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Abstract—This paper presents a local sensor fusion technique
with event-based global position correction to improve the local-
ization of a mobile robot with limited computational resources.
The proposed algorithms use a modified Kalman filter and a new
local dynamic model of an Ackermann steering mobile robot. It
has a similar performance but faster execution when compared to
more complex fusion schemes, allowing its implementation inside
the robot. As global sensor, an event-based position correction
is implemented using the Kalman filter error covariance and
the position measurement obtained from a zenithal camera. The
solution is tested during a long walk with different trajectories
using a LEGO Mindstorm NXT robot.

Index Terms—Mobile robots, Kalman filtering, Robot sensing
systems, Position measurement, Pose estimation, Sensor fusion,
Inertial sensors, Dynamic model, Embedded systems, Global
positioning systems, Event based systems.

I. INTRODUCTION

LOCALIZATION is a fundamental issue in autonomous
mobile robots. Without the knowledge of its exact po-

sition and heading (pose), the robot would not be able to
navigate in the environment, follow a path, go to a goal
point or return to its starting point. This is a challenging
issue since the robot position information is obtained from
sensors subject to noise and nonlinearities. If this fact is not
taken into account, it could lead to a big uncertainty in the
positions measure. This problem has been widely studied in
the literature ( [1], [2]) in multiple ways. First, assuming that
the initial position prior to the movement is known, the relative
robot pose can be estimated by using the local information
of the robot movement obtained from several sensors, this
is known as Dead Reckoning, Odometry ( [1], [3]) or Local

pose estimation. This procedure has a fast response time but
with it, the estimation error grows unbounded over time.
Second, if the initial position of the robot is unknown, but
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it possesses a sensor that obtains the relative position between
the landmarks in the environment and itself, then the robot
can build a map of the environment and obtain its absolute
position simultaneously using the fusion of the movement
and the environment sensors. These methods are known as
simultaneous localization and mapping (SLAM) ( [4], [5] and
[6]). These strategies usually require a high consumption of
resources due to the computational complexity of the solution
and in some cases also because of the processing needed
for the landmark sensor (mainly when it is vision based).
This and other issues such as data association (loop-closure
problem) and nonlinearities, make the real-time implementa-
tion a challenging issue [7]. Third, using a complex sensor
like a global positioning system (GPS, zenithal camera, or a
radio-based sensor as seen in [8]), the absolute robot pose in
the environment can be determined without using any of the
local information. This procedure is known as Global pose

estimation and has the disadvantage of low response time,
the limitation of working only indoors (camera) or outdoors
(GPS) depending on the sensor used; and, in the GPS case,
the appearance of several problems like multipath propagation
depending on the environment navigated [2].

As the robot position information is needed by the nav-
igation algorithm, the localization method response time is
important. If the robot location information is missed or
delayed, the updated data would not be available for the
control algorithm and it will produce a miss timed control
action that can lead the system to an unstable behavior. Due to
that, the Local pose estimation is commonly used as the main
source of information for the navigation algorithm and the
Global position system is commonly used to correct the local
estimation when the global information is available ( [9], [2]).
This is usually implemented using a fusion scheme based on a
version of the Kalman Filter (KF) like the Linear KF, Extended
(EKF) or the Unscented (UKF) (algorithms can be found in
[10], [11], [12] and [13]). This takes into account the accuracy
of each sensor and the robot model (Ackermann steering is
used in this paper) to join the information optimally, increasing
the localization accuracy. Although the estimation of the
robot pose is essential, other tasks such as communications
(supervision and coordination), sensor management (reading
and calibration) and control algorithms (actuators drive and
navigation) are also important and require processor time. This
establishes a design compromise between the complexity of
the localization technique and its precision when the robot is
resource-limited. Complex Fusion schemes based in nonlinear
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models and filters (UKF and other fusion techniques like
particle filters [14], [15]) will provide a precise estimation but
will require longer execution times as they perform complex
calculations (large matrix inverse and square root) and also
require a larger number of parameter identification to obtain
the robot model. On the other hand, linearized fusion schemes
using the EKF take less time to calculate, but if the model is
highly nonlinear, it will diverge quickly.

Considering these factors, a good localization algorithm
should be resource-efficient (bandwidth, processor time and
energy consumption [16]), it must take into account local
and global information using all available sensors with a
fusion algorithm and, ideally, it should work very close in
performance to more complex algorithms in order to provide a
good estimation of the robot position. There are several works
in this area, as stated in the next section.

II. RELATED WORK

Mobile robot localization using sensor fusion is a well-
researched topic and there are several examples of localization
algorithms developed for different types of mobile robots
and sensors. Many of them use local estimation only, mostly
with EKF based sensor fusion, and present only simulated
results ( [17], [18]) without the real robot constraints; or
algorithms implemented on a computer external to the robot
( [19] and [20] using Pioneer robots), with the disadvan-
tage of communication delays and the added weight to the
robot. Onboard implementation of the fusion algorithm is less
common, requiring a robot with a powerful processing unit.
This is the case presented in [21], where a multi-rate EKF
fusion algorithm is used with the inertial measurements of
a three-axis gyroscope and accelerometer and with an optical
navigation sensor (laser mice type) with the advantage of non-
slip measurement. The filter is tested using a custom build
Ackerman type mobile robot showing good performance in
the mapping of a 3-D pipeline; but without autonomous nav-
igation. There are also few implemented examples on global
estimation in indoor environments, using the EKF with an
inertial measurement unit (IMU) and different global sensors,
such as an ultrasonic satellite (U-SAT [22]), a zenithal camera
[23] or Radio Frequency Identification tags (RFID [24]), all
showing an improvement in the localization over traditional
encoder-only odometry.

The Ackermann type robot or car is used by many examples
in outdoor environments; most of them use an IMU, a GPS
and a laptop to perform the fusion algorithm, once again it
is EKF based in most cases. For example, in [25] an EKF
is used to fuse the observations from a DGPS, a Linear
Variable Differential Transformer for the steer angle and the
velocity encoder to obtain the pose estimate of a vehicle,
and then use laser scan data as landmarks to improve the
robot localization. A car is used in [26] with an IMU with
two magnetometers and a single GPS antenna installed. The
EKF fusion is performed in a notebook and the GPS data is
used as soon as it is available (constant rate). A similar setup
is used in [27] but aiding the EKF with a Neural Network
trained using Wavelet multiresolution analysis (WMRA) to

aid the localization during GPS outages and performing the
experimental test on road. In [28], a car equipped with an high
grade IMU and a GPS (with 1 and 2 antennas) is used with a
full 3D bicycle model for the Ackermann vehicle to estimate
the car pose, a KF is used in the estimation of the model
parameters. Also in [29], a two real-time kinematic global
positioning system (RTK-GPS) units with three antennas and
an IMU with a gyroscope is used in an adaptive EKF to
estimate the robot pose. The sensor covariance is adapted
to reflect the GPS outages reducing the estimation errors. In
[30] a cascaded configuration is used: a first EKF is used
to estimate the robot pose, and this is used as input for
the second EKF to estimate the vehicle dynamics required
for control. The system is tested in an Ackermann farm
tractor using a GPS, a fiber-optic gyroscope (FOG), a Doppler
for longitudinal velocity measurement and a potentiometer
for measuring steer angle. Another car like experiment is
performed in [31] but using a numerical algorithm that adapts
the model structure online during GPS availability and works
in cascade with a KF. This case is extensively tested in long
distance showing good performance and low errors during
GPS outages. Finally a complete general review is presented
in [2] for positioning and navigation, covering the general
aspects of the systems commonly used for sensor fusion and
localization improvement.

The examples presented are in most cases computationally
expensive, and not implemented onboard the robot processor
(except in [23] and [21]). Also, most of them use the GPS in
a regular sample time basis, even if the local estimation error
(using the IMU and the encoders) is small. A better approach,
to save computational resources, would be to use the global
information only when the odometry error is big enough (when
it passes a predefined limit). This event based update can save
process time and extend the battery life. To deal with these
limitations in the current algorithms, the main objective of
this paper is to develop a new form of the multisensor KF
fusion algorithm, with similar performance when compared to
more complex fusion schemes, but with lower computational
cost and easy implementation on a limited resource mobile
robot. This is achieved by using a new and simpler robot
dynamic model with a cascade KF-EKF technique to perform
the local sensor fusion first, and then use odometry from this
fusion to estimate the robot pose while using an event based
correction from a zenithal camera when the local error passes
a predefined threshold. As platform cost is an important factor
due to the current challenge of developing high-performance
systems using low cost technology [2], for this paper, the
LEGO R©NXT will be used as it provides low cost sensors
and robot.

After this review, the paper is organized as follows. In
section 3, the mathematical models needed by the KF equa-
tions are obtained for an Ackermann type robot. The main
contributions are exposed in section 4, where the event based
localization algorithms are presented, and in section 5 that
shows the implementation aspects in the proposed platform. In
section 6, the performance and run time tests comparing the
performance of the proposed methods are presented. Finally,
some conclusions are drafted in the last section.
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III. MODELS OF AN ACKERMANN STEERING ROBOT

An Ackermann steering robot consists of a rigid body with
center of mass and gravity denoted by P0, turning radius
RG, mass MG and moment of inertia IG, with two non-
orientable (fixed) rear wheels separated a distance b between
them and a distance l from two orientable front wheels (also
with a distance b between them) as shown in Fig. 1(a). The
Ackermann steering system modifies the heading of the front
wheels in a way that, at low speeds, all the tires are in pure
rolling without lateral sliding [32]. This is accomplished when
each wheel follows a curved path with different radius but with
one common turn center Cr, as shows Fig. 1(a). This system
is analyzed using the bicycle model ( [32] and [33]) shown
in Fig. 1(b) assuming planar motion. With this, the mean of
the inside and outside front wheels steer angles (φi and φo)
is used (φ) and the back wheels are considered as one single
wheel where the motor force is applied. The kinematics and
dynamics of this robot are analyzed to obtain the model that
will be used in the KF.

A. Kinematic Model

This model represents the robot velocities evolution in a
fixed inertial frame. The robot pose is defined by its position
P0 = (x, y) with the heading angle θ in the Global reference
frame (XG,YG) in Fig. 1(a). By knowing the linear and angular
velocities (v and ω) in the Local frame (XL,YL), the global

velocities are defined as
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By discretizing and recursively integrating (1) with sample
time Ts, the following robot global pose L is obtained
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The absolute linear acceleration of P0 in the global frame
a, with components (ax,ay), is expressed in terms of the
accelerations (v̇x,v̇y) and velocities in the local frame using
its normal and tangential components (an,at) [32]

ax = v̇x − vyω
ay = v̇y + vxω

(3)

The kinematic relation between φ and ω is shown in

ω = (vx tanφ)/l (4)

With this, the robot dynamics are analyzed next.

B. Dynamic Model

This model represents the robot linear and angular acceler-
ations (a,α) evolution in terms of the forces applied to it in
the front (Ff ) and rear (Fr) wheels and the angular moment
(τ ). The models in the literature represent the dynamics in the
global reference frame (for example [34], [35], [36], [37] and
[38]) but these yield too complex nonlinear models that can not
be implemented in a fusion scheme using a limited resources
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Fig. 1. Ackermann steering mobile robot

mobile robot, or a model with many unknown parameters that
have to be identified for each used robot and motor (they
are not provided by most manufacturers). As the limitation in
computational resources is quite common when working with
mobile robots, a simpler model is needed to implement the
fusion scheme. Also, as no direct measurements of the motor
forces or input currents are available in most robots, obtaining
the dynamic model in terms of the linear accelerations is
convenient. These accelerations can be measured by two 3D
accelerometers placed above the center of each wheel axis,
using a similar configuration of the one proposed in [39],
where two one-axis accelerometers are used to obtain ω, but
using the accelerometers to obtain vx,vy and ω with the new
dynamic model. Instead of using directly the second Newton’s
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Law to obtain a and α in the center of mass, the robot
rigid body can be studied as a dynamically equivalent particle
system, formed by three mass particles Mr, Mc and Mf joined
by two massless connectors of constant length Rr and Rf

(with Rf = lf = Rr = lr = 0.5l) as shown in Fig. 1(b).
Using this equivalence and the conditions stated by [40] (full
development in appendix A), the accelerations are obtained as

ax = λa (af,x + ar,x)
ay = λa (af,y + ar,y)
α = λαγ (af,y − ar,y)

(5)

The parameters of the particle system depend on MG, IG and
the robot shape. In the case of a robot with rectangular form,
with length c and width b, they are obtained as

γ = 1
6

(

1 + (b/c)
2
)

, λa = 0.5

λα = 6

c(1+(b/c)2)
, λαγ = 1

c

(6)

Taking into account the normal acceleration components by
substituting (5) in (3)

v̇x = vyω + λa (af,x + ar,x) = vyω + λau1

v̇y = −vxω + λa (af,y + ar,y) = −vxω + λau2

ω̇ = λαγ (af,y − ar,y) = λαγu3

(7)

By discretizing and recursively integrating (7), the robot local

dynamical model is obtained in (8).
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By substituting (8) as inputs of (2) the robot global dynamical
model is written as
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Finally, in case the robot travels at low speed, the non-slip
condition ( [33], [32]) can be assumed (vy ≈ 0), leading to the
simplified local and global models
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The models (2), (5) and (8) to (11) are used in conjunction
with the KF to estimate the global pose of the robot as shown
in the next section.

IV. EVENT BASED LOCALIZATION

In this section the proposed event based localization
schemes are described, but first a short review of the time
based method is presented. To simplify the notation, the
models used in the algorithms are referred as linear when
it can be written as equation (12a) with input uk ∈ ℜu,
measurement zk ∈ ℜm and state xk ∈ ℜn, or nonlinear when
a non-linear function f is needed to relate the state at time
k with the previous time step k − 1 and h to relate the xk

to zk as shown in (12b). Also, the terms wk, vk represent
the process and measurement noises at time k that have an
independent, white probability distribution with zero mean.

xk=Axk−1+Buk−1+wk−1, zk=Hxk+vk (12a)

xk = f (xk−1,uk−1,wk−1) , zk = h (xk,vk) (12b)

A. Global EKF Localization with time based update

This method is the “traditional” one, which uses the
model (9) (or (11)) and all the available measurements to
estimate the robot pose at every time k. If the available
measurements are vx,enc, vy,enc and ωenc from the
encoders, ωgyr from a gyroscope, u1, u2, u3 from two
3D accelerometers (placed as shown in Fig. 1(a)) and the
global position information (x, y, θ)GM , obtained from
a zenithal camera or other global sensor, then zk =
[

xGM yGM θGM vx,enc vy,enc ωenc ωgyr

]T
is

used with uk =
[

u1 u2 u3

]T
in (9). This model is

used in the EKF algorithm (Alg. 1) which performs the
sensor fusion at every time k (time based) using the process
and measurement noises covariance matrices Qk and Rk

respectively, and obtains the state vector estimate x̂k i.e. the
robot pose in (9) and the covariance of the estimation error
Pk. This method has all the available information at any time
k (all available sensors are used in zk and uk) but requires
large matrix inversion to obtain the filter gain Kk; thus large
memory and resources are needed.

Algorithm 1: Recursive EKF algorithm
Input : uk,zk,xk−1,Pk−1

Output: x̂k,Pk

Data: f and h form model (9),Qk,Rk

Initialization: x0,P0

for current time k do
Prediction Step:
x̂k = f (x̂k−1, uk−1, 0)

Ak = ∂f
∂x

|x̂k−1,uk−1, 0
Hk = ∂h

∂x
|x̂k, 0

Wk = ∂f
∂w

|x̂k−1,uk−1, 0
Vk = ∂h

∂v
|x̂k, 0

Pk = AkPk−1A
T
k +WkQk−1W

T
k

Correction Step:

Kk = PkH
T
k

(

HkPkH
T
k + VkRkV

T
k

)−1

x̂k = x̂k +Kk [zk − h (x̂k, 0)]
Pk = (I −KkHk)Pk

end
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B. Local EKF Localization with Global KF event based

update

A first approach to reduce the communication, processor
and memory requirements is to reduce zk dividing it into
the local and global measurements. With this, the robot pose
is determined every time k using (9) in the EKF and the
local zk =

[

vx,enc vy,enc ωenc ωgyr

]T
with uk =

[

u1 u2 u3

]T
, and using the global position LGM =

[

xGM yGM θGM

]T
to correct the local estimation on

an event based scheme. The basic idea is to use LGM only
when the error in the estimation is big enough, indicated by an
event that uses the pose section of Pk in the EKF. This Pk,xy

is used to obtain the area of the 3−σ error interval ellipsoids
using equation (13), where the ellipsoids axis are aσ and bσ
and le = 3 for the 3−σ error. With this, the event is generated
using the ratio RA of the ellipsoid area Aellip and the robot
area ANXT . This is a normalized indicator of the moment in
which the error in the robot position is as large as the size
of the robot. For example, when RA exceeds a certain level
RA,lim, e.g. 1.6 (indicating that the error area is 1.6 times
the robot area) then LGM is used to correct the robot pose.
This limit is chosen as a compromise between the number of
calls (energy and processor time consumption) and the desired
precision of the estimated position, being a reasonable range
0.6 ≤ RA ≤ 2 for the LEGO NXT.

Pk,xy=

[

σ2
x σ2

xy

σ2
xy σ2

y

]

Tσ=
√

σ4
x+σ4

y−2σ2
xσ

2
y+4σ4

xy

ANXT = b · c

,

aσ=
√

2l2e|Pxy|
σ2
x+σ2

y+Tσ

bσ=
√

2l2e|Pxy|
σ2
x+σ2

y−Tσ

Aellip=πaσbσ

(13)

To correct the pose with LGM , the estimated pose xk,p of the
EKF output can be replaced by LGM and Pk,p = Pk,x,y,θ

by the corresponding values of P0. But a better approach is
to fuse the EKF output with LGM taking into account the
global sensor accuracy. This is done by using the EKF output
(pose states and error covariances) as the prediction step of
a linear KF. The model used in the fusion is (12a) with A
and Hp both being the identity matrix I3,3 and no input. The
Rk,GM values are obtained from the global sensor accuracy.
With this, the KF will fuse the local estimate with the global
measurement. The resulting Pk,p decreases when the pose is
corrected, resetting the event. The event based EKF is shown
in Alg. 2. A cascaded model approach can also be used, as
described next.

C. Local cascaded EKF Localization with Global KF event

based update

This approach takes a further step in reducing computa-
tional requirements. Instead of using (9) with the full state,
the velocities in (8) are used to perform the local fusion,
and then, (2) is used to obtain the robot pose. With this
xk = [vx, vy, ω], and again uk =

[

u1 u2 u3

]T
and

zk =
[

vx,enc vy,enc ωenc ωgyr

]T
. Also LGM is used

to correct the local estimation in the event based scheme. This
reduction in both xk and zk (comparing to the time based

Algorithm 2: Recursive EKF algorithm with event based
global KF update

Input : uk,zk,xk−1,Pk−1,LGM

Output: x̂k,Pk

Data: f and h from model (9),Qk,Rk,ANXT

Initialization: x0,P0

for current time k do
Prediction Step EKF (same as Alg. 1)
Correction Step EKF:

Kk = PkH
T
k

(

HkPkH
T
k + VkRkV

T
k

)−1

x̂k = x̂k +Kk [zk − h (x̂k, 0)]
Pk = (I −KkHk)Pk

3− σ ellipsoid area Aellip using (13)
RA = Aellip/ANXT

if RA > RA,lim then
Global Correction Step, pose KF
Kk,KF =Pk,pH

T
p

(

HpPk,pH
T
p +Rk,GM

)

−1

x̂k,p= x̂k−1,p+Kk,KF (LGM−Hpx̂k−1,p)
Pk,p=(I−Kk,KFHp)Pk,p

end
end

scheme) allows a fast calculation in the matrix inversion re-
quired for Kk, reducing the memory use and leaving resources
for other tasks. As the uncertainty in the velocity measurement
is not propagated to the pose estimation as does the previous
methods, a linear recursive approximation is used to propagate
the covariance from the velocity Pk,vx,vy,ω to the pose Pk,p

and also propagate it in time ( [13], [41]) as shows (14). In
this, ∇Fu is the gradient operator applied to (2) respect to the
inputs (vx,vy,,ω) and Qx are set equal to the Qk, pose terms
in the EKF. The cascaded event based EKF is shown in Alg.
3. A final algorithm can be proposed with a smaller xk, as
described next.

Pk,p = Pk−1,p +∇FuPk,vx,vy,ω∇F T
u +Qx (14)

D. Local cascaded KF Localization with Global KF event

based update

This approach takes advantage of the non-slip condition
([33], [32]) in case the robot travels at low speed, using the ve-
locities in (10) to perform the local fusion, and then uses (2) to
obtain the robot pose. As (10) is linear, the fusion is performed
using the KF instead, saving more computational resources
(compared to Alg. 1 to 3) as the linearization step of the EKF is
not needed. With this xk = [vx, ω] and uk =

[

u1 u3

]T
. In

replacement of the vy measurement, ωcomp from a compass is
used in zk =

[

vx,enc ωenc ωgyr ωcomp

]T
. Also LGM

is used to correct the local estimation in the event based
scheme by using the covariance propagation of (14). Without
the estimation of the slip, this method is less accurate in the
case of high speed movements or in certain surfaces, but this
can be compensated (within certain limit) by using a low
RA,lim value. The cascaded event based KF is shown in Alg. 4.
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Algorithm 3: Recursive cascaded EKF algorithm with
event based global KF update

Input : uk,zk,xk−1,Pk−1,LGM

Output: x̂k,Pk

Data: f and h from model (8),Qk,Rk,ANXT ,Qx

Initialization: x0,P0

for current time k do
Prediction Step EKF (same as Alg. 1)
Correction Step EKF (same as Alg. 1)
Pose estimation using (2)
Covariance propagation using (14)
3− σ ellipsoid area Aellip using (13)
RA = Aellip/ANXT

if RA > RA,lim then
Global Correction Step, pose KF
(same as Alg. 2)

end
end

With this, the selected platform, the LEGO NXT is described
below along with the experimental results.

Algorithm 4: Recursive cascaded KF algorithm with event
based global KF update

Input : uk,zk,xk−1,Pk−1,LGM

Output: x̂k,Pk

Data: A, B and H from model (10),Qk,Rk,ANXT ,Qx

Initialization: x0,P0

for current time k do
Prediction Step KF:
x̂k = Ax̂k−1 +Buk−1

Pk = APk−1A
T +Qk

Correction Step KF:

Kk = PkH
T
k

(

HkPkH
T
k +Rk

)−1

x̂k = x̂k +Kk [zk −Hx̂k]
Pk = (I −KkHk)Pk

Pose estimation using (2)
Covariance propagation using (14)
3− σ ellipsoid area Aellip using (13)
RA = Aellip/ANXT

if RA > RA,lim then
Global Correction Step, pose KF
(same as Alg. 2)

end
end

V. IMPLEMENTATION IN THE LEGO NXT

The tests are performed in an Ackermann drive LEGO NXT.
In this section the platform is described along with the local
sensor calibration and preprocessing, the navigation algorithm
and the global sensor scheme. Finally the platform and filter
parameters are exposed.

A. Test Platform Description

The LEGO Mindstorms R©NXT is a low cost mobile robot
platform. Its control unit, the NXT, is based on an ARM7 32-
bits microcontroller with 256 Kbytes FLASH and 64 Kbytes
of RAM. For programming and communications, NXT has an
USB 2.0 port and a wireless Bluetooth class II, V2.0 device
and 4 inputs and 3 analog outputs. The basic pack offers 4
electronic sensors: touch, light, sound and distance. But in
addition of these default sensors, nowadays a great variety
of different sensor is available, as for example vision cam-
eras, magnetic compass, accelerometers, gyroscopes, infrareds
searchers, etc. (www.mindsensors.com, www.hitechnic.com).
The actuators consist on dc motors that have integrated the
encoder sensors with a 1-degree resolution. A more detailed
description about LEGO NXT motors can be found in www.
philohome.com/tech.htm. The LEGO NXT robot used in the
tests is shown in Fig. 2. The sensors used in the fusion
scheme are two accelerometers placed above the center of
each wheel axis (for the dynamic model, Fig. 1(b)), one
gyroscope, one magnetic compass and the wheels encoders.
The programing platform used is the Java based LeJOS, due to
the programming advantages in the communications between a
robot and a supervising PC. Although the microcontroller can
perform many tasks given enough time, the main limitation of
this robot is the memory. It has a limit of 255 local variables,
1024 constants, 1024 static fields and a maximum code length
of 64kb when programing with LeJOS. Because of this, it is
an excellent option to implement the proposed filters as it does
not have enough memory to implement a large KF with many
states and measurements.

B. Local sensors calibration and preprocessing

The used local sensors must be calibrated to remove any
bias, this can be accomplished by doing a preliminary test
with the robot, with the sensors measuring the same value for
some time. Also, their values must be in the same units of
measurement (S.I. in this paper). The preprocessing is done to
obtain v and ω from the sensor data. Integrating the encoders
reading with a sample time of Ts = 50ms, vx is obtained
from the rear encoder and φ from the front. With this, ωenc

is obtained from (4) and vy,enc = vx tanφ. The gyroscope
directly measures ωgyr. And θcomp is measured from the
compass in a range [0, 2π], so it must be accumulated to obtain
a continuous measure of θ and then derivate it to obtain ωcomp.
As both, the calibration and the preprocessing steps, depend
on the sensors, these processes should be done for every robot
that is used in the experiments and also when a sensor or a
motor is replaced. The robot sensors are marked in Fig. 2.
Also, two gears are placed at the motors output to increase the
movement range allowing a smoother control in the steering.
Finally a differential is added to transmit the motor movement
to the wheels while allowing them to rotate at different speeds
(being vx the average of them), allowing the correct turn of
the vehicle.

http://www.mindsensors.com/
http://www.hitechnic.com/
http://www.philohome.com/motors/motorcomp.htm
http://www.philohome.com/motors/motorcomp.htm
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C. Navigation Algorithm

The tests are performed using the navigation algorithm
shown in Fig. 3, where Ωk =

[

ωr ωf

]T

ref
and Uk =

[

ur uf

]T
are the velocity reference vector and the motor

control action vector for the rear and front motors respectively.
In this, a predefined trajectory is stored in the robot memory
(for example a square, a circle, etc.) as a set of global
points. Knowing the initial position of the robot, the algorithm
calculates the distance Dmin,ref to the trajectory points to
determine the nearest one, then a look ahead distance is
added to obtain the objective point (x, y)ob. This point is
used by the navigation algorithm, a pure pursuit controller (see
examples in [1] and [3]) or a decentralized point controller, to
determine Ωk. This reference is followed by a PID controller
that generates the control action for the motors Uk to follow
the reference velocities, and so the desired path. One sample
time later, the sensors in the robot measure all the inputs for
the KF fusion scheme which estimates the actual position xk,p.
This is used again by the algorithm to obtain a new objective
point and keep the robot moving in the desired trajectory.

D. Global Sensor Scheme

This is the system shown in Fig. 4 being composed by
the camera (640x480, 30fps), the server that processes the
image (camera server - C.S.) and the server that communicates
with the robot (supervision server - S.S.). The C.S. executes
a Java based program that constantly gets the image from the
webcam, and makes the image processing to obtain the global
measured pose along with the time taken by the server to
obtain this value Tcam (50ms in average but the sent value is
the actual measured time). This information forms the message
that is communicated to the S.S. This server also stores every
measure in a file and a video for the later analysis of the

robot movement. When the event is generated, the robot asks
the S.S. via Bluetooth for a global measurement. As the S.S.
executes a Java program that is continuously listening for the
robot calls, the request is processed immediately, so it sends
the last message (pose and time) received from the C.S. to the
robot.

To deal with the communication delay, several actions are
taken when an event occurs. First, the output provided is the
EKF/KF estimation until the message from the S.S. arrives,
while a timer counts the time elapsed between the camera call
and the reception of the S.S. message Tss. Also the velocities
in the global axis V xe, V ye of the robot at the event time
are stored in the robot memory. When the message arrives
with the global position, the equation (15) is used to obtain
the displacement caused by the delay ∆(x, y) adding it to the
received (xr,yr) from the camera to obtain the LGM used by
the event based filter, assuming that the camera measure is
performed as soon as the message is received by the S.S. The
received heading θr is assumed to be constant during Tss.

∆T =Tcam+0.5 (Tss−Tcam)
∆X=(V xe∆T )
∆Y =(V ye∆T )

,
LGM,x=xr+∆X
LGM,y=yr+∆Y

LGM,θ=θr

(15)

Finally, to preserve the linear displacement assumed by (15),
a final condition is checked by the algorithm. There must
be no global updates performed when the robot is in a hard
movement (i.e. when applying a big control action to the steer
motor to negotiate a curve or to avoid an obstacle). This is
done checking the PID control. If the error (difference between
the desired and real value) in the steer motor velocity exceed
a certain value (|ef | > 2) then the robot is assumed to be in a
hard curve. In this case, the algorithm waits one second and
then checks again this condition. If it is false, then it makes
again the global update procedure and outputs the corrected
position.
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TABLE I
FILTER PARAMETERS FOR THE LEGO NXT

Q

State Alg 1 Alg 2 Alg 3 Alg 4

x
0.0001 0.0001 (Qx)y

θ

vx
0.01

0.01
vy -

ω 0.03 0.9

R

Measurement Alg 1 Alg 2 Alg 3 Alg 4

xGM
0.015 0.015 (event based)

yGM

θGM 0.00001 0.00001 (event based)

vx,enc 0.01
vy,enc 0.098 -
ωenc 0.038
ωgyr 0.013
ωcomp - 0.97

E. Platform and Filter Parameters

The required parameters for the fusion scheme are obtained
for the Lego NXT. For the dynamic model, the parameters cor-
respond to the solid box robot with b = 154mm, c = 167mm
and λa = 0.5 in (6). The measurement noise covariance matrix
R and the system error covariance matrix Q are obtained
from experimental tests, doing a trial and error tuning using
the sensor data obtained from the robot when a square and
a circular trajectory are followed. The criteria used to make
the adjustment was that the most suitable parameters are the
ones that make the KF trajectory estimated very similar to
the one measured by a zenithal camera. The adjustment was
done knowing that a small value in a term of these matrices
means that the KF will consider this value more relevant for
the estimation than the others. For example, a low value of the
ωgyr means that the filter will perform the estimation based
mainly in this measurement, so the others ω sensors and model
will be less relevant. The matrices Q and R are both diagonal,
with the corresponding values for the states and measurements
showed in the Table I. After discussing the implementation
issues, the preformed tests are presented next.

VI. EXPERIMENTAL TESTS WITH THE LEGO NXT

To test the performance of the proposed algorithms with the
event based global update (EBGU), several tests are performed
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Fig. 5. Algorithms performance, simulation test

in an Ackermann drive LEGO NXT. In this section, the
localization performance and execution time test are presented.

A. Performance Tests

A first test is performed without using the event based
correction. The robot is set to follow a square reference
trajectory while recording the local measurements and the
information of the C.S. to use in an offline Matlab R© sim-
ulation. This is shown in Fig. 5, where all the algorithms
show good performance. The closest estimation to the camera
measure is the one for Alg. 1, the EKF with 6 states and
7 measurements (EKF6e7m), as it has access to the global
measurement. The other algorithms, EKF6e4m in Alg. 2,
EKF3e4m in Alg. 3 and KF2e4m in Alg. 4 show a close
estimation to the camera measurement, but it is clear that
the localization accuracy is degraded when using only a less
resource demanding estimation scheme (simpler model or less
measurements) without the global information. Also, using
only the encoders is insufficient in this platform.

The proposed event based localization scheme will increase
the accuracy of these algorithms to be close to EKF6e7m, as
the second test in Fig. 6 shows. In this, the proposed EKF/KF
fusion schemes are implemented (onboard) on the LEGO NXT
(Alg. 2 to 4, using the EBGU) to follow a square trajectory.
Algorithm 1 is not implemented as it exceeds the Ts and the
memory limit. Again, good performance is observed as the
localization solution is closer to the camera measurement than
when the event based update is not used.

The final performance test, a long distance run, is done by
using the less resource demanding algorithm, KF2e4m, setting
the robot to follow a double square and a square trajectory for
30min, as the experimental results of Fig. 7 and 8 show. In
Fig. 7(a), the localization is done only using odometry from



MARIN et al.: EVENT BASED LOCALIZATION IN ACKERMANN STEERING LIMITED RESOURCE MOBILE ROBOTS 9

0 200 400 600 800 1000 1200 1400 1600

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

x mm

y
 m

m

 

 

KF2e4m

Camera

(a) EKF2e4m

0 200 400 600 800 1000 1200 1400 1600 1800
−200

0

200

400

600

800

1000

1200

1400

1600

1800

x mm

y
 m

m

 

 

EKF3e4m

Camera

(b) EKF3e4m

0 200 400 600 800 1000 1200 1400 1600
−100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

x mm

y
 m

m

 

 

EKF6e4m

Camera

(c) EKF6e4m

Fig. 6. Algorithms performance, EBGU, onboard the LEGO NXT
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the encoders. Thence, the estimated position quickly diverges
from the actual one. With the KF2e4m without the EBGU,
Fig. 7(b), the pose estimation diverges slowly as the error
covariance increases. But in the case of the KF2e4m with
the EBGU, Fig. 7(c), the position is estimated properly as the
trajectory remains very similar to the double square reference
and the position covariance does not increase indefinitely.
This is observed again in Fig. 8 for the square trajectory.
Although the error bound for the KF2e4m may seem large
(Fig 7(c) and 8), it can be decreased to fulfill the mission
requirements by lowering the RA value. This is done as a
compromise between the method accuracy and the available
resources and bandwidth in the robot and S.S. With these
tests, the stability and convergence of the KF2e4m with event
based global update is observed for large distance runs, and
so the more complex schemes (KF6e4m and KF3e4m) will
also perform well under similar circumstances. A video of
the long distance runs can be found in http://wks.gii.upv.es/
cobami/webfm_send/6. The execution time of the different
algorithms is analyzed next.
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B. Run Time test

To evaluate the run time efficiency of the proposed algo-
rithms, the mean execution time of the simulation performed
in Fig. 5 is measured, using Matlab R© running on a computer
(2.4GHz with 4GB RAM). This is shown in Fig. 9. From
this test, it is clear that the proposed methods with the
cascaded configuration (EKF3e4m and KF2e4m) have less
computational effort (as they use less ms of processor time)
to estimate the robot pose, when comparing with methods that
use a full state estimation approach (EKF6s4m and EKF6s7m).
Although EKF3e4m and KF2e4m use less time, they have
similar performance to that of the more complex ones, as it
was shown in the performance tests.

A second test, where the execution time is measured for
the different tasks running inside the robot, is performed. In
this, the proposed algorithms (with and without the EBGC) are
compared with the EKF6s7m (which, due to the limit in the
robot memory, was executed by sections to obtain the different
task times). The measured tasks are the sensor reading (with
calibration and preprocessing), the KF, the control algorithm
(navigation and motor control) and the write task which stores
the variables needed for supervision in a text file. This is
shown in Fig. 10. Execution times are measured every cycle
over a one minute test; and, as they are not constant, three
cases are presented. Case a shows the mean task time per
cycle, case b shows the time of the worst execution, and case
c shows the maximum task times measured during the test,
although they do not occur at the same time at any cycle (or
through the 30min run), but these are an indicator of worst
case possible. This test shows that only the proposed event
based methods fulfill the sample time of 50ms for cases a,
b and c, being the KF2e4m the less resource consuming of
all filters. The EKF6s7m exceeds the Ts in all the cases, and
so is not suitable for being implemented in this robot because
of the low available memory (when the calculation of Kk is
performed in every cycle) and also, when this sample time is
needed.

VII. CONCLUSIONS

Three efficient sensor fusion scheme using the KF and EKF
with a new particle dynamical model of an Ackermann wheel
mobile robot, along with an event based global position update,
have been presented as a solution for the localization problem.
The results show that the performance of the proposed algo-
rithms with the new model is similar to those obtained by using
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the more complex EKF with larger state and measurement
vectors, but with a faster execution and less memory usage,
allowing the implementation of the algorithm inside a limited
resource robot while leaving enough resources for other tasks
that must be executed inside the robot. Also, as the event
based update uses less bandwidth for the localization task,
more can be allocated to other data transmissions, such as
robot coordination, formation control, system monitoring and
diagnostics, etc.

The local sensor fusion can be adapted to add more or less
sensors according to the robot capabilities and the available
sensors, adjusting the KF matrices (dimensions and values of
Table I) as needed. If the robot has very limited resources,
this method can work using only the encoder measurements
and one heading angle/rate sensor. Also, both accelerometers
can be substituted for a model (identified from experimental
data) that relates the motors control action and the linear
accelerations of the real wheels and the steering, to use them
as inputs in the proposed dynamic model. On the other hand,
if the robot has large resources availability, the proposed Alg.
2 can be used to estimate the pose while saving bandwidth
when communicating to a zenithal camera (or a similar off
board global sensor). In this case, it can also be adapted to a
more complex sensor fusion filter like the UKF or the Cubature
KF, to improve the accuracy of the pose estimate.

In all the performance and execution time results, improved
pose estimation over the traditional odometry and EKF6e7m
fusion method was observed. Also, the proposed algorithms
reduce the processor usage and battery consumption in the
mobile robot, as it updates the position only when it is
necessary.

As future work, the method can be extended into different
mobile robots configurations such as the Omnidirectional, by
adding particles to the proposed equivalent dynamical model.
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Also, different sources of global information can be used, for
example a GPS to develop the outdoor case, or a scanning
laser rangefinder to extend the method into a SLAM algorithm.
Finally, the proposed algorithms can be modified to solve a
multirobot localization scenario, using the relative robot pose
information in the event based scheme as mobile landmarks
while saving bandwidth and resources.

APPENDIX A
DYNAMICALLY EQUIVALENT PARTICLE SYSTEM

To study the robot rigid body as a dynamically equivalent
particle system, formed by three mass particles Mr, Mc and
Mf joined by two massless connectors of constant length Rr

and Rf (Fig. 1(b)), the following conditions must be met [40]:
• Mass Conservation: MG = Mf +Mc +Mr

• Mass Center Conservation: MfRf = MrRr

• Moment of Inertia Conservation: MfR
2
f +MrR

2
r = IG

By defining Rf = Rr = RN = 0.5l the masses are obtained
in (A.1), where Mf and Mr are proportional to the total mass
MG expressed by the constant γ. This is true for Mc but with
the constant δ. Also the constant λa is defined from γ and δ,
and λα from MG, RN and IG.

Mf = Mr = IG
2R2

N

= γMG, λa = γ
1−δ

Mc = MG −
(

IG
R2

N

)

= δMG, λα = MGRN

IG

(A.1)

The parameters of the particle system are obtained in (A.2)
for a robot of rectangular shape with length c and width b, by
substituting IG in (A.1). The simplified parameters are shown
in 6. This procedure can be extended to other robot shapes
substituting the corresponding IG in (A.1).

IG = 1
12MG

(

b2 + c2
)

, γ = 1
6

(

1 + (b/c)
2
)

δ =
(

1− 1+(b/c)2

3

)

, λα = 6

c(1+(b/c)2)
λa = 0.5, λαγ = 1/c

(A.2)

To obtain the dynamic model, the second Newton’s Law is
applied to both the rigid body and the particle system (Fig.
1(b)) to obtain (A.3) and (A.4).

ΣFx=(Fxf cosφ−Fyf sinφ)+Fxr=MGax
ΣFy=(Fyf cosφ+Fxf sinφ)+Fyr=MGay
Στ=lf (Fyf cosφ+Fxf sinφ)−lrFyr=IGα

(A.3)

(

Fxf cosφ−Fyf sinφ
)

+Fxr=Mfaf,x+Mcac,x+Mrar,x
(

Fyf cosφ+Fxf sinφ
)

+Fyr=Mfaf,y+Mcac,y+Mrar,y
Rf

(

Fyf cosφ+Fxf sinφ
)

−RrFyr=RfMfaf,y−RrMrar,y

(A.4)

D’Alembert’s principle is used and (A.3) is set equal to (A.4).
They are dynamically equivalent when using (A.2) and when
Rf = lf , Rr = lr = 0.5l. This is the distance used to place de
accelerometers in the robot structure. Using these conditions
and solving for the accelerations (with ac = a), the equation
(5) is obtained.
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