algorithm provi(_jes a fast,
oise-free and drift-free estimation. Furthermore, it mios

for numerical comparison, there are two handicaps to over? i . . .
come in real flight, i.e., vibrations and linear accelenagio alsp ”Qt'ced that the control is F:omputed with the .attlt.ude
The proposed algorithm has been also validated in-flighrtgusi estimation of th_e_ proposeql algo_rlthm. The small OSC'Im'O

a small quadrotor specially built for this task, see Fig.thads aroun_d the_ eqqmbrlum point evidence that the atlitude and
a distance of 41 cm between rotors, it weights around 1.3 kdelocny estimations lead to a very good control perforneanc

without battery, and it is outfitted with an IMU MicroStrain  The angular velocities are shown in Fig. 7. The estimated
3DM-GX2 and with the MPU6050, among other sensors.  angular velocities consist of the raw gyroscope measurtsmen

V. FLIGHT TESTS



corrected with the estimated biases. The estimation of it b
avoids the need of correcting the offset of the gyroscopies pr
to each flight and allows operation over long periods of time.

VI. CONCLUSION

A simplified algorithm for attitude estimation based on the
Kalman filter has been proposed and validated in-flight. The
simplifications in both the dynamic and measurement models
result in a very computationally-efficient algorithm.

Despite the simplifications, a comparison carried out in
an experimental platform with a reliable pattern provided b
optical encoders showed that the proposed algorithm dshibi
even better performance than a commercial IMU, the Mi-
crostrain 3DM-GX2. Further validation in-flight showed tha
the proposed algorithm performs also very well under strong
vibrations and linear accelerations.
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