
Multi-Agent Systems Integration in Embedded Systems with Limited

Resources to Perform Tasks of Coordination and Cooperation

Ángel Soriano, Leonardo Marín, Ángel Valera, Marina Vallés
Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n,

46022, Valencia (Spain)

ansovi@ai2.upv.es, leomarpa@upv.es, {giuprog, mvalles}@ai2.upv.es

Keywords: Multi-agent systems, embedded systems, robot cooperation, distributed architecture, systems with limited

resources, mobile robot, robot control, intelligent systems.

Abstract: This article describes in detail the steps for the integration of embedded systems with limited resources

within multi-agent systems. Platforms and procedures are described and the development of three

applications that bring the benefits offered by these systems is accomplished. The developed applications

demonstrate the ability of the multi-agent systems to solve problems that require a high degree of

coordination and cooperation between agents also adding automatic trading strategies and deliver results

including optimal resolution of missions. These experiments results also show the flexibility, scalability,

robustness and efficiency in environments with very different characteristics and easily applicable to real

environments such as industry, collaboration between mobile robots or animal behaviour. The robotic

agents of the applications submitted in this paper, socialize among them, have intelligence and ability to

perform work individually and collectively.

1 INTRODUCTION

The exposition and development of multi-agent

systems integration in different research areas

related to robotics or autonomous heterogeneous

systems is a widespread issue in the area of mobile

robots research. The area of artificial intelligence

has made its way through different areas and has

found very useful, particularly in the field of

robotics. As it is well known, the main topic of AI is

the concept of intelligent agent defined as an

autonomous entity which observes through sensors

and acts upon an environment using actuators

(Russell, Norvig, 2009). This definition is very close

to the services that a robot can provide, so the

concept of agent often is related with robots, (Bruce,

Cardelli, Pierce, 1997), (Van Leeuwen, 1995),

(Michalewicz, 1996). The ability to use different

types of collaborative robots and unify the diversity

of architectures and communication protocols that

implements each one, offers the advantage of being

able to take advantage each specific functionalities

of robots. Thus, the multi-agent system is proposed

as a performance control layer and processing

communications system located above and

abstracted from different programming languages of

different hardware platforms. Besides it offers

independence and adaptability to unforeseen own

these systems.

Nowadays, more types of small robots are

increasingly coming to the market, which offer more

limited resources than professional robots but are

oriented as educational robotics and facilitate their

acquisition economically.

There are many different multi-agent platforms,

but they all need, by definition, a minimum level of

computation and above, of connectivity; since one of

the most important characteristics of these systems is

the ability to communicate between agents to report

on something, negotiate, ask, etc.

In this paper, the used robots provide slow

communication protocol as Bluetooth 2.0 with a

transfer rate of 100ms. In case the physical hardware

could be integrated directly into the multi-agent

system, these can slow down transfer times and

make the system unstable when trying, for example,

a negotiation between agents.

This paper describes the integration of multi-

agent systems in embedded systems which alone are

not able to run the multi-agent platform because they

have limited computing capacity and slow

communication protocols used as little as possible to

ensure their integration into the platform.

2 MULTI-AGENT SYSTEMS

A multi-agent system (MAS) is a set of autonomous

agents able to work together to solve a problem (Ana

Mas, 2005). These systems must meet certain

conditions (Feber, 1999), MAS consists of an

environment, a set of objects, a set of agents, a set of

relationships that link objects and agents, a set of

operations and the definition of operators that

represent the employment of operations on the

environment and its reaction when it is disturbed.

The functional unit of MAS is the agent. A large

number of proposals for the definition of agent can

be found in the literature but none has been fully

accepted by the scientific community. One of the

simplest was stated in (Russell, 1995), which

considers an agent as a physical or abstract entity

that perceives and acts on an environment. An agent

must be able to evaluate such perceptions and

decisions by simple or complex reasoning

mechanisms, as well as act on the environment in

which it operates. MAS can be compared to a group

of people with different domains of knowledge,

trying to solve a common problem.

Three important concepts are crucial to the

integration of a set of agents of different types to

form a MAS: communication, cooperation and

coordination.

When a group of individual agents is part of

MAS, the need for a mechanism to coordinate the

group of agents and a language to allow

communication between them, arises. There are two

main mechanisms of coordination: cases in which

agents have common goals and, therefore, cooperate,

and cases in which the agents are competitive and

have conflicting goals with others, where trading

mechanisms are required (Michael N. Huhns, Anuj

K. Malhotra, 1999), (Munindar P. Singh, Michael N.

Huhns, 1999) . Among the most used negotiation

mechanisms in the literature are the coalition

formation, market mechanisms, bargaining theory,

voting, auctions and tasks allocation between agents.

More specifically, there are three main approaches

to automated negotiation (Fatima S., Wooldridge

M., Jennings N. R., 2001), (Rahwan I., Sonenberg

L., Dignum F., 2004): techniques based on game

theory, techniques based on heuristics and

techniques based on argument.

Communication plays a very important role since

the negotiations depend directly on its effectiveness.

There are different agent communication languages

(Austin, 1962), (Searle, John, 1969) like FIPA Agent

Communication Language (FIPA-ACL) or

Knowledge Query and Manipulation Language

(KQML).

In the development of new methodologies for the

design of multi-agent systems, researchers have

focused their efforts on extending the existing ones,

mainly on the areas of object-oriented

methodologies and on engineering knowledge,

(Iglesias, Garijo, Gonzalez, 1999). A MAS is

inherently multithreaded since each agent has at

least one thread of control, (Wooldridge, 2002).

These characteristics make MAS appropriate for

development operations in complex, dynamic and

unpredictable, systems or environments.

The chosen development environment for

programming multi-agent systems that are presented

in this paper is Java Agent Development Framework

(or JADE).

2.1 JADE – Java Agent Development
Framework

JADE (http://jade.tilab.com) is a free software

platform for agent development, under development

since 2001 and fully implemented in Java. JADE

supports the coordination of multiple agents

according to FIPA specifications and provides a

standard implementation of agent communication

language FIPA-ACL. It was originally developed by

Telecom Italia and is distributed as free software,

being fully compatible with Java Development Kit

(JDK) 1.4 or higher. It includes the functionality for

agent basic creation, the programming of agents’

behaviour, the implementation of FIPA-ACL

specification for sending and receiving messages,

classes useful for programming FIPA protocols,

information management using ontologies, etc…

Also, the platform provides FIPA (AMS, Facilitator

and MTS directory) that enables the execution of

one or more instances of the Java Virtual Machine

(JVM). Each JVM is seen as an environment, where

agents run concurrently and exchange messages,

organizing containers.

Figure 1: Example of JADE platform schema.

The functions that each of the agents should

perform is within their behaviours. They represent a

task that an agent can perform, and it is implemented

as an object that extends the jade.core.behaviours

class. Each agent has a stack of active behaviours,

which in real time can be modified by an agent or by

other behaviour. In addition, an agent can execute

several behaviours concurrently; however, the

planning of agent behaviours isn’t preventive, but

cooperative. This means that the developer is who

decides when an agent changes the execution of

behaviour to another.

Another feature offered by JADE is the directory

service or yellow pages service. It allows agents to

publish one or more services that they provide, so

other agents can search for a particular service. The

directory service in JADE (according to FIPA

specification) is provided by an agent called DF

(Directory Facilitator). Each platform has a FIPA

DF agent by default, but more can be activated to

provide a yellow page catalogue, distributed

throughout the network. Although it is possible to

interact with the DF agent by exchanging ACL

messages like any other agent, JADE simplifies

these interactions using the jade.domain.DFService

class, through which it is possible to publish, edit

and search for different services. Thus, agents must

provide a template description of the services they

offer to the DF agent, and keep that information

updated at all times. Other agents may require a

service provided by another agent, and the DF agent

facilitate them the name of the agent (or agents) that

offer that service.

One of the most important features that JADE

agents possess is the ability to communicate. The

adopted communication paradigm is the

asynchronous message exchange. Each agent has a

small stack of input messages, where the JADE

runtime stores the messages sent by other agents.

Also, each time a message is added to the queue, the

receiving agent is notified. However, the instant at

which the agent collects the message from the queue

and processes it, depends only on the programmer.

An agent can get a message of its own message

queue using the receive() method. This method

returns the first message in the queue (and removes

it) or returns null if the message queue is empty.

Similarly, it has a blocking function

(blockingReceive()) for receiving messages, which

stops the behaviour until a message with the

necessary characteristics is received.

JADE also incorporates the concept of ontology

that simplifies the communication semantics.

Ontology is based on two levels of content language:

Lightweight Extensible Authentication Protocol

(LEAP), unreadable by humans because it’s byte-

encoded, and String-encoded Language (SL),

readable by humans because encodes the

expressions like strings.

3 METHODOLOGICAL

APPROACH

This section describes the integration of JADE in

robotic systems with limited resources, the used

platforms for experimental validation to problems

based on missions and robot cooperation, the mobile

robot kinematic control of these robots which

includes the integration of data fusion filter locally

within different platforms to avoid typical problems

as imperfections in the location or positioning, and

finally the general scheme of the control architecture

developed.

3.1 Integration of JADE in Robotic
Systems

A JADE agent can run on any system with JVM

installed and JDK 1.4 or higher; however the

integration of agents in embedded systems with

limited resources is not trivial. Few embedded

systems incorporate the ability to run JVM or JDK.

Therefore, the idea developed to incorporate these

robots to MAS lies in using agent-robot

communication to make transparent the concept

relation between a physical robot and a software

agent, and thus obtain a Multi-agent Robot System

(MARS).

MARS represent a complex distributed system,

consisting of a large number of agents-robots

cooperating to solve a common task. Each MARS

agent is an independent system which manages

subsystems like tasks execution, perception of

environment by sensors, trajectory control, robots

communications, etc. Each agent of MARS

represents a real physical mobile robot that

communicates directly with its software agent that

represents it in MARS. For a good synchronization

in this relation, the communication time plays an

important role; however, some embedded systems

offers transfer rates about a hundred milliseconds

roundtrip. This precludes, for example, the idea that

the kinematic control is calculated on an external

computer because communication delays may make

the system unstable and unpredictable. For this

reason, in this work each robot usually has its own

local kinematic control.

3.2 Hardware Platform Description

Below the main hardware platforms used for

validation experiments are detailed.

3.2.1 LEGO Mindstorms NXT

LEGO Mindstorms NXT was introduced by on the

International Consumer Electronics Show in 2006

and nowadays is often used by the research

community to prove theories and carry out practical

developments. The control unit of NXT is an ARM7

microcontroller with 256 Kbytes FLASH, it has

64Kbytes of RAM, it allows communications by

Bluetooth v2.0 and has a wide variety of sensors

such as the ultrasonic sensors, gyroscopes,

accelerometers or light sensors, which can be easily

connected to the brick. Furthermore, the motors

incorporate encoders with 360 degrees of resolution.

There are several available firmwares to program the

robot, but in this work, the firmware chosen is

LeJOS (http://lejos.sourceforge.net) because it offers

trigonometry and complex math functions,

multithreading support and object-oriented

programming in JAVA.

Figure 2: LEGO Mindstorms NXT in differential drive

configuration.

A more detailed description of this system can be

found in (http://mindstorms.lego.com). Figure 2

shows an example of a robot that can be mounted

with LEGO NXT.

3.2.2 E-puck

Another robot often used by the research community

for the validation experiments is the e-puck (see

Figure 3). The e-puck is a mobile robot of

differential wheels drive developed by Dr. Francesco

Mondada and Michael Bonani in 2006 in the EPFL,

(Federal Swiss Institute of Technology in Lausanne)

(http://www.e-puck.org/) and it is an open hardware

and software robot. It consists of two motorized

wheels with the capacity to turn in opposed

directions to change the robot’s direction. In

addition it has several sensors, of which the infrared

sensors are very useful to measure the distance to

near objects. Also the activation signals of the step

motors are available and can be used instead of

encoders (physically not available in the e-puck).

The brain of e-puck is a dsPIC processor which

works like a micro-controller. It is where the control

routine of the robot is programmed and where its

firmware is stored. It’s distributed by the Microchip

Company and it allows an efficient signals

processing.

Figure 3: e-puck mobile robot.

3.3 Mobile robots kinematic control

All the robots used in this work were built using a

differential drive configuration. It consists of a rigid

body with two non-deformable non-orientable

(fixed) wheels separated a distance b and moved by

two motors that generate the left vL and right vR

linear velocities as shown in Figure 4. The wheels

are conventional and they satisfy the pure rolling

without slipping condition (Gampion, Bastin,

Dandrea-Novel, 1996). Also, the movement of the

robot is restricted to a horizontal plane. The robot

pose is defined by its position P0=(x,y) with the

heading angle θ in the Global reference frame (XG,

YG) in Figure 4. The kinematic relationship between

the linear and angular velocities (v y ω) in the Local

frame (XL, YL) and the linear velocities in the wheels

is shown in (1).

 =
1/ 2 1/ 2

1/ 1/
L

R

vv

b b v
    
         

 (1)

With v y ω, the global velocities are defined in

(2).

cos 0

sin 0

0 1

x
v

y







   
           

  

(2)

By discretizing and recursively integrating (2)

with sample time Ts, the robot global pose is

obtained in (3).

 
 

1 1 11

1 1 1 1

1 1

cos 0.5

sin 0.5
k s k s kk k

k k k s k s k

k k s k

v T Tx x

y y v T T

T

 

 

  

  

   

 

    
      
    

      

(3)

Figure 4: Kinematics differentially driven wheeled robot.

Using the wheels encoders to obtain (vL, vR) as

inputs of (1) and then (v, ω) in (3) the robot pose can

be obtained. This is used for the e-puck, but for the

LEGO NXT, the sensor fusion can be used to obtain

the pose with improved accuracy.

The sensor fusion provides an efficient

computational tool to estimate the state of a process,

in a way that minimizes the mean squared state

estimation error. In this work, the sensor fusion is

based-on Kalman Filter (KF) algorithms (Welch,

Bishop, 2007). The theory, algorithms and design

principles of the KF is well known and is widely

described in many books and articles such as (Bozic,

1994), (Grewal, Andrews, 2001). There are several

variations of the filter tailored to different

applications, but is the linear KF the one used to

perform the fusion

The KF is used to improve the estimation of the

state xk=[v, ω]
T
 by using the encoders and, in

LEGO’s cases, a gyroscope as measurements. But

first, an experimental model is identified using

several step inputs in the control action u (motor

voltage) while recording vL y vR. Using these

samples in the Matlab® “System Identification

Toolbox” the experimental model in (4) is obtained.

,

0.1276

0.1235 1
L Rv u

s



 (4)

Using (4) in (1) as the model for the KF

(discretizing with Ts=50ms) and (5) as the

measurement equation zk, the sensor fusion is

performed. With this, xk is substituted in (3) to

improve the final pose estimation.

1 0

0 11
0 1

, k kz Cx c
 
 
 
 
 

  (5)

Another important aspect of kinematic control of

mobile robots is the path following algorithm used.

For this work the navigation algorithm chosen is a

pure pursuit controller. In this, a predefined

trajectory is stored in the robot memory as a set of

global points, independent from time, and based in

the geometric description of the desired path (for

example a square, a circle, etc.). The robot will

follow one point after another starting from the

closest one to its current position. Assuming a

desired constant linear velocity of the robot V, the

wheels reference velocities are defined in (6).

· 1 · 1
2 2

R L

b b
v V v V 

   
      

   
(6)

The constant γ is obtained form (7).

    

    2 2

2 cos sinob r ob r

ob r ob r

x x y y

x x y y

 


   


  

(7)

To obtain γ, the robot pose is used along with the

nearest point to the trajectory adding the look ahead
distance L to obtain (xob,yob). This distance keeps the
robot from reaching the objective point, making the
robot follow the desired path continuously.

The fusion KF performance using the pure
pursuit algorithm is shown in Figure 5. In this, the
robot is set to follow a path while recording the real
trajectory using a zenithal camera. From this figure,
it is clear that the pose estimated using only the
encoders differ from the real one. But when the

robot uses the sensor fusion with the KF, the
estimated pose is more accurate as it is closer to the
one measured with the camera.

Figure 5: Pose estimation improvement using the KF

sensor fusion in LEGO NXT, path followed using pure

pursuit.

Below is the scheme of the control architecture
that’s used for practical experiments developed.

3.4 Control Architecture for the Practical
Experiments

Different architectures to coordinate the movement

of several robots can be developed using wireless

communication. Figure 6 shows the basic scheme of

the control architecture implemented.

Robots are connected to their software agents

(computers) via Bluetooth and those computers are

part of a network that forms the overall MAS

through JADE. In the scheme a camera is often used

to monitoring the experiments or, in some cases,

providing some global information to the system.

Figure 6: Architecture for the practical experiments.

4 PRACTICAL EXPERIMENTS

This section presents three applications developed

with different robots based on a distributed

architecture using MAS.

4.1 Hierarchical Adaptive Control

This experiment aims to recreate the behaviour of
birds when they move in flocks. There are 6 e-pucks
randomly moving around the stage. At some point, a
hierarchy that determines for each robot who must
pursue is established, thus changing its destination to
trying to reach the leader robot. The robots are
grouping together and avoiding potential collisions
that may occur while adjusting its speed to keep the
group. If a robot isn’t assigned any leader, it
continues to move without a fixed destination. This
is the case of the robots which are on top of the
hierarchy scheme. To implement this application, an
overhead camera captures the scene and positions
the robots through triangle-shaped decoys of
different colors, placed above them. All e-pucks are
connected via Bluetooth to their respective software
representatives in a computer network that forms the
MAS following the scheme described in Section 3.4.

In this application, the camera is acting as an
agent within the MAS, and through communication
between agents, each robot is able to know the
positions of the rest and even correct its pose.
Locally, every e-puck has three main modules in
their behaviours. One is responsible for
communication with the software agent representing
it in the MAS, another handles the collision
avoidance reactively if it detects an obstacle near
(Braitenberg, 1991), and another performs the
control to try to reach the target position that is has
been assigned. When, at some point, the hierarchy of
the formation that robots must follow is established,
the agent initiates a cyclical behaviour where each
cycle time locates all the robots on stage and sends,
to each robot agent, the target position that has to be
reached according to the leader robot that has
assigned. Thus, the robots are grouped according to
a hierarchy that can be changed anytime as desired,
they adjust its speed and they avoid collisions
between them, creating the feeling of being part of a
group of birds that move in formation flight. Figure
7 shows an example of the execution of the
application. A video can see at
http://wks.gii.upv.es/cobami/webfm_send/10.

Figure 7: example of the execution of the application in

three phases: initial phase where each robot moves

randomly, the second phase which provides the relevant

the hierarchy and the third when robots are grouped.

4.2 Mission-Based Control

This application is developed from a group of LEGO
Mindstorms robots which offer different features to
perform missions that require efficient organization
and cooperation of robots. From a general point of
view, the application includes features to explore,
manipulate, and finally collect items of interest.
Extrapolation of these roles may enable the
development of applications such as the

management of a crop in the field, waste collection,
detection and demining on land, etc.

Three models of robots are involved in the
implementation, each characterized by its ability to
act and sense the environment. First the robot scout,
provided with sensors that detect the items of
interest. Second the robot manipulator, who
simulates the interaction with the item of interest.
Finally, the robot collector, equipped with a linear
actuator which has been added, a magnet that allows
collecting the items of interest, which have metallic
material to facilitate their collection.

Figure 8: Architecture developed for the application.

For this application three levels of hierarchy or,

more specifically, three holarchies have been
defined. One formed by three scout robots, another
by three manipulator robots and another by a single
collector robot. Each robot is connected to a
computer as shown in Figure 8. The scheme is very
similar to that described in section 3.4.

The application procedure can be divided into
two levels. In a first-level, scout agents robots run
through the stage in search of the elements of
interest. Each time that an item of interest is
detected, they obtain the position of it in the shared
coordinate plane by all robots and communicate with
some manipulator agent robot who will act on the
element. Here begins the first performance
optimization strategy. With several manipulators, the
explorer who found the object, communicates with
the rest to obtain their positions and status (they may
be available, busy acting on some object or simply
unavailable) and according to the information
received, decides to whom it assigns that item. This
automated trading has been implemented using
mainly heuristic based strategies combined with the
occupancy estimated time when the manipulators are
acting. The optimization strategy is defined by
minimizing the time required for each candidate to
reach from its position to the position of the element
of interest. To carry out such reasoning the scout
agent estimates the best candidate in terms of the
factors that make the equation (8),

      
2 2

0 0c e c e e m et V x x y y T Busy T T T N        (8)

where V is the average speed at which the candidate
robot moves, xc, yc are its coordinates, xe, ye are the
coordinates of the element of interest, T0 is the
average time it takes to perform the candidate, Busy
is a boolean which defines the status of the candidate
(if busy one, zero if not), Te corresponds with the
time that has already taken on the item that is acting
now, Tm is the average time it takes to reach and act
on an object and Ne is the number of objects that the
candidate has already assigned to manipulate. This
reasoning is fully dynamic and cannot be
deterministic from the viewpoint of candidates,
because the allocation performed by scout agents
can be reorganized by the manipulators agents
through compensation algorithms workload or
because of some unforeseen situation that requires
that an agent has to delegate its assignments to other
manipulator.

At the second level, the manipulators should
contact the collector agent and provide the
coordinates of the elements of interest that it has to
collect. The dynamism of the system is reflected in
the collection order of the objects, which also
responds to a strategy based on heuristics, where the
priority of collection depends directly on the
distance between the element of interest and
collecting agent.

Figure 9: Picture of the beginning of actual application.

Figure 9 shows a picture of actual scenario and a

video of the application is available at
http://wks.gii.upv.es/sidireli/webfm_send/227.

4.3 Emulation of an Industrial
Environment

A recreation of an industrial environment through

embedded systems with limited resources has been

developed in order to demonstrate the usefulness of

MAS in such environments.

On stage, a conveyor belt runs until a piece

which carries, comes at the end of the conveyor and

activates a sensor. At that time the conveyor belt

stops and a robotic arm picks up the piece for

depositing it on a point called store. Between the

store and the beginning of the same conveyor belt, a

forklift transports the pieces from one point to

another, respectively, such that the pieces are located

again on the conveyor belt and the cycle repeats.

There are three pieces moving on stage but the store

only has the capacity to stock one of them, so when

a piece is waiting in store to be picked up, until the

forklift does not take it, the robotic arm cannot leave

another. Also between the store and the conveyor

belt there is a semaphore. If the light is green, when

the forklift arrives at the traffic light can continue,

but if the light is red, it must stop.

In this case, the forklift mobile robot, the

conveyor belt, the semaphore and the robotic arm,

are the agents of this application. The specific

scheme for this application is shown in Figure 10.

The conveyor and the presence sensor are

controlled by a LEGO Mindstorms brick that is

connected via Bluetooth to a computer running

software agent representative. Similarly the robotic

forklift built with LEGO pieces, and the semaphore,

which is just one more NXT brick, join the MAS.

The robotic arm is controlled via serial commands to

computer where the corresponding software agent

executes.

Figure 10: Architecture developed for the industrial

environment application.

Unlike the sequential programming typically

used in industrial environments, the operation in this

application is completely distributed. Each agent

executes its own behaviours that define the actions

that can be performed at any time. MAS can solve,

by communication between agents, some critical

actions that require collaboration and cooperation

among agents.

One important fact is that only if there is a piece

on the conveyor belt waiting to be picked up, the

robot arm must go to pick it up. The arm agent

executes a cyclical behaviour which at all times is

waiting for a message to report on this. Whenever

the sensor of the conveyor detects a piece, the

conveyor agent informs the arm agent that it has a

prepared piece and, only then, it can go and pick it

up.

Another critical point for the arm is that, before

placing the piece in the store, it must first ensure that

the forklift is not near to avoid colliding with it. It

also needs to know if, when it is going to leave the

piece, there is still a piece in the store waiting to be

picked up by the forklift. This is solved by

communication between arm and forklift agents.

Before arm leaves the piece in the store, the arm

agent must ask permission to forklift agent to

perform the action. The forklift agent may deny

permission because it has not gone to pick up the

last piece yet, or because it is within the zone of

danger of collision with the arm. In any case, when

the store can only hold one piece and the forklift is

out of danger, the arm can perform the action of

leaving the piece in the store without any danger.

An additional critical point is the semaphore. The

semaphore obliges the forklift agent to ask

permission to cross every time they meet. The

response of the semaphore can be changed in real

time pressing the buttons of the brick. This makes

the whole system could be locked at this point. (The

conveyor belt waiting for the arm to pick up a piece,

arm awaiting confirmation from the forklift to leave

a piece in the store and the forklift blocked because

the semaphore isn’t allowed to continue). Recovery

of normal system operation when the light turns

green is implicit in the application deployment.

This application succeeds in demonstrating the

flexibility, efficiency and robustness of MAS in this

type of environment, from its recreation through

platforms with limited resources. Figure 11 shows a

picture of actual scenario and a demonstration video

can be viewed

http://wks.gii.upv.es/cobami/webfm_send/8.

Figure 11: Picture of actual industrial environment

application.

5 CONCLUSIONS

The area of research in robotics moves increasingly

toward the development of cooperative robots

groups. This implies that new ways to solve

problems should be proposed; the old approaches of

individual agents do not work for this. Access to a

group of high-end commercial robots to experiment

with them is sometimes complicated because the

economic costs. Nowadays, educational robots offer

very similar characteristics to the high-end robots,

but with severely limited resources. This article has

described in detail the steps for the integration of

embedded systems with limited resources within

multi-agent systems. Platforms and procedures have

been described and the development of three

applications that bring the benefits offered by these

systems has been accomplished. The developed

applications demonstrate the ability of the MAS to

solve problems that require a high degree of

coordination and cooperation between agents also

adding automatic trading strategies and deliver

results including optimal resolution of missions.

These experiments results also show the flexibility,

robustness and efficiency in environments with very

different characteristics and easily applicable to real

environments such as industry, collaboration

between mobile robots or animal behaviour. The

robotic agents of the applications submitted,

socialize among them, have intelligence and ability

to perform work individually and collectively.

There is no doubt that over time there will be

new ways to understand how agents should behave

in a group or a holarchy, and new strategies for

reconciliation of theories of MAS.

ACKNOWLEDGEMENTS

This work has been partially funded by the

Ministerio de Ciencia e Innovación (Spain) under

research projects DPI2011-28507-C02-01 and

DPI2010-20814-C02-02.

REFERENCES

Austin, J. L., 1962. How to Do ThingsWith Words. Oxford

University Press: Oxford, England.

Braitenberg V, 1991. Véhicules: expériences en

psychologie synthétique, 171, Presses Polytechniques

Romandes, Lausanne, Switzerland.

Bruce, K.B., Cardelli, L., Pierce, B.C., 1997. Comparing

Object Encodings. Theoretical Aspects of Computer

Software. Lecture Notes in Computer Science, volume

1281. Springer-Verlag, Berlin Heidelberg New York.

Bozic S., 1994. Digital and Kalman filtering: an

introduction to discrete-time filtering and optimum

linear estimation. Halsted Press.

Campion G., Bastin G., Dandrea-Novel B., 1996.

Structural properties and classification of kinematic

and dynamic models of wheeled mobile robots.

Robotics and Automation, IEEE Transactions on,

12(1):47–62.

e-puck educational robot web page.

http://www.e-puck.org/

Fatima, S., Wooldridge, M., Jennings, N. R. 2001.

Optimal negotiation strategies for agents with

incomplete information. In Intelligent Agent series

VIII: Proceedings of the 8th International Workshop

on Agent Theories, Architectures, and Languages

(ATAL-2001), volume 2333 of lecture Notes in

Computer Science, pages 53-68. Springer Verlag,

Berlin, Germany.

Feber J., 1999. Multi-Agent Systems. An Introduction to

Distributed Artificial Intelligence. Addison Wesley,

London.

Grewal M.S., Andrews A. P., 2001. Kalman Filtering:

Theory and Practice Using Matlab. John Wiley &

Sons.

Iglesias C., Garijo M, Gonzales J. A. 1999. Survey of

Agent-Oriented Methodologies. 1999.

Java Agent Development Framework. http://jade.tilab.com

LEGO Mindstorms home page.

http://mindstorms.lego.com.

LeJOS: Java for LEGO Mindstorms.

 http://lejos.sourceforge.net.

MAS, A., 2005. Agentes Software y Sistemas Multiagente:

conceptos, arquitectura y aplicaciones. Pearson-

Prentice Hall.

Michael N. Huhns, Anuj K. Malhotra, 1999. Negotiating

for Goods and Services.IEEE Internet Computing, vol.

3, no. 4, pp. 97-99.

Michalewicz, Z., 1996. Genetic Algorithms + Data

Structures = Evolution Programs. Springer-Verlag,

Berlin Heidelberg New York.

Munindar P. Singh, Michael N. Huhns, Multiagent

Systems for Workflow. International Journal of

Intelligent Systems in Accounting, Finance and

Management, Volume 8, John Wiley & Sons, Ltd., pp.

105-117.

Rahwan, I., Sonenberg, L. Dignum, F. 2004. On interest-

based negotiation. Advances in Agent Communication

Workshop held in conjunction with AAMAS-03,

volumen 2922 de Lecture Notes in Artificial

Intelligence, Berlin: Springer-Verlag, pp. 383-197.

Russell, S., 1995. Rationality and Intelligence. Artificial

Intelligence, 94, 57–77.

Russell, S.J., Norvig, P., 2009. Artificial Intelligence: A

modern approach. Prentice Hall Series in Artificial

Intelligence, Upper Saddle River, New Jersey.

Searle, John, 1969. Speech acts: An essay in the

philosophy of language. Cambridge, England:

Cambridge University.

Van Leeuwen, J. (ed.), 1995. Computer Science Today.

Recent Trends and Developments. Lecture Notes in

Computer Science, volume 1000. Springer-Verlag,

Berlin Heidelberg New York.

Welch G., Bishop G., 2007. An Introduction to the

Kalman Filter, University of North Carolina at Chapel

Hill, http://www.cs.unc.edu/~welch/kalman

Wooldridge M., 2002. An Introduction to MultiAgent

Systems. John Wiley & Sons: Chicester, UK.

