SENSORY PROCESSING OPTIMIZATION IN A SMART
DEVICE

Jose-Luis Jimenez-Garcia, Jose-Luis Poza-Lujan, Eduardo Munera, Juan-Luis Posadas-Yagiie, Raul Simarro
Institute of Control Systems and Industrial Computing
Polytechnic City of Innovation
Polytechnic University of Valencia, Spain
{jojigar1}@inf.upv.es, {jopolu;emunera;jposadas;rausifer }@ai2.upv.es

Abstract

In a distributed control system, where client nodes
receive data from distributed sensors in other
nodes, it might happen that the same operation
about data from a sensor is replicated in differ-
ent nodes. For that reason, being able to do pre-
processing of sensory data in the source node, al-
lows optimizing the client nodes resources. In case
of distributing sensory data wusing services, the
sensors that allow that pre-processing are known
as smart devices. This article shows a smart de-
vice as part of a distributed system that allows to
optimize resources in the client nodes. The smart
device presented in this is based in a Red, Green,
Blue, Depth (RGB-D) sensor. To manage the dif-
ferent acquisitions of the RGB-D it is used a or-
ganized processes structure (called plugins) in a
topology. The interface of that topology of plug-
ins is named Smart Plugin Topology (SPT) and
allows creating plugin combinations, which pro-
vides the smart sensor with the ability of doing
suitable pre-processing for each client, optimizing
the server and local resources of the smart sensor.

Key words: Smart sensor, plugin, built-in sys-
tem, distributed system.

1 INTRODUCTION

Nowadays, distributed systems based on smart
built-in systems are becoming more frequent.
They are found in a wide range of systems like:
robots, vehicles or video security systems. Each
one of them systems uses different sensors in
order to complete from easy tasks to complex
quests. By a smart sensor, the various function-
alities of the sensors may be centralized in order
to simplify the client tasks in a distributed system.

Among smart sensors, standing out are

Red,Green,Blue (RGB) cameras that have
improved in order to be capable of obtaining the
depth. These cameras are known as RGB-D.
There are various models like xTion [2], Kinect
[13] o Senz3D [5], each one of which has specific
features: definition, capture distance, price, cap-
ture rate and others. Regardless of the choosen

model, it is possible of pre-processing the data
in order to offer more features to clients. For
example, detecting objects with specific color and
in a concrete distance. If the distributed system
contains more than one client interested in the
same data, it is convinient that the smart sensor
offers a service to every client interested in that
data. In that case, the smart sensor would behave
as a smart device.

In this article is introduced a smart device
that allows to process and distribute the sensor’s
data. The smart device shown works by mean
of three stages: an initial phase of acquisition, a
posterior phase of processing and a final sending
phase. In order to complete the intermediate
data processing stage, it is necessary to execute
various specific processes, called as plugins. What
is more, plugins must have capacity of organizing
among them, due to the data of one of them
being (possibly) relevant to others. For example,
a plugin may detect a shape and other plugin
might detect color. By composition between both
plugins it would be had a third one that would
detect objects with the shape of the first plugin
and the color of the second one. The structure
within the plugins are organized, has been called
Smart Plugin Topology SPT. The main objective
of the SPT is to manage efficiently the processing
stage in order to avoid producing duplicities or
an inappropriate use of the system resources.
Due to the smart device having SPT, not only
the number of devices used is reduced, but it also
less computational and energetic cost, and, saves
the resources used. Plugins use communication
processes to distribute their results. These
communications should follow the correspondent
requirements of quality of service parameters
(QoS), as time, latency, jitter and others.

The article is organized as follows: section 2
contains the information related to implementa-
tion. Section 3 shows implementation details of
the SPT. Section 4 includes results obtained by
the execution of different compound plugins. And
last, in section 5, future work of the project and
conclusions reached.

Actas de las XXXV Jornadas de Automatica, 3-5 de septiembre de 2014, Valencia

ISBN-13: 978-84-697-0589-6

RGB-D Sensors Acquisition

Processment

Communication

| I I I I
| | | | I
| | Phase | Phase | Phase | TCP
| | |] | o e — N
T | |]
' ! [| Comm process 1.1 | : Client 1.1 :
| | |
| | | i oo [
I	I		
		1	
		I	
			e
		Plugin 1	:
Kinect ! : i			
.			
= : Triple Buffer : Comm process 1.N : Client 1N			
: ' I			
	:		
.			
I xTion I T Comm process 2.1		Client2.1 !	
i Acquisition	I !		
. s	s 5		
senz3d : I CommprocessN-1			Client N1 !
: : : :			
' ! [Plugin N N I			
			.
I		1 o	
I [[1 il I			
	I 1		
	I 1 1		
		1 1	
: | | | Comm process N.N | 'L Client N.N -
SMART DEVICE ZeroMQ
(Pub & Sub)

Figure 1: Components and pashes inside the smart device.

2 SMART DEVICE

2.1 SYSTEM DESCRIPTION

The smart device implementation is made by
means of the inclusion of an RGB-D sensor, model
xTION, for the capture of the pictures, and also a
Raspberry PI (RPI) [13] in order to integrate the
acquisition, processing and communication stages.
To acquire the pictures, it is used the OpenNI v2
[7] API to do the different settings of the device.
The acquisition stage is optimized by using a vari-
ation of the triple buffer algorithm [9] that allows
to improve the obtaining of an only RGB-D sensor
when various consumers need the data. In order
to make easy the plugins programming, OpenCV
v2.4.8 [4] API functions are used. Each plugin
sends its result to the consumers, limiting the
number of connections that guarantees the QoS of
the clients. These consumers might acces to plu-
gins establishing a TCP [12] connection or being
subscribers by the use of a Publisher-Subscriber
(PUB-SUB) ZeroMQ [8] pattern. These features
are shown in Figure 1.

Plugin Description

Color Provides RGB image or transfor-
mation to BGR.

Gray Provides the image, but in gray
scale.

Contour Recognizes outlines in the image
given by the smart sensor.

Resize Resizes the image to a specific

size.

Soften image

Ereases imprefection like, for ex-
ample, excesive bright or reflec-
tions.

Motion De-
tection

Detects moving objects.

Color detec-
tion

Allows to detect pixels of an spe-
cific color.

Gray Depth Represents a depth matrix in
grey scale.

Depth Distances matrix of the image.

Binary Provides a binary matrix where

Depth 1, represents the existence of an

object in the sight range.

Closest Far-
thest Point

Provides the nearest and furthest
object in the sight range.

Table 1: Plugins topology first order

Actas de las XXXV Jornadas de Automatica, 3-5 de septiembre de 2014, Valencia

ISBN-13: 978-84-697-0589-6

The plugins within Table 1, offer information of
the smart sensor with a variable processing level.
For example, Color plugin supplies the raw picture
or changing the channels, Grey plugin transform
from three channels to just one, what entails more
processing. Some plugins, like Contour and Mo-
tion, need an advanced processing.

2.2 SPT DESCRIPTION

The plugins may be combined between them
to generate dynamically new plugins and, then,
being able to design specific plugins with the
clients requirements. In Figure 2, it is shown the
design pattern based in the Composite pattern
[10][6] used to join plugins.

The purpose of this pattern consists in mak-
ing up objects in a tree structure, allowing the
different client nodes to deal with first and second
order plugins equaly. In this specific case, the
first order plugin role is done by different plugins
of the SPT and the second order plugin role is
the result of merging other first order plugins and
producing second order plugins.

Component Plugin

operationFrame()

|
getChildren()

deletePlugin()

T
| |

Plugin Color Plugin Depth

"
children plugin

Composite Closest Barrels

operationFrame() operationFrame() operationFrame()

g
operation()
getChildren()
deleteFrame()

Figure 2: Pattern Composite

The SPT needs a structure that supports the wide
plugins variety of the smart device. Besides, the
SPT must provide operations that allow using var-
ious plugins to join data from the smart sensor and
generate enriched information.

3 PLUGIN DESCRIPTION

3.1 COMPONENTS

In this sub-section, it is shown an example of the
plugin usage and its organization in the SPT.
The example lies in the detection of objects of
an specified shape and color, that, besides, is at
a certain distance. To do so, various plugins are
needed, shown in Figure 3. This case is about
a client that is trying to detect circular and red
objects that are less than 5 metres far. To attend
this petition, the compound of various plugins
are needed: one to detect shape (Figure), other

to dectect objects at less than 5 meters long
(BinaryDepth) and other that detects red objects
(ColorDetection). The Figure and ColorDetection
plugins need information provided by RGB Plu-
gin, while BinaryDepth plugin needs information
provided by Depth plugin. A client requests a
second order plugin. The server is using two basic
plugins, color and depth. The server establishes
a connection with the client and is in charche of
creating new plugins in case of not having them
(Regardless of the plugin being first or second
order). It also will manage intern acquisitions, in
order to provide a compound of various plugins.
That is, doing pertinent connections between
plugins. In the Figure 3 example, the Color and
Depth plugins are already created and working.
To satisfy the needs of the client, three plugins
are needed: Figure, RGB and Depth.

Plugin
Color

Plugin
Figure

&>

Client

(jeuiBuo’mau)aindiy

(0'0's52)4010D
(y3iy‘moy)yadaq

Plugin
Color

=

RGB-D Sensor

Figure 3: Example of use.

3.2 COMMUNICATIONS

In order to allow the client to inform the smart de-
vice about the requirements, a request message is
needed. The message header contains information
regarding fields size, state and other values. Be-
sides, when a compound plugin petition is done,
message header also contains an information addi-
tion that can be seen in Figure 4, where it is estab-
lished the size of the constant concerning to the
number of depth plugins family, followed by, and
using the same procedure, the color plugins fam-
ily. This modification causes two header types, a
basic one and a larger one, to allow the different
plugins representation.

2 Depth Gray 3 Color | RGB2BGR | Contour

Message Expansion

Figure 4: Second order header plugin.

Actas de las XXXV Jornadas de Automatica, 3-5 de septiembre de 2014, Valencia

ISBN-13: 978-84-697-0589-6

3.3 USING PLUGINS

It is necessary that the plugins will be created dy-
namically on account of the smart sensor do not
know neither when nor what kind of plugin the
consumer will require. Two algorithms are exe-
cuted in the main system thread: Algorithm 1,
that creates a plugin, Algorithm 2, that shows the
work of a plugin and Algoritm 3, that destroys a
plugin.

Algorithm 1, each time a connection regarding
the generation of a new plugin is established. In
first place it will format the message, distributing
the different parts of the information between
the specific system variables. One of the most
important variables generated by this operation
is the buffer id that stores various identifiers
of client requested plugins (2). There is one
sure thing regardless of the type of the message
(basic or extended), the first buffer position will
delimit just one plugin, so verifying its existence
(3)(13)(14). In case of it not existing, the request
type (basic or compound) must be determined
using the basic message size (4). Leafs (7) or
compounds are generated, the second ones by
adding leafs to the inner structure (8)(9). In
last place, regardless of the chosen path in the
algorithm, the connection must be attached to a
plugin (15).

Algorithm 1 Algorithm for creating a Plugin

Require: At least one connection and a valid
message.

Ensure: Retrieves the state of the system and
waits for a new connection.

1: Connect() + Menssage

2: SplitMessage() « id

3: if |Exist(id[0]) + boolean then

4: if lsizeOf(Mensaje) = 16 < boolean

then

5: CreatePlugin(id[0]) < Plugin

6: else

7: Create PComposite(id[0]) < Plugin
8: for i =1, sizeOf(id) do

9: Plugin.Add(CreatePlugin(id[i]))
10: end for
11: end if
12: else

13: Plugin.SearchPlugin(id[0]) < Plugin
14: end if
15: Plugin.AddConnect()

In the Algorithm 2, a node may request a
second order plugin by the extended message
format. The compound plugin has an elements

list, represented in the algorithm as ListPlugin,
and a constant, PDepth, that represents the
number of plugins inside the list that are part of
the depth processing family. The objective is, by
a FDOrigen and a FCOrigen, to apply various
processings to make the most of the code and
memory, by the use of plugins that might already
be in execution serving other nodes. The common
calculation of all plugins is getFrame(), which
receives the buffer where receive and write infor-
mation. In lines (1)(2) apply depth pre-processing
family and in lines (3)(4) pre-processing of color
family. In last place, the operation (7) method
does the calculation regarding that compound
plugin, that is translated to a final frame, and
with the result as desired by the client.

Algorithm 2 Algorithm work of a Plugin

Require: Application plugin with a set order.

Ensure: If the compound plugin not exist it is
created according to the algorithm 1.

1: for i =0, (Size() — PDepth) do

2: ListPlugin.get Plugin().get Frame(F D Dest)

3: end for

4: for i = (Size()—PDepth), List Plugins.size()
do

5: ListPlugin.get Plugin().get Frame(FC Dest)

6: end for

7. Operation(FDDest, FCDest) < Frame

A destruction plugin algorithm method due to a
plugin keep consuming resources in a unnecessary
manner, because it doesn’t have associated
connections. The Algorithm 3 is a method that
is executed periodically to verify the state of the
connections associated to a plugin. The algorithm
consists in a nested loop. The outer loop (1)
has the task to check all the plugins using the
an auxiliar variable (2). The counter variables
to use the loops are located on lines (5) and
(13). For each plugin returned in the outer loop
iteration, the inner loop has the task to check
all the connections (4). It is verified on line (6)
the conection state. Since a client can unlink to
the plugin by itself or conection problems can
happen and to lose the conection. If the conection
doesn’t reach the minimum conection state (6)
(7), in example high latency on the conection
or the packets don’t arrive to the destination,
the conection associated to the plugin is deleted.
Finally, once all connections associated to the
plugin are checked, it is verified if the plugin
has still some associated connection. If there
aren’t connections associated to the plugin, it is
eliminated in such a way it doesn’t consume extra
resources (10) (11).

Actas de las XXXV Jornadas de Automatica, 3-5 de septiembre de 2014, Valencia

ISBN-13: 978-84-697-0589-6

Algorithm 3 Algorithm Destruccion de un Plu-
gin

Require: Exist at least a available plugin.
Ensure: In case the plugin doesn’t attend the
connections it is eliminated with the algo-
rithm.
1: for i = 0, getTallaPlugins() do
2: auxPlugin = getPlugins() + Plugins
3: for j =0, getTallaConnects do
4: auxConnect = Plugin.getConnect(i) <

Connect

5: j+=1

6: if lauxzConnect.getStatus() < bool
then

T auxConnect.Delete()

8: end if

9: end for

10: if Plugin.getTallaConnects() < int,0

then

11: Plugin.Delete()

12: end if

13: i+ =1

14: end for

4 CASE STUDY

This section starts with a plugin composition ex-
ample, to obtain as final result a fusion between
a depth matrix and a color matrix, both pre-
processed with the format seen. The message used
was depth family (depth-gray) and color family
(color) so the plugins list size would be three, be-
ing the two first the depth family and the last one
the color. The composed code is different from
the rest compositions by the inner re-definition of
the operation method. In this case, the method
stills receiving a depth frame and a color frame
and stills returning the destination frame, but, in-
ternally, it will apply:

FrameDest = FCDest x a« + FCDest« 8+~ (1)
FrameDest = saturate(FrameDest) (2)

Where FDDest and FCDest are the frames corre-
sponding to the pre-processing application, alpha
and beta are constants corresponding to weights
of both matrixes and gamma is the scale applied
to the fusion. As it can be seen in Figure 5, the re-
sult of applying frame fusion with just a few code
lines of a method and re-using code by using code
from different plugins.

Figure 5: Resultant image from the color and
depth plugin fusion.

In Figure 6 can be seen another plugin composi-
tion but, in this case, the compound is zeta family
(depth) and color family (color - color detection).
The result of this composition to follow the red
and nearest object and draw its trajectory, the
client will receive the result frame of this com-
pound. As it was said, it would be necessary to
re-define just the operation method.

FrameDest = draw(min(FDDest, FCDest)) (3)

In the FDDest frame distances are from the cam-
era and in FCDest are drawn just red objects.
Consequently, the min function just have to figure
out which is the nearest object by FCDest matrix,
when the draw function has calculated the center,
it draws a red point and stores it in an array in
order to do the sequence. The result is a picture
where it can be seen a points sequence that rep-
resents the trajectory of that object.

Figure 6: Color Detection.

5 CONCLUSIONS

Finally, as conclusion, in this work the develop-
ment of a smart sensor aiming to improve and
optimize the sensor data flow in a distributed

Actas de las XXXV Jornadas de Automatica, 3-5 de septiembre de 2014, Valencia

ISBN-13: 978-84-697-0589-6

embedded system with limited resources has been
detailed. For achieving that goal, is presented the
development of a smart sensor endowed with a
RGB-D camera as its main sensor device. Next, it
has been also described the three main operation
phases of any smart resource: acquisition, data
process, and sending.

Main contribution of this work is focused on
the description of the implemented data process-
ing mechanisms known as SPT which provides
resources optimizations and avoids redundant
information. The creation, configuration and
usage of plugins in a SPT is carefully detailed
and its performance has been tested through the
presented experiments.

As a future work, it will be studied the benefits
and improvements of the addition of smart
resources as a part of a real time control system
which implements the Control Kernel Middleware
(CKM), just as is described in [1]. Tt also will
be evaluated how this devices could enhance the
execution of robot oriented CKM tasks just as the
behaviour management of the navigation system

[11].

Acknowledgment

Coordinated project COBAMI: Mission-based
Hierarchical Control. Education and Sci-
ence Department, Spanish Government. CI-
CYT: MICINN: DPI2011-28507-C02-01/02 and
the "Real time distributed control systems” of the
Support Program for Research and Development
(PAID-06-12) Research Vice-Chancellor of the
Polytechnic University of Valencia (SP20120834)

References

[1] Albertos, P., Crespo, A., Simd, J. (2006)
“Control kernel”, A key concept in embedded
control systems, In 4th IFAC Symposium on
Mechatronic Systems.

[2] ASUS, Xtion PRO. Live. URL [http : //http :
//www.asus.co.jp/ Xtion.PRO_LIVE/].

[3] Borenstein, Greg. Making Things See: 3D vi-
sion with Kinect, Processing, Arduino, and
MakerBot. 7 O’Reilly Media, Inc.”, 2012.
MLA

[4] Bradski, Gary; Kaehler, Adrian. Learning
OpenCV: Computer vision with the OpenCV
library. ” O’Reilly Media, Inc.”, 2008.

[5] Creative, creative senz3d. URL [http
//support.creative.com/welcome.aspx].

[6] Erich Gamma,Richard Helm, Ralph Johnson,
Jhon vlissides (2006) “Patrones de Disefio”,
pp 151-168.

[7] Falahati, Soroush. OpenNI Cookbook. Packt
Publishing Ltd, 2013.

[8] Hintjens, Pieter. ZeroMQ: Messaging for
Many Applications. O’Reilly Media, Inc.,
2013.

[9] Jose-Luis Jimenez-Garcia, Jose-Luis Poza-
Lujan, Juan-Luis Posadas-Yagiie, David
Baselga-Masia, José-Enrique Simo-Ten
(2014) “Distribution of Information from a
Smart Sensor”, Performance and Results of
the Triple Buffering Built-In in a Raspberry
PI to Optimize the Distribution of Infor-
mation from a Smart Sensor, Distributed
Computing and Artificial Intelligence, 11th
International Conference, pp 279-286

[10] Judith bishop, (2007) “C# 3.0 Design Pat-
terns”, Design Patterns to Solve Real-World
Problems, pp 49-61.

[11] Munera Sanchez, Eduardo and Muioz Al-
cobendas, Manuel and Posadas Yagiie, Juan
L and Poza-Lujan, Jose-Luis and Blanes
Noguera, J Francisco (2014) “Navigation on
a Control Kernel”, Integration of Mobile
Robot Navigation on a Control Kernel Mid-
dleware Based System, Distributed Comput-
ing and Artificial Intelligence, 11th Interna-
tional Conference, pp 477-484

[12] Peterson , Larry L.; Davie, Bruce S. Com-
puter networks: a systems approach. Else-
vier, 2007.

[13] Upton, Eben; Halfacree, Gareth. Raspberry
Pi user guide. John Wiley and Sons, 2013

[14] Webb, Jarrett; Ashley, James. Beginning
Kinect Programming with the Microsoft
Kinect SDK. Apress, 2012.

Actas de las XXXV Jornadas de Automatica, 3-5 de septiembre de 2014, Valencia

ISBN-13: 978-84-697-0589-6

