
Actas de las XXXV Jornadas de Automática, 3-5 de septiembre de 2014, Valencia
ISBN-13: 978-84-697-0589-6 © 2014 Comité Español de Automática de la IFAC (CEA-IFAC)

CONFIGURATION MODEL FOR CONTROL KERNEL
MIDDLEWARE BASED APPLICATIONS

Jose L. Beltrán, Lorena Calabuig, Eduardo Munera, José Simó, Jose-Luis Poza-Lujan
Institute of Control Systems and Industrial Computing

Polytechnic City of Innovation
Polytechnic University of Valencia, Spain

{jobelal2; locamo}@inf.upv.es, {emunera; jsimo; jopolu}@ai2.upv.es

Abstract

In this paper the configuration model for Control
Kernel Middleware is presented. The configura-
tion capabilities of the system have been defined
in order to provide a clean interface for managing
system elements. The development of a user in-
terface that implements the model provides a more
reliable and efficient way to perform configuration
tasks. A communication system based on DCPS
is used as base to achieve reliable communications
through the distributed system. The communica-
tion structures for message exchange will be intro-
duced. Finally some experiments for the valida-
tion of the tool will be presented.

Keywords: control kernel, configuration tool,
communication system, distributed control sys-
tem, embedded system.

1 INTRODUCTION

Distributed control systems are more and more
used in complex architectures. It is common to
find this systems in flight controllers, robots, au-
tonomous vehicles, etc. where sensors, actuators
and control devices are scattered. Typically, these
systems do not usually provide friendly configura-
tion interfaces so for the user it is difficult to make
any modifications. Furthermore, it is usual that
configuration files have considerable sizes so user
is forced to know the structure in order to manage
it. In this regard, human errors are common. A
software tool which integrates configuration capa-
bilities of the system provides transparency to the
user, reduce errors and optimize system use.

The configuration model obtained for Control
Kernel Middleware (CKM) [1][5][14] is presented
in this work. The development of an user in-
terface that implements the mentioned model al-
lows to generate configuration files automatically.
The submission of the setting are provided by
a communication system based on DCPS which
spread the information required using topics.

This paper is organized as follows: in section 2 a
revision of the existing configuration tools in em-
bedded systems is done. Section 3 presents the

configuration model obtained for the Control Ker-
nel Middleware. Section 4 will deal with the re-
sulting configuration files. In section 5 is presented
the graphic interface implemented from model.
The communication system designed for broad-
cast information by topics is presented in section
6. Section 7 shows the obtained results in order
to validate the tool. And finally in sections 8 and
9 the conclusions obtained and the future lines of
work is shown.

2 RELATED WORK

The Control Kernel was presented as a solution to
process control where the objective is to achieve
transparency in the design and applications deve-
lopment of real-time control. Subsequently, their
implementation as middleware [4][9] has provided
a set of services and interfaces used for basic ma-
nagement of the components of a control system:
sensors, actuators and controllers. This middle-
ware has two implementations, the full version
called Full Middleware (FCKM) [9] and the re-
duced version called Tiny Middleware (TCKM) [9]
used in systems with limited resources.

The CKM has a multitude of configuration op-
tions in a similar way as in others middleware. To
ease the design process to the user, these middle-
ware have graphical interfaces to configure it. An
example is Choregraphe [12], a program developed
by Adelbaran Robotics for NAO robots. Chore-
graphe allows users to define robot behaviors with-
out any knowledge of programming. A predefined
behaviour can be easily configured through the use
of a block diagram edition environment.

More extended and specific configuration tools can
be found as [11] or rxDeveloper [8] which offers
modification of nodes interactively. Furthermore,
tools like POLCOMS [18] interface allows the vi-
sualization and real-time parameterization of the
system data. This interface implements CORBA
[10] for communication between client and server.

Some communication middleware that implement
the publication/subscription model offer graphi-
cal interfaces [7] for variable modification. Taking
as an example the above tools, a user interface



Actas de las XXXV Jornadas de Automática, 3-5 de septiembre de 2014, Valencia
ISBN-13: 978-84-697-0589-6 © 2014 Comité Español de Automática de la IFAC (CEA-IFAC)

has been designed to help the programmer in the
CKM configuration task.

3 CONFIGURATION MODEL

Control Kernel Middleware has a set of services
[9] responsible for managing the basic components
of a control system: sensors, actuators and con-
trollers. Each component has different configura-
tion capabilities. It has been defined a configura-
tion model based in xsd files [19] [2] which specify
all the needed parameters for starting the middle-
ware offered services and load the desired appli-
cation. This model contains precise information
about the definition of the required parameters to
perform a service request and its configuration. In
Fig. 1 can be observed a global representacion of
the model.

Figure 1: Configuration model of CKM

The system can be comprised of one or more
nodes. In the distributed system, each node can
have a combination of the components shown in
the previous figure. All middleware components
have been modeled. Below there is a brief descrip-
tion of each of them: nodes, sensors, actuators,
controller, channels and communication mecha-
nisms.

• The node is a logical component which has no
associated specific functionality. Represents
a physical element that contains the other
components such as sensors, actuators, con-
trollers, channels and topics.

• Sensors and actuators are logical components
that connect the input and output channels
of a node respectively. Both components de-
fine a predefined set of functions for the signal
processing. The control engineer can use the
defined functions or specify your own.

• The controller is a purely logical component.
It is characterized by not having any asso-
ciated hardware channel.

• The topcis are used for the dissemination of
information between components. A topic is
classified as internal or external. An inter-
nal topic is used within the scope of a node.
Communications between different nodes are
provided by external topics. This classifica-
tion is only done conceptually. Internally, the
middleware does not differentiate between the
two types.

• Channels are considered as logical represen-
tations of a physical input/output element.

Hierarchical model allow to extract partial con-
figuration from distinct modules and/or compo-
nents. The model definition based on xsd files
provides mechanisms to validate the configuration
files. In Fig. 2 is presented the representation of
a node by using XSD code.

Figure 2: Representation of a node by using XSD
code.

Once the model is specified in XSD code any appli-
cation or user can validate the configuration files
from the defined model.

4 CONFIGURATION FILES

In Control Kernel Middleware, the configuration
is obtained through the use of xml files, who are
generated from the model. In the same way as
the model, xml files can describe the configuration
both totally or partially. Every xml contains valid
configurations in any case that is able to be va-
lidated itself against the model through standard
xml/xsd validation mechanisms [6].

Once the configuration is disseminated through
the communications system, the middleware is
able to load this xml configuration files. Aflter
loading and validating these files are performed



Actas de las XXXV Jornadas de Automática, 3-5 de septiembre de 2014, Valencia
ISBN-13: 978-84-697-0589-6 © 2014 Comité Español de Automática de la IFAC (CEA-IFAC)

the needed middleware calls for setting described
configurations.

Although configuration files can be edited in ma-
nual mode using a text editor, and following the
described criteria in the mode, in most occasions,
this edition mode is very unfriendly and can easily
lead to errors. For that reason it has been deve-
loped an user interface which allows the user to
generate and modify configurations in a practical
way, without the need of a deep known about the
model.

5 DEVELOPMENT INTERFACE

In order to ease as much as possible the applica-
tion design process, a user interface has been im-
plemented. The interface allows the user to design
the control application avoiding required real time
(RT) programming, communications, etc. In Fig.
3 can be observed a capture of the configuration
and edition application.

Figure 3: Configuration editor interface

Once the design is fulfilled, application generates
xml files that will be used by the CKM to load
the application. The settings are sent by using
the communication system described in section 6.
The application validates xml files generated from
the defined model. In this sense, it has managed
to design applications without the need to have
knowledge about the structure of the model. The
generated files can be edited from the same appli-
cation or manually through a simple editor.

In addition, interface also allows to connect with
the middleware at run time for handling the con-
figuration dynamically, so in those cases that the
user perform configuration changes during the
execution, these changes can be stored within the
rest of configuration files for future executions.

6 COMMUNICATION SYSTEM

Distributed system functioning is based on the
possibility of the communication between different
components. Communication system covers as-
pects of diverse complexity, whether it is connec-
tion and message addressing or message format to
spread the content of that messages.

The user interface is responsible for sending the
configurations to the rest of the distributed sys-
tem. For this it is necessary to have a commu-
nication system that ensures reliable delivery of
messages. It has been implemented a communi-
cation system based on Data Distribution Service
(DDS) [3] model for this purpose.

DDS model defined in [16] is a specification for dis-
tributed systems that simplifies complex network
programming and implements a publish/subscribe
model for sending and receiving data, events and
commands among the nodes. The DDS specifica-
tion is divided into two layers:

• Data-Centric Publish-Subscribe (DCPS): The
lower level that is targeted towards the ef-
ficient delivery of the proper information to
the proper recipients.

• Data-Local Reconstruction Layer (DLRL): An
optional higher level which is responsible for
adapt the local applications data.

As in this article is pretended to illustrate the dis-
semination of necessary information for the con-
figuration tool, it is only described DCPS commu-
nication model of DDS.

6.1 DCPS COMMUNICATION MODEL

DCPS model, explained in [3][13], is a com-
munication model that provide the functional-
ity required by an application based in pub-
lish/subscribe paradigm for data distribution us-
ing topics.

In this context, publisher are responsible for wri-
ting in a topic and subscriber reads that topic. As
much publisher as subscriber are in charge of the
communication between control system and com-
munication system and are separated. This sep-
aration allows to organize and manage communi-
cations efficiently; this is the concept of a middle-
ware.

6.2 BROADCAST CONFIGURATION

The communication system implemented handles
connexions to spread messages to the network



Actas de las XXXV Jornadas de Automática, 3-5 de septiembre de 2014, Valencia
ISBN-13: 978-84-697-0589-6 © 2014 Comité Español de Automática de la IFAC (CEA-IFAC)

peers, so that a bidirectional connection between
the different pairs of nodes is established.

All peers know the another peers connected so we
are talking about a fully connected mesh topology.
In this context, each peer publish its identity by a
diffusion channel. In order to establish a pairing
pattern of connections, each peer can only connect
to another peer which GUID is greater.

The best way to communicate and synchronize
peers in distributed systems is by message passing
[15]. To enable the system to distinguish the type
of message received, the following types are imple-
mented:

• Plain, containing any kind of information.

• TopicData, containing the topic to manage
data inside the DCPS service.

• TopicLink, containing a list of a topics to
subscribe or unsubscribe.

• SyncTime, that is used to synchronize clocks
of a different peers.

• ProxyWrapper, wrapping a message in an-
other message in order to send to more than
one port.

The user interface within the system is considered
as a peer more. The configurations are broadcast
through messages of type TopicData.

6.3 MESSAGE FORMAT

The communication system uses different types of
message as mentioned in 6.2. Every message have
a header and a payload, but also have a prologue
(Fig. 4), that the system uses it to distinguish the
different messages received. Prologue contains the
type of a message (Type).

Other fields are also included in the prologue: flag,
used to discard messages that are not successfully
received; size, indicates the size of the message
header and payload; and source IP and port, indi-
cates the peer IP and port that sends the message.
Figure 4 shows all the fields previously explained.

TopicData message have a specific header and
payload as it is shown in Figure 4. In the message
header, time stamp is measured in microseconds,
topic name size is the size of the topic name. The
payload buffer contains the data to be transmit-
ted, in this case, the data to set the tool is in xml
format.

Figure 4: Message format for TopicData

7 EXPERIMENTAL RESULTS

Several experiments have been developed in order
to validate the correct operation of the user inter-
face. The goal is to verify that the configuration
files are correct and the model was properly de-
fined. For this purpose, a KertrolBot [17] robot
is used. This robot is equipped with two infrared
sensors and has Wi-Fi communications.

The scenario could be defined as shown in Fig. 5.
It is a distributed system consisting of two nodes
implementing a version of CKM. Node 1 is a per-
sonal computer with the FCKM version. In this
node, the user interface is executed. Communi-
cation between nodes is done via the TCP pro-
tocol. Node 2 implements versions TCKM where
the configurations are received and applied.

Figure 5: Experimental platform system overview

In each experiment, the robot moves through a
room with obstacles which have been placed ran-
domly. The idea is to observe how the robot acts
on the environment based on the configurations
applied in each moment. Developed experiments
are described below:

• Experiment 1: The robot starts moving with



Actas de las XXXV Jornadas de Automática, 3-5 de septiembre de 2014, Valencia
ISBN-13: 978-84-697-0589-6 © 2014 Comité Español de Automática de la IFAC (CEA-IFAC)

Figure 6: Configuration management tool showing the design of the experiments

disabled sensors. This behavior causes the
robot collides with obstacles. Once in mo-
tion, the left sensor is enabled. The goal is to
verify that the robot manages to avoid obsta-
cles detected on the left side.

• Experiment 2: It is a continuation of the ex-
periment 1. The robot starts moving with
the configured behavior in the previous ex-
periment. The objetive is to verify that the
robot is able to avoid obstacles on both sides.

• Experiment 3: Like the previous case, the
robot starts its motion from the last set con-
figuration. In this case the goal is to disable
both sensors and check that the robot is not
able to detect obstacles in its environment.

In all experiments it has been proved as the con-
figurations influence the control system. On the
other hand, it also verifies that the configurations
are applied at runtime. In Fig. 6 can be observed
the designed application for the experiments.

8 CONCLUSIONS

The configuration model of the Control Kernel
Middleware has been defined. All the basic com-
ponents of a control system have been included.
From this model it is possible to generate full con-
figuration files with all the capabilities of the mid-
dleware configuration currently supported. A hie-
rarchical structure allows to extract partial con-
figuration from distinct modules and/or compo-
nents.

Using XSD schema as descriptive method provides
a mechanism for users and software tools to vali-
date the configuration files. The design of a new

user interface facilities the system design and helps
to specify and manage configurations through the
use of xml files, as a result, workflow is speed up
considerably. Using this interface a dual objective
is met. First, it has managed to avoid the control
engineer necessarily have extensive knowledge of
the defined model. Second, it has been possible to
obtain a tool able to generate configuration files
which meet the specification of the model.

On the other hand, the use of a communication
system based in DCPS has facilitated the disse-
mination of information among the different nodes
of the distributed system. The implementation of
the system based on the publish/subscribe model
has proven to be an efficient form of communi-
cation. The structures of these communications
have been presented.

Finally, experiments on a physical environment
have allowed verifying proper operation of the user
interface as well as the validation of the defined
model. Moreover, these experiments have allowed
to verify that the new settings are applied dynami-
cally.

9 FUTURE WORK

From the conclusions obtained after the develop-
ment of the user interface, the ability to develop
new work where the system is able to monitor the
status of each node is proposed. The objective
would be to parameterize the information trans-
mitted in the DCPS topics. This solution allows
to check the correct system performance, assess
its condition and to detect anomalous situations.
Likewise, a correct detection may involve the man-
agement of secure routines to avoid undesirable



Actas de las XXXV Jornadas de Automática, 3-5 de septiembre de 2014, Valencia
ISBN-13: 978-84-697-0589-6 © 2014 Comité Español de Automática de la IFAC (CEA-IFAC)

situations in the controlled system. This is espe-
cially important in critical systems. Similarly, a
monitoring system allows an alarm management
using QoS. If a critical variable does not meet
quality of service, the tool could start executing
safe routines.

In addition, the monitoring system can be used
as debugging tool because it would be possible to
observe the communication between components.
In this sense, the control engineer can check in
real time if your design is meeting the expected
functionality.

Moreover, it also proposes to include namespaces
within the communications system for the pur-
pose of making a more efficient management.
The aim is to make modifications to a group of
components rather than modify them individually
as at present. The guidelines to create groups of
components would be based on its performance,
features, etc. On the other hand, the control
engineer would be able to monitor the status of
these groups of components.

Acknowledgment

This work has been supported by the Spanish
Science and Innovation Ministry MICINN under
the CICYT project COBAMI: DPI2011-28507-
C02- 01/02 and the “Real time distributed con-
trol systems” of the Support Program for Re-
search and Development (PAID-06-12) Research
Vice-Chancellor of the Polytechnic University of
Valencia (SP20120834). The responsibility for the
content remains with the authors.

References

[1] Albertos, P., Crespo, A. & Simó, J., (2006) A
key concept in embedded control systems. 4th
IFAC Symposium on Mechatronic Systems.

[2] Biron, P., Malhotra, A., & World Wide
Web Consortium. (2004). XML schema part
2: Datatypes. World Wide Web Consor-
tium Recommendation REC-xmlschema-2-
20041028.

[3] CORBA, O., & Specification, I. I. O. P.
(1999). Object Management Group.

[4] Coronel, J.O., Blanes, F., Simó, J. & Nicolau,
V., (2008) Middleware de kernel de control
para el desarrollo de aplicaciones en sistemas
empotrados de tiempo real. XXIX Jornadas
de Automática.

[5] Crespo. A., Albertos, P., Balbestre, P.,
Vallés, M., Lluesma, M. & Simó, J., (2006)

Schedulability issues in complex embedded
control systems. IEEE International Confer-
ence on Control Applications.

[6] Fialli, J., & Vajjhala, S. (2003). The Java
architecture for XML binding (JAXB). JSR,
JCP, January.

[7] Karsai, G., Neema, S., & Sharp, D. Model-
driven architecture for embedded software: A
synopsis and an example. Science of Com-
puter Programming, 73(1), 26-38. 2008.

[8] Millers, F., Holz, D. & Behnke, S. rxDe-
veloper: Gui-aided software development in
ROS.

[9] Muñoz, M., Munera, E., Blanes, F., Simó,
J. & Benet, G., (2013) Event driven middle-
ware for distributed system control. XXXIV
Jornadas de Automática.

[10] Object Management Group (OMG), (1995)
The Common Object Request Broker
(CORBA): Architecture and Specification.
Technical report, Object Management
Group.

[11] Palopoli, L., Lipari, G., Abeni, L., Di Na-
tale, M., Ancilotti, P., & Conticelli, F., (2001)
A tool for simulation and fast prototyping
of embedded control systems. In ACM SIG-
PLAN Notices (Vol. 36, No. 8, pp. 73-81).
ACM.

[12] Pot, E., Monceaux, J., Gelin, R., & Maison-
nier, B., (2009). Choregraphe: a graphi-
cal tool for humanoid robot programming.
In Robot and Human Interactive Commu-
nication, 2009. RO-MAN 2009. The 18th
IEEE International Symposium on (pp. 46-
51). IEEE.

[13] Luján, J. L. P., Ten, J. E. S., & Yague, J. L.
P. El modelo de comunicaciones DCPS. ISO
690. 2009

[14] Simarro, R., Coronel, J.O., Simó, J. &
Blanes, J.F., (2008) Hierarchical and dis-
tributed embedded control kernel. In 17th
IFAC World Congress.

[15] “Sistemas Distribuidos. Conceptos y Diseño”,
3a edición. Pearson Educación, 2001, ISBN:
8478290494

[16] Twin Oaks Computing, Inc (2011) Commu-
nications Middleware and DDS.

[17] Vicente Nicolau and Manuel Muñoz and Jose
Simó. KertrolBot Platform. SiDiReLi: Dis-
tributed System with Limited Resources. In-
stitute of Control Systems and Industrial



Actas de las XXXV Jornadas de Automática, 3-5 de septiembre de 2014, Valencia
ISBN-13: 978-84-697-0589-6 © 2014 Comité Español de Automática de la IFAC (CEA-IFAC)

Computing - Polytechnic University of Valen-
cia. Technical report, 2011.

[18] Wain, R. & Ashworth, M, (2005). A Java
GUI and Distributed CORBA Client-Server
Interface for a Coastal Ocean Model. Council
for the Central Laboratory of the Research
Councils.

[19] Thompson, H. S., Beech, D., Maloney, M.,
& Mendelsohn, N. (2004). XML schema
part 1: structures second edition. 2004-
10. http://www. w3. org/TR/2004/REC-
xmlschema-1-20041028.


