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a b s t r a c t

Model-based control improves robot performance provided that the dynamics parameters are estimated
accurately. However, some of the model parameters change with time, e.g. friction parameters and unknown
payload. Particularly, off-line identification approaches omit the payload estimation (due to practical
reasons). Adaptive control copes with some of these structural uncertainties. Thus, this work implements
an adaptive control scheme for a 3-DOF parallel manipulator. The controller relies on a novel relevant-
parameter dynamic model that permits to study the cases in where the uncertainties affect: (1) rigid body
parameters, (2) friction parameters, (3) actuator dynamics, and (4) a combination of the former cases. The
simulations and experiments verify the performance of the proposed controller. The control scheme is
implemented on the modular programming environment Open Robot Control Software (OROCOS). Finally,
an experimental setup evaluates the controller performance when the robot handles a payload.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Researchers began to focus on parallel manipulators because of
the advantages they hold over their serial counterparts: high
stiffness, accuracy, speed, and payload handling. New architectures
of PM have been proposed in academia while some of them has
been implemented to real world applications e.g. medical applica-
tions [1,2]. However, in order to reach potential advantages over
serial manipulator, PMs still require improvement in their design,
modeling and control [3]. A vast literature deals with the kine-
matics and dynamic of a PMs, while the development of control
schemes provides a field for improving a robot's performance [4]
which is particularly in the interest of this paper.

One of the most common control technique applied to PMs is the
family of PID controllers which are mainly designed for trajectory
tracking control (see [5–8] among others). as well as the implementa-
tion of control strategies based on fuzzy logic [8]. Nowadays, the
demand for fast and accurate robots points out the need for the imple-
mentation of model-based control [5]. For instance, computed torque
control (CTC) linearizes and decouples the system dynamics through
feedback loop compensation [4,9–11]. However, CTC computes the

dynamic model in real time, which increases the computational
burden on the control system. On the other hand, Augmented PD
control (APD) improves the tracking control by compensating the
system dynamics which is computed off-line [12]. APD computes the
dynamic model with the desired trajectory values ignoring the
changes in the actual system state variables. CTC and APD require
accurate values of dynamic model parameters, which are found
through experimental parameter identification techniques [13]. Never-
theless, due to the topology of PMs – especially for lower-mobility
PMs (less than 6 DOF) – some of the robot's links moves with poor
excitation which affects the identification of the parameters [14]. In
addition, the payload may be unknown and some of the system
parameters may change (e.g. friction parameters) such that model-
based control loses performance.

Robust control deals with time variant parameters, thus, in [15] a
nonlinear task, space control is applied to 6 DOF PM. However, the
control design is based on practical implementation aspects dis-
cussed in [16]. Another approach for dealing with time-varying
uncertainties is adaptive control. In [17], and adaptive control is
developed, considering a linear feedback controller with a dynamic
feedforward compensator, for a 6 DOF PM. The control approach
identifies the parameters of the dynamic model through a nonlinear
scheme. However, the authors used a simplified model without
considering the identifiability of the dynamics parameters.

In [18,19], an adaptive computed torque control and nonlinear
adaptive control have been developed on a planar PM. The controllers
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are implemented in task space which requires extra sensors (the
control signal and the measurements are normally applied in actuator
space). Thus, task space coordinates were found from the actuated
joint measurement through forward kinematics which increases the
computational burden and could be impractical for a spatial PM.

The adaptive controllers applied thus far lack of the following
consideration: (1) to adapt the model for only a subset of the
parameters of a relevant parameters model and (2) to setup an
experiment where the robot handles a payload while moving.
Motivated by this consideration, this paper develops an adaptive
control scheme for a low-cost 3-DOF spatial PM. The control scheme
updates the model's parameters on line due to the implementation of
a relevant parameter model [20] that can be computed in real time
[21]. The model includes 12 parameters: three rigid bodies, three
actuator dynamics and six frictions parameters (in order to have a
model linear in parameters, the friction in the actuated joints considers
a Coulomb plus viscous friction model). Simulations and experiments
evaluate four study cases of adaptive control, as regard to the subset of
parameters identified online. The first case identifies on-line only the
rigid body parameters. As will be seen in the modeling section, the
rigid body parameters include the platform's mass and therefore this
model compensates for an unknown payload. The second case
explores friction parameters, the third considers actuator dynamics
uncertainties and the fourth case combines the three former cases.

Different adaptive controls and a fixed passivity-based controller
(PDþ) [22] are implemented in the modular programming middle-
ware OROCOS. The tracking trajectory performances of the adaptive
controllers and the PDþ controller were compared through simula-
tions and experiments. Moreover, the experiments section includes a
novel setup where a payload is placed onto the platform while the
robot is executing a task.

This paper is organized as follows: Section 2 shows the PM
design, while Section 3 deals with the model-based control
schemes. Section 4 shows the results from the simulations and
the experiments. Finally, Section 5 summarizes the conclusions.

2. The 3-DOF parallel manipulator

2.1. Physical description of the low-cost PM

As mentioned before, a 3-DOF spatial PM was used to address
the controller design problem. The robot (see Fig. 1) consists of
three kinematic chains, with each chain having a PRS configura-
tion (P, R and S standing for prismatic, revolute and spherical joint,
respectively). The underline format (P) stands for the actuated

joint. The choice of the PRS configuration was guided by the need
to develop a low-cost robotic platform with two DOF of angular
rotation in two axes (rolling and pitching) and one DOF of
translation motion (heave). In [23], a complete description of the
mechatronic development process of the PM is presented.

The physical system consists of three legs connecting the
moving platform to the base. Each leg consists of a direct drive
ball screw (prismatic joints) and a coupler. The lower part of the
coupler is connected with a revolute joint to the ball screw, while
the upper part is connected to the moving platform through a
spherical joint. The lower part of the ball screws are perpendicu-
larly attached to the platform's base and are positioned at the base
in an equilateral triangular configuration. The ball screw trans-
forms the rotational movement of the motor into linear motion.

The motors in each leg are brushless DC servomotors equipped
with power amplifiers. The actuators are Aerotech BMS465 AH
brushless servomotors. Aerotech BA10 power amplifiers operate
the motors. The control system was developed on an industrial PC.

2.2. Kinematic and dynamic model

For modeling purposes, mobile reference systems have been
attached to the robot links using Denavit–Hartenberg's notation; a
detailed explanation is provided in [23]. Fig. 2 shows a kinematic
sketch of the robot. Nine generalized coordinates are used to
model the robot (qi, where i¼1…9). The active coordinates; q1, q6
and q8 are associated with the actuated prismatic joints (P). The
passive coordinates q2, q7 and q9, are associated with the revolute
joints (R), and q3, q4 and q5 correspond to only one of the spherical
joints (S, located at P1 in Fig. 2). The spherical joint has been
modeled by means of three mutually perpendicular rotational
joints.

The forward kinematics is solved using a geometric approach.
From the rigid body link assumption, Fig. 2 shows that the length
between the locations of the spherical joints Pi and Pj is constant
and equal to lm; thus, the constraints equations are as follows:

Ψ 1ðq1; q2; q6; q7Þ ¼ jjð r!A1B1 þ r!B1P1 Þ�ð r!A1A2 þ r!A2B2 þ r!B2P2 Þjj� lm ¼ 0

ð1Þ

Ψ 2ðq1; q2; q8; q9Þ ¼ jjð r!A1B1 þ r!B1P1 Þ�ð r!A1A3 þ r!A3B3 þ r!B3P3 Þjj� lm ¼ 0

ð2Þ

Ψ 3ðq6; q7; q8; q9Þ ¼ jjð r!A1A3 þ r!A3B3 þ r!B3P3 Þ
�ð r!A1A2

þ r!A2B2
þ r!B2P2 Þjj� lm ¼ 0 ð3Þ

In the forward kinematics, the position of the actuators is known
(q1, q6 and q8), thus the system (1)–(3) is nonlinear with q2, q7 and
q9 as unknown. The Newton–Raphson (N–R) numerical method has

Fig. 1. Parallel robot used in the experiment. Fig. 2. Kinematic sketch of the parallel robot.
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been chosen to solve the nonlinear system. The method converges
rather quickly when the initial guess is close to the desired solution
[24]. Once those coordinates have been obtained, the location of
points Pi is acquired. With these three points, the rotational matrix
defining the orientation of the mobile platform with regard to the
fixed base is easily obtained. The remaining generalized coordinates
(q3, q4 and q5) are found in a straightforward manner from the
rotation matrix.

The inverse kinematics analysis consists of finding the actuated
generalized coordinates given the roll, the pitch angles, and the
heave of the reference system attached to the mobile platform.
From these values, the coordinates of points Pi can be obtained
following [25]:

r!A1P1 �q1 U u!A1B1 ¼ lm U u!B1P1 ð4Þ

In (4) u!AB is a unit vector. Analytical expressions for the
generalized coordinate q1 are obtained squaring both sides of
(4). A similar procedure can be applied to the other two limbs.

One of the objectives of this paper is to develop an open control
architecture allowing the implementation and testing of dynamic
control schemes. The dynamic controller requires that the equa-
tion of motion be described as follows:

Mð q!;Φ
!ÞU €q

!þCð q!; _q
!

;Φ
!ÞU _q

!þ G
!ð q!;Φ

!Þ¼ τ! ð5Þ

In (5), M represents the system mass matrix, C is the matrix
grouping the centrifugal and Coriolis terms, G

!
is the vector

corresponding to gravitational terms and τ! is the vector of
generalized forces. It is worth noting that (5) is valid only when
the system is modeled by a set of independent generalized
coordinates. In this paper, a coordinate partitioning procedure
has been considered to model the system by a set of independent
generalized coordinates. The actuated joint coordinates are the set
chosen as the independent coordinates q!¼ ½ q1 q6 q8 �T .

The dynamic model parameters are experimentally identified.
This set of parameters not only includes the rigid body parameters,
but also the rotor and screw dynamics of the robot actuators, as
well as the friction in actuated joints. The assumed Coulomb and
viscous friction in the ith joint has been modeled as follows:

τf i ¼ �ðFCi
Usignð_qiÞþFvi U _qiÞ ð6Þ

In (6), FCi
and Fvi are the coefficients of the Coulomb and

viscous friction respectively. Due to the characteristics of the
actuators (ball screws), only friction in the actuated joint is
considered. Eq. (5) can be rewritten (see [5,13,20]) as follows:

½Krb Kr Kf �U
Φ
!

rb

Φ
!

r

Φ
!

f

2
6664

3
7775¼ τ! ð7Þ

In (7), the vectors Φ
!

rb; Φ
!

r ; and Φ
!

f group the rigid body, rotor
and friction parameters. Ki is the part of the coefficients matrix that
determines the linear relationship between the corresponding para-
meters (rigid body, rotor and friction) and the generalized forces.

From (7), a set of base parameters corresponding to the
complete base parameter model can be obtained (Tables 1–3). In
Table 3, lm is the characteristic length of the mobile platform, lr is
the length of the coupler links connecting the platform to the
linear actuators, mi, mxi, myi, mzi, Ixxi, Ixyi, Ixzi, Iyyi, Iyzi, and Izzi are
the mass, the first and second moments of inertia of the ith link
with regard to its local reference system.

The base parameter model cannot always be properly identified.
For this reason, a reduced model containing the relevant parameters
is obtained in this paper through a process that considers the robot's
leg symmetries, the influence on the dynamic behavior of the robot,

the statistical significance of the identified parameters, and the
physical feasibility of the parameters [20].

The relevant parameters model consists of the friction para-
meters from Table 1, the actuator parameters from Table 2 and the
rigid body parameters 11, 17 and 18 from Table 3.

Ω1 ¼my3�sinð2=3πÞlm ∑
5

i ¼ 1
mi ð8Þ

Ω2 ¼ ∑
7

i ¼ 1
mi ð9Þ

Ω3 ¼mx7þ lr ∑
7

i ¼ 6
mi ð10Þ

In (8)–(10) m3 is the mass of the platform. It can be seen that if
a payload is placed in the center of the platform, its mass can be
identified together with the mass of the platform.

Table 1
Friction base parameters for the 3-PRS PM.

Φ
!

f
Base parameter Value (SI units)

1 Fc1 152.70
2 Fv1 3267.45
3 Fc2 118.32
4 Fv2 2127.48
5 Fc3 247.97
6 Fv3 2120.09

Table 2
Actuator base parameters for the 3-PRS PM.

Φ
!

r
Base parameter Value (SI units)

1 J1 222.75
2 J2 222.75
3 J3 222.75

Table 3
Rigid body base parameters for the 3-PRS PM.

Φ
!

rb
Base parameter Value (SI units)

1 Izz2� l2r∑2
i ¼ 1mi

�2.7068

2 mx2þ lr∑2
i ¼ 1mi �4.071

3 my2 0
4 Ixx3�ðsinð2=3πÞlmÞ2∑5

i ¼ 1mi �5.2431

5 Ixy3þcosð2=3πÞsinð2=3πÞlm2∑5
i ¼ 1mi

2.9887

6 Ixz3 0.1539
7 Iyy3�ðcosð2=3πÞlmÞ2∑3

i ¼ 1miþsinð2=3πÞlm∑5
i ¼ 4mi 1.6483

8 Iyz3 0
9 Izz3� l2r∑3

i ¼ 1mi
�3.8104

10 mx3�cosð2=3πÞlm∑5
i ¼ 1miþ lm∑5

i ¼ 4mi �0.0014

11 my3�sinð2=3πÞlm∑5
i ¼ 1mi �11.568

12 mz3 �0.5623
13 Izz5� lr2∑5

i ¼ 4mi �2.6436

14 mx5� lr∑5
i ¼ 4mi �4.884

15 my5 0
16 Izz7þ lr2∑5

i ¼ 1mi 8.7408

17 ∑7
i ¼ 1mi 38.8162

18 mx7þ lr∑7
i ¼ 6mi 16.3594

19 my7 0
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3. Model-based position control schemes

Eq. (5) has several properties that can be exploited to facilitate
dynamic controller designs. One of the most useful properties is
that there is a reparametrization of all unknown parameters into a
parameter [px1] vector Φ

!
that rewrites the system dynamics

linearly in parameters. Therefore, the following holds:

Mð q!;Φ
!ÞU €q

!þCð q!; _q
!

;Φ
!ÞU _q

!þ G
!ð q!;Φ

!Þ�M0ð q!ÞU
€q
!þC0ð q!; _q

!ÞU _q
!þ G

!
0ð q!ÞþYð q!; _q

!
; €q
!ÞUΦ! ð11Þ

The term in (11) for the actual 3-PRS parallel robot based on
relevant parameters can be written as follows:

Cð q!; _q
!ÞU _q

!¼
Fv1 _q1þFc1 signð_q1Þ
Fv2 _q6þFc2 signð_q6Þ
Fv3 _q8þFc3 signð_q8Þ

2
64

3
75þ

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75
ð12Þ

Mð q!ÞU €q
!¼

J1 0 0
0 J2 0
0 0 J3

2
64

3
75

€q1
€q6
€q8

2
64

3
75þ

M11 M12 M13

M21 M22 M23

M31 M32 M33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75 ð13Þ

Gð q!Þ¼ g

G11 G12 G13

G21 G22 G23

G31 G32 G33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75 ð14Þ

In addition, M0ð:Þ; C0ð:Þ; and G
!

0ð:Þ represent the known part of

the system dynamics, and Yð q!; _q
!

; €q
!Þ is a regressor matrix with

dimensions [nxp] containing nonlinear but known functions.
Having a dynamic model that is linear in parameters, the left-

hand side of (5) can be written as follows:

M0ð q!ÞU €q
!þC0ð q!; _q

!ÞU _q
!þ G

!
0ð q!ÞþYð q!; _q

!
; €q
!ÞUΦ!¼ τ! ð15Þ

In the following, different adaptive scenarios are presented:
(1) rigid body parameters, (2) friction parameters, (3) actuator
dynamics, and (4) all the aforementioned.

3.1. Adaptive Model I

If the rigid body parameters constituting the reduced model are
assumed to be unknown, then (15) can be written as follows:

τ!¼
J1 0 0
0 J2 0
0 0 J3

2
64

3
75

€q1
€q6
€q8

2
64

3
75þ

Fv1 _q1þFc1 signð_q1Þ
Fv2 _q6þFc2 signð_q6Þ
Fv3 _q8þFc3 signð_q8Þ

2
64

3
75þY1ð q!; _q

!
; €q
!Þ θ

!
1

ð16Þ
where

Y1ð q!; _q
!

; €q
!Þ¼

M11 M12 M13

M21 M22 M23

M31 M32 M33

2
64

3
75þ

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75þg

G11 G12 G13

G21 G22 G23

G31 G32 G33

2
64

3
75

ð17Þ

θ
!

1 ¼ ½Ω1 Ω2 Ω3 �T ð18Þ

3.2. Adaptive Model II

In this case Coulomb and viscous friction parameters are
unknown, thus,

τ!¼
J1 0 0
0 J2 0
0 0 J3

2
64

3
75

€q1
€q6
€q8

2
64

3
75þ

M11 M12 M13

M21 M22 M23

M31 M32 M33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75þ

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75

þg

G11 G12 G13

G21 G22 G23

G31 G32 G33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75þY2ð q!; _q

!Þ θ
!

2 ð19Þ

where

Y2ð q!; _q
!Þ¼

_q1 0 0 signð_q1Þ 0 0
0 _q6 0 0 signð_q6Þ 0
0 0 _q8 0 0 signð_q8Þ

2
64

3
75 ð20Þ

θ
!

2 ¼ ½ Fv1 Fv2 Fv3 Fc1 Fc2 Fc3 �T ð21Þ

3.3. Adaptive Model III

When the parameters of the actuator dynamics are assumed to
be unknown, the following equations hold:

τ!¼
M11 M12 M13

M21 M22 M23

M31 M32 M33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75þ

Fv1 _q1þFc1 signð_q1Þ
Fv2 _q6þFc2 signð_q6Þ
Fv3 _q8þFc3 signð_q8Þ

2
64

3
75

þ
C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75

þg

G11 G12 G13

G21 G22 G23

G31 G32 G33

2
64

3
75

Ω1

Ω2

Ω3

2
64

3
75þY3ð €q

!Þ θ
!

3 ð22Þ

where

Y3ð €q
!Þ¼

€q1 0 0
0 €q6 0
0 0 €q8

2
64

3
75 ð23Þ

θ
!

3 ¼ ½ J1 J2 J3 �T ð24Þ

3.4. Adaptive Model IV

In the same way, combinations where all the relevant para-
meters are unknown can be considered. For example, if all the
dynamic parameters are unknown

τ!¼ Y4 q!; _q
!

; €q
!� �

θ
!

4 ð25Þ

where

Y4ð q!; _q
!

; €q
!Þ¼

M11 M12 M13 €q1 0 0 0 0 0 0 0 0
M21 M22 M23 0 €q6 0 0 0 0 0 0 0
M31 M32 M33 0 0 €q8 0 0 0 0 0 0

2
64

3
75

þ
C11 C12 C13 0 0 0 _q1 0 0 signð _q1Þ 0 0
C21 C22 C23 0 0 0 0 _q6 0 0 signð_q6Þ 0
C31 C32 C33 0 0 0 0 0 _q8 0 0 signð _q8Þ

2
64

3
75

þg

G11 G12 G13 0 0 0 0 0 0 0 0 0
G21 G22 G23 0 0 0 0 0 0 0 0 0
G31 G32 G33 0 0 0 0 0 0 0 0 0

2
64

3
75 ð26Þ

θ
!

4 ¼ ½Ω1 Ω2 Ω3 J1 J2 J3 Fv1 Fv2 Fv3 Fc1 Fc2 Fc3 �T

ð27Þ

3.5. Control scheme

In recent years, the passivity-based approach to robot control
has received a lot of attention. This approach solves the robot
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control problem by exploiting the robot system's physical structure,
and specifically its passivity property. The design philosophy of
these controllers is to reshape the system's natural (kinetic and
potential) energy in such a way that the control objective is
achieved.

Bayard and Wen proposed a number of adaptive passivity-
based control schemes that do not suffer from the parameter drift
problem [26]. These authors have developed a class of adaptive
controllers of robot motion, but in this paper a different one has
been developed for the parallel robot,

τc ¼M0ð q!Þ €q!dþC0ð q!; _q
!

dÞ _q
!

dþ G
!

0ð q!ÞþYð q!; _q
!

d; _q
!

d; €q
!

dÞU θ̂
!

�Kd _e
!�Kp e

!

ð28Þ

d
dt

θ̂ðtÞ
n o

¼ �Γ0 UY
T ð q!; _q

!
d; _q
!

d; €q
!

dÞU s!1 ð29Þ

where s!1 ¼ _e
!þΛ1 e!, with Λ1 ¼ λ1I, λ140 and M0ð:Þ;C0ð:Þ; G

!
0ð:Þ

represent the known part of the system dynamics, and YT ð:Þ is the
regressor matrix.

The closed-loop system (5)–(28) and (29) is convergent (see
Appendix A); that is, the tracking error asymptotically converges
to zero and all internal signals remain bounded under suitable
conditions on the controller gains Kp and Kd.

In order to compare and validate the adaptive controller,
another passivity-based controller has been implemented and
tested. The PDþ controller proposed in [22] is implemented and
can be written as follows:

τc ¼M q!
� �

€q
!

dþC q!; _q
!� �

_q
!

dþ G
!

q!
� �

�Kd _e
!�Kp e

! ð30Þ

As in (5), Mð:Þ;Cð:Þ; G!ð:Þ represent the mass matrix, the cen-
trifugal and Coriolis forces, and the gravitational forces of the
robot's dynamic equation. This controller has been chosen because
it has very good robust properties. In addition, since both are
passivity-based controllers, their expressions are similar and
therefore it is easy to compare and analyze their characteristics.

4. Results

In order to validate the performance of the adaptive control
algorithm, first of all, several Matlab/Simulink schemes for the
parallel robot simulation have been developed. The proposed
controller is then implemented in an actual 3-DOF PM.

4.1. 3-PRS PM simulations

As seen in the previous section, the reduced PM model has 12
parameters: three rigid bodies, three actuator dynamics and six
corresponding to Coulomb and viscous friction. Depending on
which parameters are assumed to be unknown, different adaptive
schemes can be developed. In addition, the selection of the
adaptive scheme also depends on which parameters are properly
identified. This can be measured by the standard deviation of the
identified dynamic parameters. A previous study shows that the
rigid body parameters are those with a higher standard deviation
in comparison with the other identified parameters [20]. There-
fore, an adaptive controller based on the Adaptive Model I (Eqs.
16–18) has been simulated. This model only considers the rigid
body parameters to be unknown.

Fig. 3a shows the reference and the simulated position for the
first joint obtained with the adaptive controller. The control action
is calculated by Eqs. (28) and (29) using the regressor matrix (17).
In order to compare the control performance, the PDþ controller
Eq. (30) has also been simulated. The simulations consider that a

mass of 30 kg is placed on the mobile platform m3 at t¼40 s. The
overall value of the mass changes from 12 kg to 42 kg.

As can readily be appreciated in Fig. 3b, the error presented
with both controllers before modifying m3 is very similar. How-
ever, the PDþ controller response is much worse after modifying
this mass on the mobile platform. This is because the PDþ
controller uses unbiased values for its dynamic parameters. Given
that the adaptive controller calculates an estimation of the rigid
body parameters, it can take into account and compensate for
changes in the platform mass.

In order to analyze the response of the different adaptive
controllers considered, another test has been carried out. In this
case, three different adaptive controllers have been simulated,
which are based on Adaptive Model II (Eqs. (19)–(21)), Adaptive
Model III (Eqs. (22)–(24)) and Adaptive Model IV (Eqs. (25)–(27)).
As in the previous case, for these simulations a mass of 30 kg has
been added to the platform at t¼40 s.

Fig. 4 illustrates the absolute error obtained for the two
periods: before and after adding the 30 kg mass. In this figure,
the error obtained with the Adaptive Model I, Adaptive Model II,
Adaptive Model III, Adaptive Model IV and PDþ model can be
seen. As can be appreciated in Fig. 4, the controllers based on
Adaptive Model II and Model III present a mean error that is twice

Fig. 3. Reference and simulated position for the first joint with a PDþ and an
adaptive controller (a). Absolute error for the first joint with a PDþ and an adaptive
controller (b).
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that of the period where the load is added to the robot platform.
This is because such controllers do not calculate an estimation of
the parameters that change when the mass is added to the
platform and thus their responses are very similar to the PDþ
controller. However, given that the adaptive controller based on
Model IV computes an estimation of the rigid body, actuator
dynamics and friction parameters, it obtains a similar error before
and after adding the mass to the platform. In addition, their
response is virtually the same as the response of the adaptive
controller based on Model I.

The selection of the adaptive model depends, among other
factors, on which parameters are assumed to be unknown or may
vary due to changes in the operating conditions. Clearly, the larger
the number of unknown parameters, the greater the size of some
of the constants of the adaptive controller. This may hamper the
correct tuning of these constants. For this reason, in the case of
variations in the mass added to the platform for example, control
based on Adaptive Model I is recommended given that this is the
simplest controller able to deal with the variation in parameters.

4.2. Experimental results on the actual 3-PRS PM

In addition to the simulation schemes, the PDþ and adaptive
controllers described in this paper have been implemented in a
modular way, using real-time middleware Open Robot Control
Software (OROCOS). These controllers have been used and ana-
lyzed with the actual parallel robot presented in Section 2.

OROCOS [27] is implemented entirely in Cþþ and, because it is
a component-based middleware (being closely linked with a
component-based software development), it allows the creation
of modules that can operate in real time [28]. Furthermore, within

the OROCOS environment there are libraries that are very useful
for creating these components. In particular, one of the most
relevant is the “OROCOS Toolchain”, which is very important as it
includes the “Real Time Toolkit (RTT)” and the “OROCOS Compo-
nent Library (OCL)”. The first one deals with everything related to
the real-time execution of components, as well as the connection
between them, while the second provides the basic primitives for
building components. Therefore, through the component-based
software development that provides the OROCOS environment,
the following advantages can be seen [28]

1. Through the modular design, the program execution flow can
very easily be monitored, facilitating the creation of new
components and their insertion into the model to obtain new
features.

2. The modular structure allows the execution of multiple mod-
ules in a distributed manner, obtaining a lower running-time
than if they were running serially.

3. The code is fully reusable, which allows an unlimited number
of examples to be created for each module.

4. Once loaded, modules are configurable and reconfigurable both
in setup time and in running-time, being able not only to
change specific parameters for each module, but also general
parameters such as the execution priority, etc.

Thus, when a number of modules are implemented and a
control scheme is required, it is as simple as inserting the
necessary modules to configure them, making connections with
each other, and setting up the connections with each other,
and making them run. Therefore, given that the different
control schemes have common parts due to the development of

Fig. 4. Absolute first joint position error obtained for a reference in which a mass of 30 kg is added over the platform at the middle of the simulated execution, with Adaptive
I–IV and PDþ models.
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several modules; these modules are reused to implement different
controllers.

Finally, note that although the development of component-
based software can be a complicated task at first, in the long run it
facilitates the programmer's work because if a module works
correctly in one particular scheme, it will certainly work correctly
in another control scheme. Therefore, as well as the advantages
discussed above, this approach minimizes the chance of possible
programming errors in the implementation of any module.

Fig. 5 shows the OROCOS diagram for the adaptive controller
implemented based on Adaptive Model I. The SensorPos module
provides the three joint positions of the robot using the Advantech's
PCL-833 encoders card. Gener_Refe module calculates the movement
references for the robot joints. PIDmodule implements a proportional-
derivative-integral type controller. Coriolis and Inertia modules calcu-
late the robot's fixed dynamic terms of the equation of motion (16).
Y module calculates the regressor matrix of Eq. (17). The Calc_theta

module calculates the parameter estimation of Eq. (18). The combi-
nator module calculates the control action depending on the control
strategy selected. Finally, the actuator modules are responsible for
carrying out digital-analog conversions through Advantech's PCI-1720
cards. The control scheme also provides the supervisor module, which
is responsible for monitoring the correct operation of the system. This
module is in charge of deactivating the control unit and stops the
robot in the case of detecting a malfunction in the system. Due to the
distributed execution of the control, the sample time in this experi-
ment has been 10ms.

Fig. 6 illustrates the reference and the robot q1 position with
PDþ and adaptive controllers. The actual robot motion reference
is the same as the reference used in simulation. The only
difference is that in the middle of execution, the robot remains
in the same position for 8 s (between t¼85 and t¼93 s). This time
allows a load of 30 kg to be placed onto the robot platform. Fig. 7
illustrates the absolute error values, and the absolute position
error for the platform heave is shown in Fig. 8. The control action
provided by the adaptive controller is shown in Fig. 9. Finally,
Fig. 10 shows the real robot with the added mass.

Fig. 5. Component diagram implemented in order to perform an adaptive controller using the middleware Open Robot Control Software (OROCOS).

Fig. 6. Reference and real position for the first joint of the parallel robot for both
adaptive and PDþ controllers.

Fig. 7. Absolute first position error, obtained with the real robot, for a reference in
which a mass of 30 kg is added over the platform at the middle of the real
execution, with adaptive and PDþ controllers.
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The results obtained with the actual robot are consistent with
those obtained in the simulation: because of the estimation of the
online dynamic parameters, the change in the load means that robot
response using an adaptive controller is significantly better than that
obtained with the PDþ controller.

Table 4 demonstrates the absolute mean error and the mean
square root error (RMS) between the references and the measured
positions of the parallel robot for the two periods (before and after
changing the robot load using a mass of 30 kg). As can readily be
appreciated, the adaptive controller provides a better response in
comparison with the PDþ controller. In fact, for the second period,
the error obtained with the PDþ controller has an increment of
about 184% greater than the one obtained with adaptive control.

5. Conclusion

Adaptive control was developed for the trajectory tracking control
of a 3-DOF parallel manipulator. The controller took advantages of a
simplified relevant parameters model that is cost-effective real-time.
Four study cases of adaptive control were evaluated considering the
on-line identification of: the rigid body parameters, the friction

parameters, the actuator dynamics, and a combination of the former
parameters. A novel experimental setup was proposed that evaluates
the performance of the adaptive controller: a payload is placed onto
the platform while the robot is executing a task. The adaptive control
and a fixed PDþ control scheme were implemented modularity in
OROCOS environment. Simulations and experiments showed that
adaptive control outperform, as regard to trajectory tracking accuracy,
the PDþ control when a payload is added onto the platform. The on-
line update of the relevant parameters takes into account for an
unknown payload and changes in friction coefficients, thus, over-
coming the limitation of the PDþ that relies on fixed parameters.
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APPENDIX A. Controller stability analysis

A.1. PDþ controller

The motion controller proposed by [26] has the following
control law:

τe ¼Mðq;θÞ€qdþCðq; _q;θÞ_qdþGðq;θÞ�Kpe�Kd _e ðA:1Þ

where Kp and Kd are constant and positive definite diagonal
matrices.

Proposition 1. The control input of Eq. (A.1) stabilizes the robot
globally and asymptotically at the equilibrium point ðe; _eÞ ¼ ð0;0Þ.

Fig. 9. Control action applied to the robot provided by the adaptive controller

Fig. 10. Parallel robot used in this experiment, with the 30 kg added mass over the
platform.

Table 4
Error values (m).

Period ∑n
j ¼ i∑

DOF
i ¼ 1absðei;j Þ
nDOF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j ¼ i
∑DOF

i ¼ 1 ðei;j Þ
2

nDOF

r

PDþ C. Adaptive C. PDþ C. Adaptive C.

1 0.000504 0.000337 0.000622 0.000412
2 0.001432 0.000378 0.001541 0.000446

Fig. 8. Absolute heave position error, obtained with the real robot, with an
adaptive controller.
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Proof. We selected as energy function:

H1ðe; _eÞ ¼
1
2
_eTMðq;θÞ_eþ1

2
eTKpe ðA:2Þ

The time derivative of (A.2) is given by

_H1ðe; _eÞ ¼ _eTMðq;θÞ€eþ1
2
_eT _Mðq;θÞ_eþ _eTKpe ðA:3Þ

Substituting (A.1) into the robot dynamics leads to the follow-
ing error equation:

Mðq;θÞ€eþCðq; _q;θÞ_eþKpeþKd _e¼ 0 ðA:4Þ
Hence, plugging (A.4) into (A.3) yields

_H1ðe; _eÞ ¼ � _eT ðCðq; _q;θÞ_eþKpeþKd _eÞþ
1
2
_eT _Mðq;θÞ_eþ _eTKpe ðA:5Þ

Then Eq. (A.5) becomes

_H1ðe; _eÞ ¼ _eT
1
2
_Mðq;θ

� �
�Cðq; _q;θÞÞ_e� _eTKd _e ðA:6Þ

Because _Mðq;θÞ�2Cðq; _q;θÞ is a skew-symmetric matrix,

_H1 ¼ � _eTKd _e ðA:7Þ
This time-derivative is only negative semi-definite. In the case

of position control, LaSalle's invariance theorem is applied in order
to establish asymptotic stability of the closed-loop system. Unfor-
tunately, this theorem is only valid for autonomous systems.
However, using Matrosov's stability theorem of, asymptotically
stabilizes the robot system at ðe; _eÞ ¼ ð0;0Þ for arbitrary
Kp ¼ KT

p40; Kd ¼ KT
d40.

A.2. Adaptive controller

Bayard and Wen (1988) proposed an adaptive robot motion
controller

τe ¼M0ðqÞ €qdþC0ðq; _qdÞ_qdþG0ðqÞþYðq; _qd; _qd; €qdÞθ̂�Kd _e�Kpe

ðA:8Þ

d
dt
fθ̂ðtÞg ¼ �Γ0Y

T ðq; _qd; _qd; €qdÞs1 ðA:9Þ

where s1 ¼ _eþΛ1e with Λ1 ¼ λ1I; yλ140:

Proposition 2. The closed-loop system obtained with (A.8) and (A.9)
is convergent, that is the tracking error asymptotically converges to
zero and all internal signals remain bounded if

Kp;m4λ1CMVM ðA:10Þ

Kd;m4λ1MMþ2CMVMþλ1CM
H2ðeð0Þ; _eð0Þ; ~θð0ÞÞ

Kp;mþλ1Kd;m�λ21MM

 !1=2

ðA:11Þ

where H2ðe; _e; ~θÞ is defined in (A.13) below.

Proof. The controller (A.8) results in the closed-loop error system

Mðq;θÞ€eþCðq; _q;θÞ_eþCðq; _qd;θÞ_eþKd _eþKpe¼ Yðq; _qd; _qd; €qdÞ ~θ
ðA:12Þ

Consider the function

H2ð:Þ ¼
1
2
_eTMðq;θÞ_eþλ1 _e

TMðq;θÞeþ1
2
eT ðKpþλ1KdÞeþ

1
2
~θ
T
Γ�1

0
~θ

ðA:13Þ
This function contains bilinear cross terms in the position and
velocity error, and it can be shown that (A.11) is a sufficient

condition for (A.13) to be a strict Lyapunov function candidate. The
time-derivative of (A.13) satisfies

_H2ðe; _e; ~θÞ ¼ � _eT ðKd�λ1Mðq;θÞÞ_e�eT ðλ1KpeÞþ _eTCðq; _e;θÞðλ1eÞ
þ _eTCðq; _qd;θÞðλ1eÞ�sT1Cðq; _qd;θÞ_e ðA:14Þ

Consequently, taking into consideration that the matrices
Mðq;θÞ; Cðq; _q;θÞ and Gðq;θÞ are bounded with respect to q, and
the desired trajectory signals _qdðtÞ and €qdðtÞ are also bounded

_H2ðe; _e; ~θÞr�ðKd;m�λ1MMÞjj_ejj2�λ�1
1 Kp;mjjλ1ejj2

þCMðjj_ejj2jjλ1ejjþ2VMjj_ejjjjλ1ejjþVM jj_ejj2Þ ðA:15Þ
where VM ¼ sup

t
jj_qdðtÞjj and AM ¼ sup

t
jj€qdðtÞjj

This can be written more conveniently by rewriting the bilinear
cross term as the sum of perfect squares, that is

2jjejjjjλ1ejj ¼ �ðαjj_ejj�1
α
jjλ1ejjÞ2þα2jj_ejj2þ 1

α2 λ1e j2; αa0
������

ðA:16Þ
So (A.14) can be changed into (α� 1)

_H2ðe; _e; ~θÞr�ðKd;m�λ1MM�2CMVMÞ‖_e‖2

�ðλ�1
1 Kp;m�CMVMÞjjλ1ejj2þCM jj_ejj2jjλ1ejj ðA:17Þ

(A.17) contains two second-order terms and one third-order term
in e and _e. Hence, _H2ðe; _e; ~θÞ can be guaranteed to be negative
semi-definite in the error state only if the second-order terms over
bound the third-order one. This naturally implies local stability
properties, that is the initial error state ½ eT ð0Þ _eT ð0Þ ~θ

T ð0Þ�T has to
start within a certain region. To complete the proof, a local
stability result (the so-called β-ball lemma) can be employed.
According to this lemma, _H2ðe; _e; ~θÞ is negative semi-definite in
e and _e if the controller gains Kp and Kd satisfy (A.10) and (A.11).
Application of Barbalat's lemma completes the proof.
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