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Abstract: This article describes in detail the steps for the integration of embedded systems with limited resources 

within multi-agent systems. Platforms and procedures are described and the development of three 

applications that bring the benefits offered by these systems is accomplished. The developed applications 

demonstrate the ability of the multi-agent systems to solve problems that require a high degree of 

coordination and cooperation between agents also adding automatic trading strategies and deliver results 

including optimal resolution of missions. These experiments results also show the flexibility, scalability, 

robustness and efficiency in environments with very different characteristics and easily applicable to real 

environments such as industry, collaboration between mobile robots or animal behaviour. The robotic 

agents of the applications submitted in this paper, socialize among them, have intelligence and ability to 

perform work individually and collectively. 

1 INTRODUCTION 

The exposition and development of multi-agent 

systems integration in different research areas 

related to robotics or autonomous heterogeneous 

systems is a widespread issue in the area of mobile 

robots research. The area of artificial intelligence 

has made its way through different areas and has 

found very useful, particularly in the field of 

robotics. As it is well known, the main topic of AI is 

the concept of intelligent agent defined as an 

autonomous entity which observes through sensors 

and acts upon an environment using actuators 

(Russell, Norvig, 2009). This definition is very close 

to the services that a robot can provide, so the 

concept of agent often is related with robots, (Bruce, 

Cardelli, Pierce, 1997), (Van Leeuwen, 1995), 

(Michalewicz, 1996). The ability to use different 

types of collaborative robots and unify the diversity 

of architectures and communication protocols that 

implements each one, offers the advantage of being 

able to take advantage each specific functionalities 

of robots. Thus, the multi-agent system is proposed 

as a performance control layer and processing 

communications system located above and 

abstracted from different programming languages of 

different hardware platforms. Besides it offers 

independence and adaptability to unforeseen own 

these systems. 

Nowadays, more types of small robots are 

increasingly coming to the market, which offer more 

limited resources than professional robots but are 

oriented as educational robotics and facilitate their 

acquisition economically. 

There are many different multi-agent platforms, 

but they all need, by definition, a minimum level of 

computation and above, of connectivity; since one of 

the most important characteristics of these systems is 

the ability to communicate between agents to report 

on something, negotiate, ask, etc. 

In this paper, the used robots provide slow 

communication protocol as Bluetooth 2.0 with a 

transfer rate of 100ms. In case the physical hardware 

could be integrated directly into the multi-agent 

system, these can slow down transfer times and 

make the system unstable when trying, for example, 

a negotiation between agents.  

This paper describes the integration of multi-

agent systems in embedded systems which alone are 



 

not able to run the multi-agent platform because they 

have limited computing capacity and slow 

communication protocols used as little as possible to 

ensure their integration into the platform. 

2 MULTI-AGENT SYSTEMS 

A multi-agent system (MAS) is a set of autonomous 

agents able to work together to solve a problem (Ana 

Mas, 2005). These systems must meet certain 

conditions (Feber, 1999), MAS consists of an 

environment, a set of objects, a set of agents, a set of 

relationships that link objects and agents, a set of 

operations and the definition of operators that 

represent the employment of operations on the 

environment and its reaction when it is disturbed. 

The functional unit of MAS is the agent. A large 

number of proposals for the definition of agent can 

be found in the literature but none has been fully 

accepted by the scientific community. One of the 

simplest was stated in (Russell, 1995), which 

considers an agent as a physical or abstract entity 

that perceives and acts on an environment. An agent 

must be able to evaluate such perceptions and 

decisions by simple or complex reasoning 

mechanisms, as well as act on the environment in 

which it operates. MAS can be compared to a group 

of people with different domains of knowledge, 

trying to solve a common problem. 

Three important concepts are crucial to the 

integration of a set of agents of different types to 

form a MAS: communication, cooperation and 

coordination. 

When a group of individual agents is part of 

MAS, the need for a mechanism to coordinate the 

group of agents and a language to allow 

communication between them, arises. There are two 

main mechanisms of coordination: cases in which 

agents have common goals and, therefore, cooperate, 

and cases in which the agents are competitive and 

have conflicting goals with others, where trading 

mechanisms are required (Michael N. Huhns, Anuj 

K. Malhotra, 1999), (Munindar P. Singh, Michael N. 

Huhns, 1999) . Among the most used negotiation 

mechanisms in the literature are the coalition 

formation, market mechanisms, bargaining theory, 

voting, auctions and tasks allocation between agents. 

More specifically, there are three main approaches 

to automated negotiation (Fatima S., Wooldridge 

M., Jennings N. R., 2001), (Rahwan I., Sonenberg 

L., Dignum F., 2004): techniques based on game 

theory, techniques based on heuristics and 

techniques based on argument. 

Communication plays a very important role since 

the negotiations depend directly on its effectiveness. 

There are different agent communication languages 

(Austin, 1962), (Searle, John, 1969) like FIPA Agent 

Communication Language (FIPA-ACL) or 

Knowledge Query and Manipulation Language 

(KQML). 

In the development of new methodologies for the 

design of multi-agent systems, researchers have 

focused their efforts on extending the existing ones, 

mainly on the areas of object-oriented 

methodologies and on engineering knowledge, 

(Iglesias, Garijo, Gonzalez, 1999). A MAS is 

inherently multithreaded since each agent has at 

least one thread of control, (Wooldridge, 2002). 

These characteristics make MAS appropriate for 

development operations in complex, dynamic and 

unpredictable, systems or environments. 

The chosen development environment for 

programming multi-agent systems that are presented 

in this paper is Java Agent Development Framework 

(or JADE). 

2.1 JADE – Java Agent Development 
Framework 

JADE (http://jade.tilab.com) is a free software 

platform for agent development, under development 

since 2001 and fully implemented in Java. JADE 

supports the coordination of multiple agents 

according to FIPA specifications and provides a 

standard implementation of agent communication 

language FIPA-ACL. It was originally developed by 

Telecom Italia and is distributed as free software, 

being fully compatible with Java Development Kit 

(JDK) 1.4 or higher. It includes the functionality for 

agent basic creation, the programming of agents’ 

behaviour, the implementation of FIPA-ACL 

specification for sending and receiving messages, 

classes useful for programming FIPA protocols, 

information management using ontologies, etc… 

Also, the platform provides FIPA (AMS, Facilitator 

and MTS directory) that enables the execution of 

one or more instances of the Java Virtual Machine 

(JVM). Each JVM is seen as an environment, where 

agents run concurrently and exchange messages, 

organizing containers. 



 

 

Figure 1: Example of JADE platform schema. 

The functions that each of the agents should 

perform is within their behaviours. They represent a 

task that an agent can perform, and it is implemented 

as an object that extends the jade.core.behaviours 

class. Each agent has a stack of active behaviours, 

which in real time can be modified by an agent or by 

other behaviour. In addition, an agent can execute 

several behaviours concurrently; however, the 

planning of agent behaviours isn’t preventive, but 

cooperative. This means that the developer is who 

decides when an agent changes the execution of 

behaviour to another. 

Another feature offered by JADE is the directory 

service or yellow pages service. It allows agents to 

publish one or more services that they provide, so 

other agents can search for a particular service. The 

directory service in JADE (according to FIPA 

specification) is provided by an agent called DF 

(Directory Facilitator). Each platform has a FIPA 

DF agent by default, but more can be activated to 

provide a yellow page catalogue, distributed 

throughout the network. Although it is possible to 

interact with the DF agent by exchanging ACL 

messages like any other agent, JADE simplifies 

these interactions using the jade.domain.DFService 

class, through which it is possible to publish, edit 

and search for different services. Thus, agents must 

provide a template description of the services they 

offer to the DF agent, and keep that information 

updated at all times. Other agents may require a 

service provided by another agent, and the DF agent 

facilitate them the name of the agent (or agents) that 

offer that service. 

One of the most important features that JADE 

agents possess is the ability to communicate. The 

adopted communication paradigm is the 

asynchronous message exchange. Each agent has a 

small stack of input messages, where the JADE 

runtime stores the messages sent by other agents. 

Also, each time a message is added to the queue, the 

receiving agent is notified. However, the instant at 

which the agent collects the message from the queue 

and processes it, depends only on the programmer.  

An agent can get a message of its own message 

queue using the receive() method. This method 

returns the first message in the queue (and removes 

it) or returns null if the message queue is empty. 

Similarly, it has a blocking function 

(blockingReceive()) for receiving messages, which 

stops the behaviour until a message with the 

necessary characteristics is received. 

JADE also incorporates the concept of ontology 

that simplifies the communication semantics. 

Ontology is based on two levels of content language: 

Lightweight Extensible Authentication Protocol 

(LEAP), unreadable by humans because it’s byte-

encoded, and String-encoded Language (SL), 

readable by humans because encodes the 

expressions like strings. 

3 METHODOLOGICAL 

APPROACH 

This section describes the integration of JADE in 

robotic systems with limited resources, the used 

platforms for experimental validation to problems 

based on missions and robot cooperation, the mobile 

robot kinematic control of these robots which 

includes the integration of data fusion filter locally 

within different platforms to avoid typical problems 

as imperfections in the location or positioning, and 

finally the general scheme of the control architecture 

developed. 

3.1 Integration of JADE in Robotic 
Systems 

A JADE agent can run on any system with JVM 

installed and JDK 1.4 or higher; however the 

integration of agents in embedded systems with 

limited resources is not trivial. Few embedded 

systems incorporate the ability to run JVM or JDK. 

Therefore, the idea developed to incorporate these 

robots to MAS lies in using agent-robot 

communication to make transparent the concept 

relation between a physical robot and a software 

agent, and thus obtain a Multi-agent Robot System 

(MARS). 

MARS represent a complex distributed system, 

consisting of a large number of agents-robots 

cooperating to solve a common task. Each MARS 



 

agent is an independent system which manages 

subsystems like tasks execution, perception of 

environment by sensors, trajectory control, robots 

communications, etc. Each agent of MARS 

represents a real physical mobile robot that 

communicates directly with its software agent that 

represents it in MARS. For a good synchronization 

in this relation, the communication time plays an 

important role; however, some embedded systems 

offers transfer rates about a hundred milliseconds 

roundtrip. This precludes, for example, the idea that 

the kinematic control is calculated on an external 

computer because communication delays may make 

the system unstable and unpredictable. For this 

reason, in this work each robot usually has its own 

local kinematic control. 

3.2 Hardware Platform Description 

Below the main hardware platforms used for 

validation experiments are detailed. 

3.2.1 LEGO Mindstorms NXT 

LEGO Mindstorms NXT was introduced by on the 

International Consumer Electronics Show in 2006 

and nowadays is often used by the research 

community to prove theories and carry out practical 

developments. The control unit of NXT is an ARM7 

microcontroller with 256 Kbytes FLASH, it has 

64Kbytes of RAM, it allows communications by 

Bluetooth v2.0 and has a wide variety of sensors 

such as the ultrasonic sensors, gyroscopes, 

accelerometers or light sensors, which can be easily 

connected to the brick. Furthermore, the motors 

incorporate encoders with 360 degrees of resolution. 

There are several available firmwares to program the 

robot, but in this work, the firmware chosen is 

LeJOS (http://lejos.sourceforge.net) because it offers 

trigonometry and complex math functions, 

multithreading support and object-oriented 

programming in JAVA.  

 

 

Figure 2: LEGO Mindstorms NXT in differential drive 

configuration. 

A more detailed description of this system can be 

found in (http://mindstorms.lego.com). Figure 2 

shows an example of a robot that can be mounted 

with LEGO NXT. 

3.2.2 E-puck 

Another robot often used by the research community 

for the validation experiments is the e-puck (see 

Figure 3). The e-puck is a mobile robot of 

differential wheels drive developed by Dr. Francesco 

Mondada and Michael Bonani in 2006 in the EPFL, 

(Federal Swiss Institute of Technology in Lausanne) 

(http://www.e-puck.org/) and it is an open hardware 

and software robot. It consists of two motorized 

wheels with the capacity to turn in opposed 

directions to change the robot’s direction. In 

addition it has several sensors, of which the infrared 

sensors are very useful to measure the distance to 

near objects. Also the activation signals of the step 

motors are available and can be used instead of 

encoders (physically not available in the e-puck). 

The brain of e-puck is a dsPIC processor which 

works like a micro-controller. It is where the control 

routine of the robot is programmed and where its 

firmware is stored. It’s distributed by the Microchip 

Company and it allows an efficient signals 

processing. 

 

 

Figure 3: e-puck mobile robot. 

3.3 Mobile robots kinematic control 

All the robots used in this work were built using a 

differential drive configuration. It consists of a rigid 

body with two non-deformable non-orientable 

(fixed) wheels separated a distance b and moved by 

two motors that generate the left vL and right vR 

linear velocities as shown in Figure 4. The wheels 

are conventional and they satisfy the pure rolling 

without slipping condition (Gampion, Bastin, 

Dandrea-Novel, 1996). Also, the movement of the 

robot is restricted to a horizontal plane. The robot 

pose is defined by its position P0=(x,y)  with the 



 

heading angle θ in the Global reference frame (XG, 

YG) in Figure 4. The kinematic relationship between 

the linear and angular velocities (v y ω) in the Local 

frame (XL, YL) and the linear velocities in the wheels 

is shown in (1). 
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With v y ω, the global velocities are defined in 

(2). 
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(2) 

By discretizing and recursively integrating (2) 

with sample time Ts, the robot global pose is 

obtained in (3). 
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Figure 4: Kinematics differentially driven wheeled robot. 

                   

Using the wheels encoders to obtain (vL, vR) as 

inputs of (1) and then (v, ω) in (3) the robot pose can 

be obtained. This is used for the e-puck, but for the 

LEGO NXT, the sensor fusion can be used to obtain 

the pose with improved accuracy. 

The sensor fusion provides an efficient 

computational tool to estimate the state of a process, 

in a way that minimizes the mean squared state 

estimation error. In this work, the sensor fusion is 

based-on Kalman Filter (KF) algorithms (Welch, 

Bishop, 2007). The theory, algorithms and design 

principles of the KF is well known and is widely 

described in many books and articles such as (Bozic, 

1994), (Grewal, Andrews, 2001). There are several 

variations of the filter tailored to different 

applications, but is the linear KF the one used to 

perform the fusion  

The KF is used to improve the estimation of the 

state xk=[v, ω]
T
 by using the encoders and, in 

LEGO’s cases, a gyroscope as measurements. But 

first, an experimental model is identified using 

several step inputs in the control action u (motor 

voltage) while recording vL y vR. Using these 

samples in the Matlab® “System Identification 

Toolbox” the experimental model in (4) is obtained. 
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Using (4) in (1) as the model for the KF 

(discretizing with Ts=50ms) and (5) as the 

measurement equation zk, the sensor fusion is 

performed. With this, xk is substituted in (3) to 

improve the final pose estimation.  
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Another important aspect of kinematic control of 

mobile robots is the path following algorithm used. 

For this work the navigation algorithm chosen is a 

pure pursuit controller. In this, a predefined 

trajectory is stored in the robot memory as a set of 

global points, independent from time, and based in 

the geometric description of the desired path (for 

example a square, a circle, etc.). The robot will 

follow one point after another starting from the 

closest one to its current position. Assuming a 

desired constant linear velocity of the robot V, the 

wheels reference velocities are defined in (6). 
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The constant γ is obtained form (7). 
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To obtain γ, the robot pose is used along with the 

nearest point to the trajectory adding the look ahead 
distance L to obtain (xob,yob). This distance keeps the 
robot from reaching the objective point, making the 
robot follow the desired path continuously.  

The fusion KF performance using the pure 
pursuit algorithm is shown in Figure 5. In this, the 
robot is set to follow a path while recording the real 
trajectory using a zenithal camera. From this figure, 
it is clear that the pose estimated using only the 
encoders differ from the real one. But when the 



 

robot uses the sensor fusion with the KF, the 
estimated pose is more accurate as it is closer to the 
one measured with the camera. 

 

 
Figure 5: Pose estimation improvement using the KF 

sensor fusion in LEGO NXT, path followed using pure 

pursuit. 
 

Below is the scheme of the control architecture 
that’s used for practical experiments developed. 

3.4 Control Architecture for the Practical 
Experiments 

Different architectures to coordinate the movement 

of several robots can be developed using wireless 

communication. Figure 6 shows the basic scheme of 

the control architecture implemented.  

Robots are connected to their software agents 

(computers) via Bluetooth and those computers are 

part of a network that forms the overall MAS 

through JADE. In the scheme a camera is often used 

to monitoring the experiments or, in some cases, 

providing some global information to the system. 

 

 
Figure 6: Architecture for the practical experiments. 

4 PRACTICAL EXPERIMENTS 

This section presents three applications developed 

with different robots based on a distributed 

architecture using MAS. 

4.1 Hierarchical Adaptive Control 

This experiment aims to recreate the behaviour of 
birds when they move in flocks. There are 6 e-pucks 
randomly moving around the stage. At some point, a 
hierarchy that determines for each robot who must 
pursue is established, thus changing its destination to 
trying to reach the leader robot. The robots are 
grouping together and avoiding potential collisions 
that may occur while adjusting its speed to keep the 
group. If a robot isn’t assigned any leader, it 
continues to move without a fixed destination. This 
is the case of the robots which are on top of the 
hierarchy scheme. To implement this application, an 
overhead camera captures the scene and positions 
the robots through triangle-shaped decoys of 
different colors, placed above them. All e-pucks are 
connected via Bluetooth to their respective software 
representatives in a computer network that forms the 
MAS following the scheme described in Section 3.4.  

In this application, the camera is acting as an 
agent within the MAS, and through communication 
between agents, each robot is able to know the 
positions of the rest and even correct its pose. 
Locally, every e-puck has three main modules in 
their behaviours. One is responsible for 
communication with the software agent representing 
it in the MAS, another handles the collision 
avoidance reactively if it detects an obstacle near 
(Braitenberg, 1991), and another performs the 
control to try to reach the target position that is has 
been assigned. When, at some point, the hierarchy of 
the formation that robots must follow is established, 
the agent initiates a cyclical behaviour where each 
cycle time locates all the robots on stage and sends, 
to each robot agent, the target position that has to be 
reached according to the leader robot that has 
assigned. Thus, the robots are grouped according to 
a hierarchy that can be changed anytime as desired, 
they adjust its speed and they avoid collisions 
between them, creating the feeling of being part of a 
group of birds that move in formation flight. Figure 
7 shows an example of the execution of the 
application. A video can see at 
http://wks.gii.upv.es/cobami/webfm_send/10.  
 

 



 

 
Figure 7: example of the execution of the application in 

three phases: initial phase where each robot moves 

randomly, the second phase which provides the relevant 

the hierarchy and the third when robots are grouped. 

4.2 Mission-Based Control 

This application is developed from a group of LEGO 
Mindstorms robots which offer different features to 
perform missions that require efficient organization 
and cooperation of robots. From a general point of 
view, the application includes features to explore, 
manipulate, and finally collect items of interest. 
Extrapolation of these roles may enable the 
development of applications such as the 

management of a crop in the field, waste collection, 
detection and demining on land, etc.  

Three models of robots are involved in the 
implementation, each characterized by its ability to 
act and sense the environment. First the robot scout, 
provided with sensors that detect the items of 
interest. Second the robot manipulator, who 
simulates the interaction with the item of interest. 
Finally, the robot collector, equipped with a linear 
actuator which has been added, a magnet that allows 
collecting the items of interest, which have metallic 
material to facilitate their collection. 

 

 
Figure 8: Architecture developed for the application. 
 
For this application three levels of hierarchy or, 

more specifically, three holarchies have been 
defined. One formed by three scout robots, another 
by three manipulator robots and another by a single 
collector robot. Each robot is connected to a 
computer as shown in Figure 8. The scheme is very 
similar to that described in section 3.4. 

The application procedure can be divided into 
two levels. In a first-level, scout agents robots run 
through the stage in search of the elements of 
interest. Each time that an item of interest is 
detected, they obtain the position of it in the shared 
coordinate plane by all robots and communicate with 
some manipulator agent robot who will act on the 
element. Here begins the first performance 
optimization strategy. With several manipulators, the 
explorer who found the object, communicates with 
the rest to obtain their positions and status (they may 
be available, busy acting on some object or simply 
unavailable) and according to the information 
received, decides to whom it assigns that item. This 
automated trading has been implemented using 
mainly heuristic based strategies combined with the 
occupancy estimated time when the manipulators are 
acting. The optimization strategy is defined by 
minimizing the time required for each candidate to 
reach from its position to the position of the element 
of interest. To carry out such reasoning the scout 
agent estimates the best candidate in terms of the 
factors that make the equation (8), 
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where V is the average speed at which the candidate 
robot moves, xc, yc are its coordinates, xe, ye are the 
coordinates of the element of interest, T0 is the 
average time it takes to perform the candidate, Busy 
is a boolean which defines the status of the candidate 
(if busy one, zero if not), Te corresponds with the 
time that has already taken on the item that is acting 
now, Tm is the average time it takes to reach and act 
on an object and Ne is the number of objects that the 
candidate has already assigned to manipulate. This 
reasoning is fully dynamic and cannot be 
deterministic from the viewpoint of candidates, 
because the allocation performed by scout agents 
can be reorganized by the manipulators agents 
through compensation algorithms workload or 
because of some unforeseen situation that requires 
that an agent has to delegate its assignments to other 
manipulator. 

At the second level, the manipulators should 
contact the collector agent and provide the 
coordinates of the elements of interest that it has to 
collect. The dynamism of the system is reflected in 
the collection order of the objects, which also 
responds to a strategy based on heuristics, where the 
priority of collection depends directly on the 
distance between the element of interest and 
collecting agent. 

 

 
Figure 9: Picture of the beginning of actual application. 

 
Figure 9 shows a picture of actual scenario and a 

video of the application is available at 
http://wks.gii.upv.es/sidireli/webfm_send/227. 

 
 
 
 

4.3 Emulation of an Industrial 
Environment 

A recreation of an industrial environment through 

embedded systems with limited resources has been 

developed in order to demonstrate the usefulness of 

MAS in such environments.  

On stage, a conveyor belt runs until a piece 

which carries, comes at the end of the conveyor and 

activates a sensor. At that time the conveyor belt 

stops and a robotic arm picks up the piece for 

depositing it on a point called store. Between the 

store and the beginning of the same conveyor belt, a 

forklift transports the pieces from one point to 

another, respectively, such that the pieces are located 

again on the conveyor belt and the cycle repeats. 

There are three pieces moving on stage but the store 

only has the capacity to stock one of them, so when 

a piece is waiting in store to be picked up, until the 

forklift does not take it, the robotic arm cannot leave 

another. Also between the store and the conveyor 

belt there is a semaphore. If the light is green, when 

the forklift arrives at the traffic light can continue, 

but if the light is red, it must stop. 

In this case, the forklift mobile robot, the 

conveyor belt, the semaphore and the robotic arm, 

are the agents of this application. The specific 

scheme for this application is shown in Figure 10. 

The conveyor and the presence sensor are 

controlled by a LEGO Mindstorms brick that is 

connected via Bluetooth to a computer running 

software agent representative. Similarly the robotic 

forklift built with LEGO pieces, and the semaphore, 

which is just one more NXT brick, join the MAS. 

The robotic arm is controlled via serial commands to 

computer where the corresponding software agent 

executes. 

 
Figure 10: Architecture developed for the industrial 

environment application. 

 

 



 

Unlike the sequential programming typically 

used in industrial environments, the operation in this 

application is completely distributed. Each agent 

executes its own behaviours that define the actions 

that can be performed at any time. MAS can solve, 

by communication between agents, some critical 

actions that require collaboration and cooperation 

among agents. 

One important fact is that only if there is a piece 

on the conveyor belt waiting to be picked up, the 

robot arm must go to pick it up. The arm agent 

executes a cyclical behaviour which at all times is 

waiting for a message to report on this. Whenever 

the sensor of the conveyor detects a piece, the 

conveyor agent informs the arm agent that it has a 

prepared piece and, only then, it can go and pick it 

up. 

Another critical point for the arm is that, before 

placing the piece in the store, it must first ensure that 

the forklift is not near to avoid colliding with it. It 

also needs to know if, when it is going to leave the 

piece, there is still a piece in the store waiting to be 

picked up by the forklift. This is solved by 

communication between arm and forklift agents. 

Before arm leaves the piece in the store, the arm 

agent must ask permission to forklift agent to 

perform the action. The forklift agent may deny 

permission because it has not gone to pick up the 

last piece yet, or because it is within the zone of 

danger of collision with the arm. In any case, when 

the store can only hold one piece and the forklift is 

out of danger, the arm can perform the action of 

leaving the piece in the store without any danger. 

An additional critical point is the semaphore. The 

semaphore obliges the forklift agent to ask 

permission to cross every time they meet. The 

response of the semaphore can be changed in real 

time pressing the buttons of the brick. This makes 

the whole system could be locked at this point. (The 

conveyor belt waiting for the arm to pick up a piece, 

arm awaiting confirmation from the forklift to leave 

a piece in the store and the forklift blocked because 

the semaphore isn’t allowed to continue). Recovery 

of normal system operation when the light turns 

green is implicit in the application deployment. 

This application succeeds in demonstrating the 

flexibility, efficiency and robustness of MAS in this 

type of environment, from its recreation through 

platforms with limited resources. Figure 11 shows a 

picture of actual scenario and a demonstration video 

can be viewed 

http://wks.gii.upv.es/cobami/webfm_send/8. 

 

 

 
Figure 11: Picture of actual industrial environment 

application. 

5 CONCLUSIONS 

The area of research in robotics moves increasingly 

toward the development of cooperative robots 

groups. This implies that new ways to solve 

problems should be proposed; the old approaches of 

individual agents do not work for this. Access to a 

group of high-end commercial robots to experiment 

with them is sometimes complicated because the 

economic costs. Nowadays, educational robots offer 

very similar characteristics to the high-end robots, 

but with severely limited resources. This article has 

described in detail the steps for the integration of 

embedded systems with limited resources within 

multi-agent systems. Platforms and procedures have 

been described and the development of three 

applications that bring the benefits offered by these 

systems has been accomplished. The developed 

applications demonstrate the ability of the MAS to 

solve problems that require a high degree of 

coordination and cooperation between agents also 

adding automatic trading strategies and deliver 

results including optimal resolution of missions. 

These experiments results also show the flexibility, 

robustness and efficiency in environments with very 

different characteristics and easily applicable to real 

environments such as industry, collaboration 

between mobile robots or animal behaviour. The 

robotic agents of the applications submitted, 

socialize among them, have intelligence and ability 

to perform work individually and collectively. 

There is no doubt that over time there will be 

new ways to understand how agents should behave 

in a group or a holarchy, and new strategies for 

reconciliation of theories of MAS. 
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