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a b s t r a c t

This paper presents a new algorithm for fast mobile robot self-localization in structured indoor environ-
ments based on geometrical and analytical matching, GEMA2. The proposed method takes advantage of
the available structural information to performa geometricalmatchingwith the environment information
provided by measurements collected by a laser range finder. In contrast to other global self-localization
algorithms like Monte Carlo or SLAM, GEMA2 provides a linear cost with respect the number of mea-
sures collected, making it suitable for resource-constrained embedded systems. The proposed approach
has been implemented and tested in a mobile robot with limited computational resources showing a fast
converge from global self-localization.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The importance of self-localization for mobile robots with lim-
ited computational resources is a well-known problem; especially
in indoors environments where globally accurate positioning sys-
tems like GPS are not available. Without the information of the ex-
act position and heading (pose) of the robot in the space, it would
not be able to navigate in the environment, follow a path or go to
a goal point. This issue has been widely studied in the literature
[1–5] and there are two mainly strategies of self-localization: po-
sition tracking algorithms which know the initial pose of the robot
at the beginning of the execution (also known as Local position es-
timation) and global localization algorithms which work through
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environment recognition without knowledge of its initial pose
(Global position estimation).

Most positional tracking strategies that work with knowledge
of the initial pose use Kalman filters ([6,7]) to perform the sensor
fusion to improve significantly the odometry problems adding
greater efficiency to the self-localization. Simple or reduced filters
can be implemented in limited resource systems but without any
correction from a global position system they always have small
errors that due to the feedback of these methods increase over
time.

The global position strategies for indoors try to self-locate rec-
ognizing the environment detected by the robot. These algorithms
try to solve problems like the kidnapped robot [8] or wake-up
robot [9]. To address these problems, there are two popular meth-
ods: the first one is based on the study of algorithms that try to self-
locate in a map and at the same time, they try to build the map of
the environment; like the known algorithm SLAM [10] (Simultane-
ous Localization And Mapping). These strategies usually require a
high consumption of resources due to the use of cameras or sensors
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to detect environmental information, which requires costly image
processing and complex matching algorithms, so they are hardly
applicable to real-time autonomous robots with limited resources.
The second solution is based on the refinement of self-localization
within a known map. The most popular algorithm of this kind is
the Monte Carlo Localization (MCL) [11] that estimates the pose of
a robot as it moves and senses the environment. Typically it starts
with a uniform random distribution of particles over the known
map and they are resampled based on recursive Bayesian estima-
tion whenever the robot moves or it detects changes in the en-
vironment. The particle filter’s time complexity depends on the
number of particles and, naturally, the more particles, the better
the accuracy, so the algorithm has a compromise between speed
and accuracy. In systems with limited computational resources is
non-viable analyze a large number of particles each time there-
fore usually or the accuracy is poor, or they use communications
to compute the calculations in a computer with more resources.

Self-localization techniques based on robot’s observations can
be understood as a specific application of surface registration tech-
niques: by calculating the best correspondence between a given
observation of the robot and a previous one (or a well-knownmap
of the environment) the relative position of the observer can be
obtained by simple triangulation. In this line, multiple descriptors
that simplify the search process have been proposed based on cur-
vature [12,13] or integral invariants [14,15]. To calculate the de-
scriptor’s alignment, there are techniques based in combinatory
optimization [15,16], random algorithms RANSAC [13,17] or for-
ward search [12]. Results achieved with these techniques provide
coarse alignments that are generally refined with algorithms like
ICP (Iterative Closest Point) [18,19], which alternates between the
calculation of correspondence between samples and the calcula-
tion of the alignment transformation. There are many variations of
the original ICP algorithm that can be found properly classified and
detailed in [20].

Considering these factors, this paper presents GEMA2, a new al-
gorithm for analytical self-localization based on the geometrical
correspondence of the samples perceived from the environment by
a laser range finder, in order to provide an efficient global localiza-
tion algorithm compatible with local strategies and computation-
ally implementable in resource-constrained embedded systems.

The proposed technique takes advantage of the structured na-
ture of indoor environments. This structure is normally introduced
by the presence of straight walls and, consequently, this work fo-
cuses its effort on developing a fast line extraction algorithm in or-
der to detect them. However, the proposed algorithm can be easily
extended to recognize any other type of parametrizable geometric
primitives using the same basic idea.

After this review, the paper is organized as follows. In Section 2
a general overview of the approach is introduced. In Sections 3–5,
the three different stages of proposed technique are explained. In
Section 6 the experimental platform, in which this method has
been implemented, is presented with detail and the experimental
results are analyzed. Finally, conclusions and future works are
drafted in the Section 7.

2. Overview

The self-localization technique proposed in this paper runs
in three different stages: calibration, segmentation and localiza-
tion. Calibration stage is executed before the robot can move
autonomously, and its results can be used in subsequent stages
without re-calibrating the sensor. The goal of this stage is to cal-
culate the error function e (d) associated to the distance measure-
ments di returned by the sensor.

Once the calibration has been performed, the execution cycle of
the robot starts by reading themeasures obtained by the laser, and
Fig. 1. Execution cycle of the proposed technique.

converting the set of local 2D points obtained to a much simpler
representation. This task is performed in the segmentation stage,
where points si are inferred into lines li, filtered, and intersected
between themselves, in order to calculate a set of corners ci.

The most defined corner c is then passed to the localization
stage, where it is aligned with all the similar corners in the known
map mi. Each alignment produces one possible location for the
robot (θrobot , xrobot , yrobot), which is evaluated using a cost function
based on squared errors. The alignment with the smallest error is
then returned as the location of the robot in the known map.

Fig. 1 shows the complete execution cycle of the proposed
technique that is explained in this section.

3. Calibration

Calibration stage deals with the estimation of the sensor’s
measurement error. The result of this stage is critical, since line
inference algorithm uses this value to establish if a given sample
belongs to the line defined by the previous ones or if it belongs to
a new line.

The measurement error e (d) is a function that indicates, for
each distance di, the uncertainty of the returned value. Its value can
be a constant, or a function that depends on themeasured distance
and/or the orientation of the laser beam in local coordinates.

To calibrate the sensor, the robot is placed in front of a straight
wall and, using least squares, the equation of the line that best
fits the returnedmeasurements, is calculated. The error associated
to each distance is calculated as the geometric distance between
the point defined by the distance measurement returned by the
sensor, and the point defined by the intersection between its
projection line and the optimal line calculated using all samples.
Fig. 2 illustrates this concept.

During the empirical tests with the laser, the error remains
constant, nomatter the measured distance or the projection angle.
This way, a error function as a constant value for all measures has
been set, being e (d) = 2 cm, which corresponds to the maximum
error obtained in the calibration stage.
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Fig. 2. Calculation of the error associated to eachmeasurement. In orange is shown
the line calculated using least squares.

4. Segmentation

The goal of the segmentation stage is to reduce input data to
a much simpler representation that allows to compare it with the
known map in an efficient and robust way. For this, noise intro-
duced by the sensor and real world objects imperfections has to
be filtered using the error estimation calculated in the calibration
stage.

To speed-up localization calculations, the input set of distance
measurements returned by the sensor is inferred into a set of
straight lines. These lines are intersected with their neighbors to
compute a set of corners. The most accurate estimated corner will
be used in the localization stage to evaluate the position of the
robot in the known map.

4.1. Data acquisition

A sensor is defined as S (f , n, e (d))where f represents the FOV
(Field Of View), n is the number of distance samples returned and
e (d) is the error function that estimates the measurement error
associated to each distance di.

Values of f and n are specified by the sensor manufacturer,
whilst value of e (d) is calculated in the calibration stage.

The set of distance measurements obtained by the sensor D =
(d1, d2 . . . dn) is an ordered array of decimal values. Projection
angle ϕi of distance di can be calculated as ϕi = f ∗

 i
n −

1
2


, and

its local coordinates (ui, vi)as follows:

ui = sin (ϕi) ∗ di
vi = cos (ϕi) ∗ di.

(1)

Given a set of distances D, a set of samples S = (s1, s2 . . . sn) are
calculated in this stage, where each sample si is defined by three
points in the sensor’s local coordinates:

si = (sin (ϕi) ∗ di, cos (ϕi) ∗ di)
⌊si⌋ = (sin (ϕi) ∗ (di − |e (di)|) , cos (ϕi) ∗ (di − |e (di)|))
⌈si⌉ = (sin (ϕi) ∗ (di + |e (di)|) , cos (ϕi) ∗ (di + |e (di)|))

(2)

where e(di) is the associated measurement error for each sample.
Thisway, each sample is characterized by itsmeasured distance

to the sensor, si, its minimum possible distance, ⌊si⌋, and its
maximumpossible distance, ⌈si⌉, according to the error estimation
performed in the calibration stage.

These samples are used in next stages to perform several calcu-
lations. If the required frequency for the proposed technique can-
not be ensured, due to computational restrictions, an interesting
simplification can be performed at this point: each calculated sam-
ple can represent a set of distance measures. Thus, by averaging
distances, the amount of samples to process in further stages can
be reduced, and some random noise can be filtered.
4.2. Line inference

The goal of this stage is to calculate a set of straight lines L =
(l1, l2 . . . lm) that best fits the set of samples calculated during the
acquisition stage, considering the measurement error.

The main difficulty associated to these calculations is to estab-
lish if a given sample si belongs to the line obtained considering
previous samples si−j, or if it belongs to a new line.

To solve this problem, an estimator called line visibility is
associated to each line, lk, defined by two scalar values Vlk =

(dmin, dmax). This estimator specifies the range of projective
distances in which sample si will be considered as part of the
line defined by previous samples. This way, the following can be
established:

si ∈ lk ↔ [⌊si⌋ . . . ⌈si⌉] ∩ [dmin . . . dmax] ≠ ∅ (3)

being [dmin . . . dmax] the range of distances specified by Vlk , and
lk the line defined by previous samples (si−1, si−2, . . .). Values of
[⌊si⌋ . . . ⌈si⌉] represent the uncertainty associated to the position
of si, considering its associatedmeasurement error. Fig. 3 illustrates
this concept.

Given a set of consecutive samples S = (si−j . . . si−2, si−1),
to compute values of dmin and dmax for the next sample si, it is
necessary to find the minimum/maximum slope lines, Vmin and
Vmax respectively, that intersects all ranges [⌊sk⌋ . . . ⌈sk⌉] , sk ∈ S.

The intersection points between these lines and the line Osi,
defined by ϕi and marked in blue in Fig. 1 (left), correspond to dmin
and dmax, being dmin = Vmin ∩ Osi and dmax = Vmax ∩ Osi.

This way, if a sample si fails Eq. (1), it means that it cannot exist
one line that intersects all ranges [⌊sk⌋ . . . ⌈sk⌉] , sk ∈ (S ∪ si) and,
consequently, the sample must belong to a new line.

To infer L, all samples are iterated in order, creating new lines
when it is necessary. Code 1 illustrates this process.

If a sample si passes Eq. (1), defined by the line that considers
previous samples (si−j . . . si−2, si−1), it is then included in the line,
and values of dmin and dmax are updated considering the new
sample.

If si fails the test established in Eq. (1), a new line is created that
only includes si, and the equation of the previous line is calculated
using least squares for fitting, according to the projective distance
measured for each included sample (si).

L← {∅} ;
l← new Line (∅) ;
foreach Sample si in S do

dmin ← Vlmin;
dmax ← Vlmax;

if ([⌊si⌋ . . . ⌈si⌉] ∩ [dmin . . . dmax] ≠ ∅) then
l.AddSample (si) ;
l.RecalculateVl();

else
l.LeastSquareFit();
L.add (l) ;
l← new Line (si) ;

end if
end foreach
l.LeastSquareFit();
L.add (l) ;
return L

Code 1: proposed clustering algorithm to infer the set of lines L that
best fits the set of samples S.

This way, by using ⌊si⌋ and ⌈si⌉, the line visibility estimator
that splits the original sample set into smaller clusters of aligned
samples is calculated. Then, by using si distances, the line that best
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Fig. 3. Use of the line visibility concept. Red circles correspond to si values, dashed circles correspond to ⌊si⌋ and ⌈si⌉ values. Dark gray lines represent the uncertainty
associated to each sample [⌊si⌋ . . . ⌈si⌉]. (Left) Graphical representation of Vl1 considering all illustrated samples. (Right-up) A new sample s5 , represented in green, that
satisfies Eq. (1) and, thus, belongs to the line l1 . (Right-down) A new sample s5 that does not satisfy Eq. (1), so it does not belong to the line l1 .
Fig. 4. Updating of Vmax: (Left) update case A, where no computation is required. (Center) Update case B, where Vmax has to be recalculated. (Right) Calculation of the new
value for Vmax . In the proposed example, Vmax is the line defined by ⌈si⌉ ⌊si−3⌋.
fits all samples inside each cluster is calculated too and this set of
lines is the result of this stage.

One of the advantages of this technique is that it first produces
the set of aligned samples, and then, it calculates the equation of
the optimal line that best fit them. This is important, sinceOrdinary
Least Squares (or Linear Least Squares), minimizes the sum of
squared vertical distances betweenobservations and the responses
predicted by linear approximation. Thus, the more horizontal
samples are distributed, the more accuracy. In order to optimize
the results of this technique, the set of samples of a cluster can be
rotated, then approximated, and then the optimal line is rotated
back again.

To calculate values of dmin and dmax, minimum and maximum
slope lines that intersect all [⌊si⌋ . . . ⌈si⌉] ranges have to be calcu-
lated. Given that the way of calculating these lines is symmetrical,
the calculations are focused on finding out the value of Vmax.

The first thing to consider when updating Vmax consists in
differentiating two different cases, according to the new sample
(sj) position: (A) if


sj


. . .

sj


intersects Vmax no update is
necessary, since Vmax is already the maximum slope line. (B) If not
(

sj


< dmax), Vmax is no longer the maximum valid slope line, and
has to be recalculated. In this case, it is important to notice that the
new maximum slope line is defined by two points:


sp


and


sq


,

which are themost restrictive projective distances. Fig. 4 illustrates
this concept.

Calculating the value of

sq


is immediate (


sq


=


sj

), since

sj


< dmax.
To calculate the value of


sp


, it is necessary iterate through

each sample included in the current line, looking for the point
⌊si⌋ that minimizes the angle between the line

sj

⌊si⌋, and the

projection line defined by Osj.
Considering that the addition of samples to the line is an iter-

ative process, an interesting optimization can be performed: once
a sample has been identified as the most restrictive one, none of
the previous samples needs to be considered in subsequent itera-
tions. This way, by storing the index of themost restrictive sample,
a lot of unnecessary evaluations can be avoided, ensuring a correct
result. Code 2 illustrates this process.

function CalculateVmax(sj : Sample, Vmax : Line)
dmax ← Vmax ∩ Osj;
if


sj


< dmax

then

anglemin←∞;

for pos in posmin .. j− 1 do
if


Angle


sj
 

spos

, Osj


< anglemin


then

anglemin ← Angle


sj
 

spos

, Osj


;

posmin ← pos;
end if

end for
Vmax ←


sj
 

sposmin


;

end if
return Vmax;

end function

Code 2: pseudo-code to update value of Vmax. Consider that posmin
is a global variable that keeps its value after each invocation of the
function.

In terms of computational complexity, the worst-case scenario
for the proposed algorithm consists in a set of samples perfectly
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Fig. 5. Imperfections in the sensor measures that affect the line inference calculations. (Left) Result of the previous stage without considering these imperfections. (Right)
Result after filtering. Case A shows the error of the sensor when scanning a sharp corner. Case B the consequences of reflections in the line inference algorithm. Case C shows
a wall that deviates in both directions.
aligned: since all of themwill pass the visibility test, therewill only
be one line. When updating Vmin and Vmax, all new samples will
force to recalculate the lines, and the most restrictive sample will
always be the first one, so the final execution cost is expected to
be O(n2), being n the number of samples. However, the worst-case
scenario is extremely unusual to happen, even impossible when
using a sensor with FOV values similar or greater than 180o.

In the best-case scenario, each sample included in a line will
not force to update values of Vmin and Vmax so, the execution cost
is expected to be O(n), being n the number of samples.

4.3. Line filtering

The goal of this stage is to add robustness to the proposed
technique, considering new uncertainties not contemplated when
calculating the error function in the measures of the sensor e(d).
These uncertainties are mainly related to physical imperfections
in both, the sensor and the environment.

During the empirical tests, these imperfections have been
classified in two cases: (a) interferences in the laser range finder
due to the topology and material of the measured area and,
(b) imperfections in the walls that lead to split them in several
separated lines.

Interferences in the scanner happen when the laser beams
intersect reflective/refractive surfaces. The resulting distance
measures are unpredictable, and add a lot of noise to the input
data. Also, at practice this precision decreases significantly when
scanning a sharp corner.

Imperfections in the walls make theoretically planar surfaces
to be curved. This affects the line inference technique by making
that, eventually, one sample of the same wall fails the visibility
test defined by the previous ones. The result is that a wall is then
characterized by more than one line.

By detecting and properly filtering these imperfections, the
quality of results improves significantly. Fig. 5 illustrates these two
kinds of interferences using real data, some examples of them, and
the result of applying the proposed filtering.

To filter interferences in the scanner, the fact that an anomalous
measure seriously penalizes the line visibility estimator it is
considered. Thus, a line containing a bad sample has a very limited
amount of samples in it (cases A and B in Fig. 1), so all lines
containing less than k samples are discarded (|li| < k), and so are
the samples within them. The value of k is a parameter specified by
the user, and empirical tests have proven that values in the range
[4 . . . 6] provide good results.

After removing the lines created by interferences in the scanner,
imperfections in the walls are filtered using a second parameter,
α, that indicates the maximum tolerance for wall deviations. All
consecutive lines with an angular deviation smaller than α, are
combined and recalculated considering all samples.

The result of this stage is a new set of lines L′ = (l′1, l′2 . . . l′o)
that improves the segmentation obtained in L = (l1, l2 . . . lm), and
that verifies that o 6 m.
4.4. Corner extraction

To efficiently compare the resulting set of lines L′ with the
known map, a global registration between the two datasets is
necessary. One of the most common techniques to perform this
operation is to simplify the representation of both datasets into
simpler ones. This way, alignment calculations are considerably
accelerated.

Instead of working directly with lines, the use of corners is
proposed to perform this operation. A corner is defined by the
intersection between two consecutive lines, and characterized by
its inner angle (β), its position (x, y) and its orientation (θ).

To obtain the set of corners C = (c1, c2 . . . cp) defined by
L′ = (l′1, l′2 . . . l′o), all lines are intersected between them, storing
only the intersections that are close enough to the endings of both
lines. All calculated cornersmaybedonot exist in the realworld but
they can be very helpful in the location algorithm (e.g. this allows
to avoid interferences caused by small pillars like the one shown
in Fig. 5).

Given the interest in accelerating global registration, instead of
using all corners, only the best characterized is used: c . To find
this one among all C , the quality of a corner is defined as |ci| =
min(|l1| , |l2|), being l1 and l2 the lines that generate it, and |l1| and
|l2| the amount of samples of each line, respectively.

c = max (|ci|) , ci ∈ C
|ci| = min (|l1| , |l2|) , l1 ∈ ci, l2 ∈ ci.

(4)

5. Localization

The localization stage takes, as input data, the resulting corner
obtained in the segmentation stage and a pre-calculated map,
where all the corners have been identified. By aligning these
corners with the one obtained in the previous stage, all possible
locations for the robot are inferred.

For each location, ameasure of correctness is calculated, so they
can be sorted according to the quality of achieved results. Themost
correct result is expected to be the robot localization in the real
world.

5.1. Matching calculation

This stage deals with the calculation of all possible locations of
the robot in the real world. To do so, all corners in the known map
with a similar inner angle to the one obtained in the segmentation
stage are aligned, producing each alignment a localization for the
robot.

In order to accelerate calculations, the known map has been
pre-processed so all corners have been obtained and sorted accord-
ing to their inner angle. This way, finding similar angles computa-
tional cost is reduced to O (log2 (n)), being n the total number of
corners in the map. In case the map is too big and, to simplify this
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Fig. 6. Alignment between corner c and a corner from the known map m. (Top-
left) Characterization ofm, in global coordinates. (Top-right) Characterization of c in
local coordinates. (Bottom) Correspondence between both corners and robot pose
calculation.

search, once the location of the robot has been calculated only cor-
ners around the last known position have to be checked.

Given an alignment between corners, the robot orientation
(θrobot) is calculated as follows:

θrobot =
π

2
+ θm − θc −

(βm − βc) ∗
l1c l1c + l2c  (5)

where θm is the orientation of the selected corner in the map (in
global coordinates), θc is the orientation of the corner calculated
in the segmentation stage (in local coordinates), βm is the inner
angle of the selected corner in the map, βc is the inner angle of the
corner calculated in the segmentation stage, and

l1c  , l2c  are the
amount of samples contained in the lines that define the corner
calculated in the previous stage.

By calculating θrobot as proposed, the difference between inner
angles is compensated proportionally to the amount of samples
of each line that define the corner c. It is expected that, the more
samples a line contains, the more accurate the estimation is.

Then, the robot position (xrobot , yrobot) is inferred by simple
triangulation, as shown below:

xrobot = −xc ∗ cos (θrobot)+ yc ∗ sin (θrobot)+ xm (6)
yrobot = −xc ∗ sin (θrobot)− yc ∗ cos (θrobot)+ ym

where xm and ym are the global coordinates of the intersection
point defined by the selected corner in the map, and xc and yc
are the local coordinates of the intersection point defined by the
corner calculated in the segmentation stage. Fig. 6 illustrates these
concepts.

5.2. Cost function

This is the last stage in the proposed technique, and it is
responsible to evaluate the quality of each pose calculated in the
previous one. The final result of the localization algorithm is a
sorted list of possible poses, where the first element is expected
to be the real world’s robot position.

To quantify the quality of each possible pose calculated using
the known map, the set of measures D′ = (d′1, d′2 . . . d′n) that the
sensor should have produced in ideal conditions (nomeasurement
error), given the position and orientation calculated.

The total error of a given orientation can then be calculated as:

error =

06i<n


di − d

′

i

2
(7)

being di the original measures returned by the sensor.
In case the computational cost of these calculations does not

satisfy the execution frequency required, as it occurs at some
robots with limited computational resources only a subset of
equispaced distances can be used.

6. Experiments

In order to verify the correct functionality of GEMA2 algorithm,
it has been implemented and analyzed in an experimental
platform. This platform is based on a Robotino R⃝ mobile robot
equipped with a laser range finder sensor.

Robotino is a FESTO mobile robot system with three omnidi-
rectional drives [21]. The robot controller consists of an embedded
PC running with a Linux operating system installed on a compact
flash card. In order to improve its functionality, Robotino is also
equippedwith several types of sensors, like infrared distancemea-
suring sensors, incremental encoders, anti-collision sensor, analog
inductive proximity sensor, camera module, etc.

Robotino is driven by 3 independent, omnidirectional drive
units. They are mounted at an angle of 120° to each other. The
drive units allow for motion in all directions – forward, backward
and sideways – and the robot can be turned on the spot as well.
Each of the 3 drive units consists of a DC motor, a gear unit, an all-
way roller, a toothed belt and an incremental encoder unit. Actual
motor speed can be compared with desired speed by means of
the incremental encoder, and can then be regulated with a PID
controller.

The controller unit consists of 3 components:

• PC 104 processor, compatible with MOPSlcdVE, 300 MHz, and
Linux operating system with real-time kernel, SDRAM 128 MB
and Ethernet, USB and VGA interfaces.
• Compact flash card that contains the operating system, the

functions libraries (C++ API) and the included programs for
controlling Robotino.
• Wireless LAN access point.

For accessing the functions, libraries, execution programs and
Linux environment on the PC 104, a terminal program via the
WLAN connection has been used. With this program it is possible
to edit the source code, compile and execute the Robotino control
functions.

In order to read the measures for the proposed automatic
localization algorithm, the Hokuyo URG-04LX-UG01 has been
used [22]. It is a laser sensor for area scanning. The light source of
the sensor is an infrared laser, and the scan area is a 240° semicircle
with amaximumradius of 5600mm. Pitch angle is 0.36° and sensor
outputs the distance measured at every point (maximum: 684
steps). Principle of distance measurement is based on calculation
of the phase difference, due to which it is possible to obtain stable
measurements with minimum influence from object’s color and
reflectance.

The Hokuyo laser range finder is connected via USB to the
controller unit of Robotino. For software integration, a library
offered at [23] has been used, which provides the basic methods
of connection and receiving laser measurements. The connection
is made using the COM port assigned to the laser, and measures
are asynchronously received with a period of 400 ms per event. At
each event 684 measures are stored and processed. See Fig. 7.
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Fig. 7. Robotino with Hokuyo laser range finder installed.

Several tests with the Hokuyo with Robotino were performed
to calculate the actual computational cost of the algorithm based
on the number of samples collected by the laser. Fig. 8 shows the
relation between the time used by the algorithm according to the
number of measures processed by Robotino’s processor and the
global correction of the technique respect to the sampling ratio,
in an outlier-free environment.

As it can be seen, the computation cost is linearly related to the
number of samples. In the worst case, using 668 measures from
the laser, GEMA2 takes 0.058 s to run, which is not a problem
for Robotino processor and it allows to locate the robot in each
iteration of the control loop (control loop period is set at 100 ms).
Also, global correction of the technique decreases, as the number
of samples considered is reduced.

To analyze in depth the computational cost of each phase of
the algorithm, Fig. 9 shows the cost distribution of all stages for
each test performed according to the number of samples. For
example, for 668 samples, the total time is 0.058 s. The data
acquisition stage occupies 0.00464 s (8% of the total time), the
lines inference algorithm 0.0377 s (65%), filtering, corner detection
and localization 0.00116 s (2%) and the cost function occupies the
rest: 0.0145 s (25%). However, for 66 samples the total time is
0.0044 s, with a 0.00136 s for the cost function (31%), 0.00015 s
for filtering, corner detection and localization (3.5%), 0.00242 s for
line inference (55%) and 0.00046 s for acquisition (10.5%).

Analyzing the complete graph, the line inference stage is the
heaviest one, with 65% of time on average. The cost function stage
occupies 25% on average and the acquisition 10%. The filtering,
corner detection and localization phases are the fastest, with 2%
of the algorithm execution time.

To estimate the accuracy of the proposed technique, an offline
registration algorithm that uses as many ICP iterations, has been
applied using the same data collected by the robot in actual testing.
This algorithm iterates over itself until it converges to the actual
position of the robot. By checking that all paired points of the
ICP algorithm in the last iteration are correct, it ensures that
the achieved solution is the global optima, so it can be used as
ground truth to evaluate the accuracy of the technique. Table 1
shows the actual accuracy in different scenarios calculated by this
technique. These scenarios include an outlier-free environment, an
environment with moving people in front of the robot, a scenario
with some pieces of furniture, not included in the ground truth
map and, finally, a scenario with moving flat outliers.

On the other hand, to evaluate the robustness of GEMA2, the
impact of outliers in several scenarios where the ground truth
map does not fully correspond with the sensor readings, has been
tested. Achieved results show that the effect of outliers can be
classified in two major groups: (1) the presence of an outlier
‘‘breaks’’ a wall, so the total amount of samples used to infer the
line is reduced causing several non-consecutive segments. (2) If the
outlier is a flat surface it can be considered as a falsewall leading to
a misinterpretation of the environment. Fig. 10 shows both cases.

Post-processing the extracted lines and merging together
aligned segments can attenuate the effects of case 1. This, of course,
will require extra computing time. However, empirical tests have
shown that results of the proposed technique without this post-
processing stage are very robust when using a full sampling ratio
as Table 1 shows.

The tests performed to evaluate this case include static and
dynamic outliers, with the robot in static and dynamic locations.
It is important to notice that, since time is not considered (each
iteration previous data is ignored), there is no distinction between
moving and static outliers.

For case 2, the effect of misinterpreting a flat outlier as a wall is
very dependent on several factors: the portion of the environment
visible for the sensor, the size and distance of the outlier respect
to the sensor and the ambiguity introduced by the location of the
outlier: if the outlier is isolated in the middle of an empty space, or
if it makes an angle with other line segment that does not exist in
the ground truth map, the risk of misinterpretation is very low.

Next table shows the results achieved for the different
evaluation scenarios, considering all the samples collected by the
sensor (sampling ratio=1). Success Rate measures the robustness
of the technique, since a result is only considered successful if
the paired corners are correct. Accuracy is the Euclidean distance
between the estimated location, and the correct one. Only correct
results are considered for estimating the accuracy.

It must be taken into account that the GEMA2 algorithm is not
using any feedback. Each iteration the previous estimated position
is ignored and a new one is calculated. Thus, the algorithm does
not accumulate any error between iterations and it does not need
Fig. 8. (Left) Several tests to show the relation between the execution cost of the algorithm in Robotino processor and the number of samples collected by the Hokuyo
sensor. (Right) Global correction of the achieved results, depending on the sampling ratio used in an outlier-free environment.
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Fig. 9. Measures about the cost distribution of the algorithm for different number of samples collected by Hokuyo.
Fig. 10. (Left) Three people standing in front of the robot. Notice how the longest wall is split into four different segments. (Right) A box, represented with a blue line,
leaning against a wall and misinterpreted as a wall.
Table 1
Results achieved for the different evaluation scenarios with sampling ratio=1.

Test scenario Success rate Accuracy (cm)

Without outliers 100% 3.16
Moving people 97.67% 7.87
Furniture 88.66% 5.13
Flat outliers 95.99% 5.75

to know any previous estate. Considering previous estimations
might accelerate the execution, evaluating only the part of themap
close to the latest known position. This is being considered for
futurework, aswell as the extension for recognizing other different
primitives rather than lines.

7. Conclusions

A global self-localization fast analytical algorithm for resource-
limited systems has been proposed: GEMA2. The algorithm needs
a laser or any other environment analysis sensor for autolocate
within a knownmap. Contrary to other algorithms as Monte Carlo,
which uses particle filters hardly implementable in embedded
systems, or SLAM algorithmwhich requiresmany resources to run,
GEMA2 algorithm allows to autolocate analytically by a geometric
matching, achieving a linear cost in relation to the number of
measurements taken.

Given the low computational cost, this algorithm can be used
cyclically in a separate thread or it can be launched by events,
for example when the positioning error by odometry is too high,
because it does not need any feedback.

Although the algorithm gives in most cases a unique position-
ing, in cases where there is an ambiguity between multiple solu-
tions, results of the algorithm can be merge by Kalman filters with
those obtained by odometry or other sensors such as gyroscopes,
accelerometers, compass. . .

To illustrate the practical experiment with Robotino platform
and some robustness tests with different scenarios with outliers,
two videos (‘‘mmc1.mp4’’ and ‘‘mmc2.mp4’’ respectively) are
available in Supplementary material related to this article, which
can be found online at http://dx.doi.org/10.1016/j.robot.2014.01.
009.
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