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Abstract— Attitude estimation for an aerial vehicle using the
Kalman Filter - KF- with experimental validation is presented
in this paper. The data fusion is made using simplified rep-
resentations of the kinematics of the aerial vehicle and the
accelerometer measurement model. The resulting algorithm is
computationally efficient as it can be run at up to 500 Hz on a
low-cost microcontroller. The observer is improved by choosing
the appropriate covariance and noise matrices. Numerical and
in-flight validation are carried out using two prototypes and
the experimental results are compared online with the measure
coming from a commercial IMU -Inertial Measurement Unit.

Index Terms— Attitude estimation, observers, real-time valida-
tion, EKF

I. I NTRODUCTION

Unmanned Aircraft Systems (UAS) are systems whose com-
ponents include the necessary equipment, network, and per-
sonnel to control an unmanned aircraft. Growth in unmanned
platforms of all sizes and shapes has been substantial, with
a corresponding increase in payload numbers and capability.
Several of these systems were developed using the deliberative
requirements and acquisitions processes.

The pace of technological advances across the broad spec-
trum of unmanned systems applications has allowed what were
once rather cumbersome vehicles and systems outside the
”circle of civil applications” to shoulder tasks in civil mission
areas only a few years ago. Nowadays it is possible to use UAS
for civil purposes like ground traffic inspection [1], forest fire
monitoring [2] or real-time irrigation control [3].

With dramatic increases in battery life and computer
processing; reduction in size and complexity of sensors;
and improvements in reliability, maintainability, automation,
and operator interfaces, unmanned systems are now vital
components of a civil applications tool kit [4].

When it comes to civil applications, reducing the cost of
the UAS to a minimum is a must. Inertial Measurement Units
(IMUs), which are the core of lightweight robotic vehicles
usually represent a large portion of their total cost [5]. These
devices provide an estimation of the vehicle attitude by fusing
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measurements coming from accelerometers, gyroscopes and
magnetometers.

There are several approaches to solve the attitude estimation
problem. Despite the lack of convergence and optimality
guarantees, the Extended Kalman Filter (EKF) has been the
workhorse of real-time spacecraft attitude estimation forquite
some time [6]. The earliest published application was [7]
in 1970 by Farrell and several others have followed since.
Lefferts, Shuster, and Markley published a thorough review
of the topic [8] in 1982 and since then Markley, Crassidis,
and several others have kept Kalman filtering an active topic
of research in the space industry [9]–[11]. Several different
attitude representations have been used in Kalman filtering
with varying degrees of success.

In this paper, a computationally efficient algorithm to
estimate the attitude of a rotorcraft is proposed and validated
in flight tests. The approach consists of a Kalman filter
applied to the kinematics of the vehicle represented by
means of the Euler formulation, and including the biases
of the gyroscopes into the vector of estimated variables.
In addition, the experimental results are compared with the
data coming from a commercial IMU showing the good
behavior of the estimation algorithm. The methodology
followed in this paper is similar to that of [12]. However, in
contrast to the method proposed in this paper, the work in
[12] does not estimate the biases of the gyroscopes, which
can lead to important errors after several minutes of operation.

The paper is structured as follows. Basis and notation
to introduce the main concepts are described in section II.
The attitude estimation algorithm is explained in section III.
Numerical validation results in a fixed-platform are presented
in Section IV, while flight tests are analyzed and described
in Section V. Finally, some discussions about this work are
presented in section VI.

II. BASIS AND NOTATION

The basis for analysis, computation or simulation of the
unsteady motions of a flight vehicle is the mathematical
model of the vehicle and its subsystems. The velocities and



accelerations must of course be relative to an inertial, or
Newtonian, frame of reference.

Thus, let us denote by{ê1, ê2, ê3} the unit basis vectors of
the Earth-Centered Earth-fixed (ECEF) reference frame,{E},
which is assumed to be inertial.

Let ω = ωB
B/E = [p, q, r]T be the angular velocity of the

aircraft with respect to{E} expressed in the body frame{B}.
The rotational kinematic relating these angular velocities to
the Euler angles,η = [φ θ ψ]T , is expressed as

η̇ =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



ω (1)

where φ, θ, and ψ denote the roll, pitch and yaw angle,
respectively.

The orientation of{B} with respect to{E} is represented
by means of the rotation matrix,BRE , which can be expressed
in terms of the Euler angles as

BRE =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − cφcψ cφsθ



 (2)

using the conventional sequence of roll-pitch-yaw.

Notice that the representation in (2) has a singularity at
θ = 180◦. A quaternion-based representation can solve this
inconvenient, however, the civil missions usually do not require
to perform acrobatic maneuvers. Therefore, Euler angles are
valid for these purposes. In addition, the estimation will be
restricted to the roll and pitch angles, as they are responsible
for keeping the aerial vehicle at hover. Hence the yaw angle
is not considered for this work.

It is important to express in a mathematical form the relation
between the external forces acting on the vehicle with the
accelerations and angular rate measurements coming from
the inertial sensors. Notice that, the accelerometers in strap-
down configuration measure the specific force acting on the
vehicle expressed in{B} as they are aligned with the body-
fixed reference frame. Thus without loss of generality, the
measurement can be expressed as

aB =
1

m

(

fB − BRE(mg)ê3

)

= v̇B − BREgê3 (3)

wherev̇B is the acceleration vector due to the external forces
expressed in{B}, m denotes the mass of the aerial vehicle
andfB represents the vector of external forces that act on the
quadrotor. Since the accelerations in stable flight regimesare
usually small compared to the gravity acceleration, neglecting
the linear acceleration (v̇B = 0) is a classical assumption
[13]. Normalizing the vector of acceleration measurements
facilitates to express the roll and pitch angles as

a =
aB

|aB |
≈ −BRE ê3 =





sin θ
− sinφ cos θ
− cosφ cos θ



 (4)

Let us consider the following model for the inertial sensors,

ω̄ = ω + βω + ηω

ā = a+ ηa

(5)

where the velocity measurementω̄ is composed of its actual
valueω, plus the biasβω and noise in the measurementηω.
The same applies for the acceleration measurement but the
biases are not included. These errors are not so critical as
they are not integrated over time. The measurement noises are
subject to a Gaussian representation as follows,

E[ηω] = 0 E[ηωη
T
ω ] = Σω = σ2

ωI3

E[ηa] = 0 E[ηaη
T
a ] = Σa = σ2

aI3

(6)

whereΣω andΣa define the diagonal covariance matrices.

The following random walk process,

β̇ω = ηβ , (7)

E[ηβ ] = 0, E[ηβη
T
β ] = Σβ = σ2

βI3, (8)

is used to model the “slowly-varying” biases of the gyros,
whereηβ is white noise andΣβ is its diagonal covariance
matrix. The varianceσ2

β determines how much the bias drifts.

Recall that the Kalman filter is derived for a system de-
scribed by

ẋ = Ax+w E[wwT ] = Q

y = Cx+ v E[vvT ] = R
(9)

wherew andv are the process and the measurement noises,
respectively, which are assumed to be Gaussian, with covari-
ance matricesQ andR. Observe that, it is thus necessary to
estimate and correct the biases of the sensors as they are nearly
constant errors which are not removed in the Kalman filtering
process. Moreover, it is convenient to identify the stochastic
model of the sensors for achieving a good performance.

III. PROPOSED ALGORITHM

The kinematics of an aerial vehicle and the measurement
model can be expressed by (1) and (4), respectively. An
advantage of the Euler formulation is that the yaw angle can
be removed from the equations. Let us denote the state vector
of estimated variables byx = [φ, βx, θ, βy]. Thus, the filter
can be written as

ẋ =









(ω̄x − βx) + (ω̄y − βy) sinφ tan θ
0

(ω̄y − βy) cosφ
0









+w

y =





sin θ
− sinφ cos θ
− cosφ cos θ



+ v

(10)

Moreover, it is reasonable to simplify the equations by assum-
ing small angles approximations,sinα ≈ α and cosα ≈ 1,



with α = {φ, θ}, which leads to the following linear equations

ẋ =









0 −1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0









x+









1 0
0 0
0 1
0 0









u+w

y =

[

0 0 1 0
−1 0 0 0

]

v + v

(11)

where the input vector consists of the angular velocity mea-
surementsu = [ω̄x, ω̄y], andy = [āx, āy] contains the accel-
eration measurements. The third equation of the measurement
model which involves the third accelerometer axis has been
removed, as it has very low sensitivity with respect to the roll-
pitch orientation for small angles.

These simplifications result in a smaller-size linear system
thus reducing the computational load substantially. Further-
more, it will be shown next how the structure of the matrices
can be also exploited to reduce the Kalman filter to a set
of simple equations. The continuous-time system (11) can be
discretized with sample time T, assuming zero-order hold of
the input, as follows

xk+1 = Akxk +Bkuk +wk E[wkw
T
k ] = Qk

yk = Hkxk + vk E[vkv
T
k ] = Rk

(12)

where

Ak = eAT =









1 −T 0 0
0 1 0 0
0 0 1 −T
0 0 0 1









Bk =

∫ T

0

eAτdτ =









T 0
0 0
0 T

0 0









Hk =

[

0 0 1 0
−1 0 0 0

]

Notice that, as a consequence of the simplifications, the
resulting system is decoupled. Therefore, one can implement
two different Kalman filters separately for roll and pitch. The
equations of the EKF can be found in [14] and are summarized
as

x−

k = Ak−1xk−1 +Bk−1uk−1

P−

k = Ak−1P k−1A
T
k−1 +Qk

(13)

———

Sk = HkP
−

k H
T
k +Rk

Kk = P−

k H
T
hS

−1

k

x+

k = x−

k +Kk

(

yk −Hkx
−

k

)

P+

k = (I −KkHk)P
−

k

(14)

One can take advantage of the fact that the matrixP is
symmetric, so that only three of its entries need to be stored

in memory. Using (13) and (14), the following equations for
the Kalman filter of the roll angle can be derived

φ−k = φk−1 + T (ω̄x − βxk
)

β−

xk
= βxk−1

p−11k = p11k−1
− 2Tp12k−1

+ T 2p22k−1
+ q11k

p−12k = p12k−1
− Tp22k−1

p−22k = p22k−1
+ q22k

(15)

φ+k = (1− αφ)φ
−

k − αφāy

β+
xk

= β−

xk
− γφ(āy + φ−k )

p+11k = (1− αφ)p
−

11k

p+12k = (1− αφ)p
−

12k

p+22k = −γφp
−

12k
+ p−22k

(16)

where

αφ =
p+11k

p+11k + r11
γφ =

p+12k
p+11k + r11k

(17)

In a very similar way, the derivation of the Kalman filter
equations for the pitch angle leads to the following set of
equations

θ−k = θk−1 + T (ω̄x − βxk
)

β−

yk
= βyk−1

p−11k = p11k−1
− 2Tp12k−1

+ T 2p22k−1
+ q33k

p−12k = p12k−1
− Tp22k−1

p−22k = p22k−1
+ q44k

(18)

———

θ+k = (1− αφ)θ
−

k + αφāy

β+
yk

= β−

yk
+ γφ(āx − θ−k )

p+11k = (1− αθ)p
−

11k

p+12k = (1− αθ)p
−

12k

p+22k = −γθp
−

12k
+ p−22k

(19)

where

αθ =
p+11k

p+11k + r22k
γθ =

p+12k
p+11k + r22k

(20)

IV. N UMERICAL VALIDATION

The Kalman filter algorithm proposed for attitude estimation
has been first validated using the platform shown in Fig. 1. It
is thought of as a test bed platform of control algorithms for
vertical lift off vehicles, so that the translational degrees of
freedom are clamped for convenience.

The orientation of the vehicle is measured by means of
optical encoders with an accuracy of 0.04 deg. These encoders
provide a reliable pattern for the evaluation and comparison
of the algorithms. In addition, a commercial IMU (3DM-
GX2) and a low cost inertial sensor (MPU6050) were also
included in the platform in order to validate and compare the



measurements. The 3DM-GX2 runs at 200 Hz and outputs
directly the orientation in Euler angles representation. The
MPU6050 is composed of a 3-axis gyroscope and a 3-axis
accelerometer. It does not provide the angles of the rigid
body but only the raw measurements of the sensors. The
characteristics of the both devices are given in table I.

TABLE I

IMU S SPECIFICATIONS

Microstrain 3DM-GX2 MPU-6050
Size 63 × 41 × 32 21 × 17 × 2

Weight 50 g 6 g
Gyro range ±75 to ±1200 deg/s ±250 to ±2000 deg/s
Gyro bias ±0.2 deg/s ±20 deg/s

Gyro nonlinearity 0.2 % 0.2%
Gyro noise performance 0.17 deg/s (rms)a 0.025 deg/s/ (rms)

Accel. bias ±5 mg ±50 mg
Accel. nonlinearity 0.2 % 0.5 %

Accel. noise performance 0.6 mg (rms)a
1.3 mg (rms)

a Measured from static output of the sensor

A PD controller was used to stabilize the system to constant
references of pitch and roll. The system was then perturbed
applying disturbances by hand. All data was collected at 333
Hz and the algorithm described in Section III was computed
offline using Matlab. A trial and error tuning process resulted
in the following covariance matrices

Qk =









0.94 · 10−6 0 0 0
0 0.91 · 10−6 0 0
0 0 0 0
0 0 0 0









Rk =

[

0.37 0
0 0.39

]

The estimation obtained by means of this procedure can
be seen in Fig. 2. At first sight, it can be noticed that the
proposed algorithm performs fairly well, thus validating
the simplifications made on its derivation. As it is difficult
to visually evaluate the quality of both estimations, some

Fig. 1. Experimental platform
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Fig. 2. Attitude estimation

performance indexes were chosen, i.e., the root mean squared
error, the maximum absolute error and the delay, all of
them computed with respect to the estimation given by the
encoders. Table II gathers the information of these indexes
for an experiment of several minutes. One can see how the
proposed algorithm performs even better than the 3DM-GX2.
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Fig. 3. Bias estimation

Fig. 3 shows the evolution of the bias estimation. The
real bias of the gyroscopes was computed averaging the first
few seconds during which the system remains steady. It is
possible to see how the estimated bias converges to the real



TABLE II

PERFORMANCE INDEXES

rmse |error|max delay

3DM-GX2
roll 0.3 deg 1.56 deg

25 ms
pitch 0.27 deg 1.46 deg

MPU 6050
roll 0.14 deg 0.72 deg

15 ms
pitch 0.19 deg 0.91 deg

value within a few seconds.

The accelerations measured by the MPU6050 are depicted
in Fig. 4 along with the ideal measurements, which were built
by computing (4) using the angular measurements from the
encoders and adding Gaussian noise. It is pointed out that
the accelerometers are easily affected by the vibrations ofthe
motors.
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Fig. 4. Accelerometer responses

V. FLIGHT TESTS

Quadrotor prototype

Although the platform described above is a suitable scenario
for numerical comparison, there are two handicaps to over-
come in real flight, i.e., vibrations and linear accelerations.
The proposed algorithm has been also validated in-flight using
a small quadrotor specially built for this task, see Fig. 5. It has
a distance of 41 cm between rotors, it weights around 1.3 kg
without battery, and it is outfitted with an IMU MicroStrain
3DM-GX2 and with the MPU6050, among other sensors.

Fig. 5. Quadrotor prototype

The basic hardware consists of a MikroKopter frame, YGE
25i electronic speed controllers, RobbeRoxxy 2827-35 brush-
less motors and 10x4.5 plastic propellers. All the computations
are made onboard using an Arduino Due which is based on an
Atmel SAM3X8E ARM Cortex-M3 microcontroller running
at 84 MHz, and an Igep v2 board running Xenomai real-time
operating system at 1 GHz. .

The Arduino Due is in charge of reading every sensor,
running the Kalman filter algorithm for attitude estimationand
the attitude control algorithm, controlling the motor’s speed,
and sending the data to the Igep board. The control algorithm
consists of a PD controller with nested saturations. So far the
Igep board is only used as Wifi bridge.

Although the proposed algorithm itself takes only2 mil-
liseconds to run, the main loop in the microcontroller runs at
333 Hz restricted by the communications with the 3DM-GX2
and the Igep board.

Experiments

The quadrotor was controlled in roll and pitch angles

using the estimated values,φ̂, θ̂ and ˙̂
φ,

˙̂
θ, computed using the

proposed algorithm. The yaw angle was stabilized with the
measurement of the Microstrain sensor.

In the lack of a motion capture system, the in-flight attitude
estimation of the proposed algorithm is compared to the 3DM-
GX2. Fig. 6 shows the attitude estimation during one minute
of flight. One can see that both estimations are very similar.
Although the 3DM-GX2 is not a fully reliable pattern, it
can be seen that the proposed algorithm provides a fast,
noise-free and drift-free estimation. Furthermore, it must be
also noticed that the control is computed with the attitude
estimation of the proposed algorithm. The small oscillations
around the equilibrium point evidence that the attitude and
velocity estimations lead to a very good control performance.

The angular velocities are shown in Fig. 7. The estimated
angular velocities consist of the raw gyroscope measurements



corrected with the estimated biases. The estimation of the bias
avoids the need of correcting the offset of the gyroscopes prior
to each flight and allows operation over long periods of time.

VI. CONCLUSION

A simplified algorithm for attitude estimation based on the
Kalman filter has been proposed and validated in-flight. The
simplifications in both the dynamic and measurement models
result in a very computationally-efficient algorithm.

Despite the simplifications, a comparison carried out in
an experimental platform with a reliable pattern provided by
optical encoders showed that the proposed algorithm exhibits
even better performance than a commercial IMU, the Mi-
crostrain 3DM-GX2. Further validation in-flight showed that
the proposed algorithm performs also very well under strong
vibrations and linear accelerations.
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Fig. 6. Comparison of the attitude estimations in-flight
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