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Abstract— We present in this paper an improvement of a
nonlinear control algorithm based on the Lyapunov analysis
and the saturation functions, to realize autonomous navigation
of a quadrotor vehicle. The algorithm is analyzed and the
convergence of the states is ameliorated, in addition, the
stability analysis in closed-loop system is proved with these
new conditions. In order to locate the aerial vehicle a new
position estimation algorithm is developed using the dead-
reckoning technique with the Extended Kalman Filter (EKF).
This algorithm is based in the data fusion of the classical
sensors; an Inertial Measurement Unit (IMU), an ultrasonic
sensor and a vision system. The algorithms are validated on-
board in flight tests to realize autonomous navigation of the
quadrotor vehicle. The most important results are depicted in
some graphs.

I. INTRODUCTION

An Unmanned Aerial Vehicle - UAV, also called drone, is a
self-descriptive term commonly used to describe military and
civil applications of the latest generations of pilotless aircraft.
UAVs are defined as aircrafts without the onboard presence
of human pilots, used to perform intelligence, surveillance,
and reconnaissance missions. The technological objective of
UAVs is to serve across the full range of missions cited
previously. UAVs present several basic advantages compared
to manned systems that include better manoeuvrability, lower
cost, smaller radar signatures, longer endurance, and minor
risk to crew. The UAVs are also reliable and have the
capacity to navigate autonomously in a prescribed trajectory
avoiding obstacles. For safety reasons, the total weight of
the UAV should be as low as possible. The achievement
of this objective certainly requires innovations from both
technological and scientific points of view.

For autonomous navigation an imperative need for UAV
autonomy is the ability to self-localization in the environ-
ment. Indeed, precise localization is crucial in order to
achieve high performance flight and to interact with the
environment. The design of position controllers has been the
focus of several groups in the research community, which
has resulted in significant and interesting breakthroughs in
this field. Nevertheless, existing position controllers require
that all system states are accurately measured.
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(lmunozhe@hds.utc.fr)

2P. Castillo are with the Laboratory LAFMIA UMI 3175, CINVESTAV
- CONACYT - CNRS, Mexico. (castillo@hds.utc.fr)

3P. Garcia is with the ISA Department, Universitat Politècnica de
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For some applications where the UAVs must often be able
to hold a quasi-stationary flights independent of the atmo-
spheric conditions, the Vertical Take-off Landing (VTOL)
vehicles are more suitable. Many control algorithms to
stabilize VTOLs aircraft are designed based on classical
techniques that vary from conventional PD (Proportional-
Derivative) control to more advances techniques depending
on the nature of the problem [1], [2]. On the other hand, the
development of quadrotors has generated great interest in
the control community in the last few decades. This vehicle
is based on a VTOL concept and it is extensively used to
develop control laws. The particular interest of the research
community for the quadrotor design can be linked to two
main advantages over comparable VTOL UAVs, such as
helicopters. First, quadrotors do not require complex me-
chanical control linkages for rotor actuation. This simplifies
both the design and maintenance of the vehicle. Secondly, the
use of four rotors ensures that individual rotors are smaller
in diameter. The quadrotor configuration will therefore be
easier to handle and possesses a higher maneuverability.
Several control laws (linear, nonlinear, robust, etc) have been
proposed in the literature to stabilize the quadcopter. Many
of them were developed using a simplified nonlinear system
or a linear model. Other works (including ourselves) have
obtained the control algorithms representing the dynamics
of the quadcopter by integrators in cascade.

The stabilization of chains of integrators have been ex-
tensively studied in the last decades. Relevant results are
general, however, large amount of the studies on low ampli-
tude designs is typically based on small gain considerations.
They also require full state feedback, and in some cases only
semiglobal results are provided [3] - [7]. From a structural
point of view, for systems described by a generalized linear
[4] - [9] or nonlinear [10], [11] chain of integrators, the
control laws consist of a generalization of the nested satu-
rations scheme of [9] or linear combinations of saturations
[8]. These designs also make use of passivity, in the sense
that, at each step of the procedure, the feedback consists in
a function of the state for which it is a relative degree one
output. See also [12], where Teel’s nested saturation scheme
is robustified against unmodeled dynamics.

However, the tendency of the increasing maneuverability,
the nonlinearities and the unpredictable changes in the en-
vironment necessitate more sophisticated control systems.
These issues have been studied in the context of linear
control and more recently using nonlinear techniques [4]-
[18].

2013 International Conference on Unmanned Aircraft Systems (ICUAS)
May 28-31, 2013, Grand Hyatt Atlanta, Atlanta, GA

978-1-4799-0817-2/13/$31.00 ©2013 IEEE 795



Even though there are so many modern control techniques
that can be adopted for autopilot application, simple control
algorithms remain a very interesting and effective approach
for autopilot designs. Recently, in [19] we have proposed
a control algorithm based on separated saturation functions.
In this kind of controller, the saturation arguments generally
depend on several state variables. We have compared and
showed in simulation that the separated saturation controller
in general is more efficient than Teel’s results [9]. In addition,
the gains and bounds of Teel’s controller are relatively
complex to tune. [20] and [21] present the stabilization
problem for a similar class of nonlinear feedforward systems
using bounded control. On the other hand, the main problem
in this kind of controllers is the slow time of convergence,
this fact is observed in real-time applications. The algorithm
is excellent for hover applications, however, for navigation
purposes is not so suitable.

The motivation of this work is to extend and improve the
controller proposed in [19] to realize autonomous navigation
reducing the time of convergence and validate it in flight
tests. In addition, a new position estimation algorithm is also
developed to estimate the position in the horizontal plane
(x,y). This algorithm is proposed in order to validate in real
time the control law.

The outline of the paper is the following: a background
containing the equations of motion is given in Section II. The
control strategy is developed in section III. The prototype
is described in section IV. The estimation algorithm is
presented in section V. The results from flight tests are
reported in Section VI. And finally, conclusion and future
work are discussed in section VII.

II. BACKGROUND: EQUATIONS OF MOTION

The quadrotor is a useful prototype to learn about aero-
dynamic phenomena in flying machines which can hover.
This helicopter does not have a swashplate and has constant
pitch blades. These vehicles have four electric motors that
are controlled by varying its angular speed. In addition, the
front and the rear motors rotate counterclockwise, while the
other two rotate clockwise.

The dynamic models described in [22]-[27] have widely
inspired the following dynamic equations for the quadrotor:

mX4 υ̇ = R

(
4

∑
i=1

fi + fdk

)
+ fg (1a)

M(η)η̈ =−C(η , η̇)η̇ +
4

∑
i=1

(τMi + τri) (1b)

where mX4 defines the mass of the vehicle, υ denotes the
body speed relative to inertial frame I , fg =−mX4gk̂ defines
the gravitational force applied to the vehicle, g denotes the
acceleration due to gravity and k̂ represents the unit vector
codirectional with the z-axis, R is the rotation matrix, fdk
describes the vector of the drag forces in the body frame
B and without loss of generality they can be approximated

Fig. 1. The quadrotor in presence of lateral wind.

as

fdk ≈Cdk ρAk(vwk − vk)
2 k : XB,YB,ZB

where Cdk are the quadrotor drag coefficients, Ak means the
contact frontal area in the k-axis, vwk defines the components
of the wind velocity in B and vk represents the velocity of
the quadrotor center of mass in the k-axis.

On the other hand, a rotor in translational flight undergoes
an effect known as blade flapping. This aerodynamic effect
causes an imbalance in lift, inducing an up-and-down oscil-
lation of the rotor blades. Then, sometimes the rotor plane
is not aligned with the XB,YB plane of translation. Then fi
is defined as

fi = fMi

 −sin(a1si)
cos(a1si)sin(b1si)
cos(b1si)cos(a1si)


where fMi is the force produced by motor i, a1si and
b1si describe the longitudinal and lateral harmonic flapping
angles1 of the rotor i.

From the rotational dynamics (equation (1b)); τri is the
vector moments produced by the rotor flapping and defined
as

τri = kβ a1si + ri × fi (2)

where kβ is the stiffness of the rotor blade and ri denotes
the vector from the C.G. to each rotor [28]. It is defined as

r1 =
(

0 ℓ h
)

r3 =
(
ℓ 0 h

)
r2 =

(
0 −ℓ h

)
r4 =

(
−ℓ 0 h

)
Due to the quadrotor bilateral symmetries, moments
generated by lateral deflections of the rotor plane get
cancelled. Therefore, the only flapping moment is created
by the backward tilt of the rotor plane through a deflection
angle a1si with the longitudinal thrust. In addition typically,
the physical stiffness of a rotor is ignored in flyer analysis
and the rotor stiffness is modelled purely as a centrifugal
term. As a result (2) can be substantially simplified.

1The full analysis of blade flapping is beyond the scope of this paper,
but is presented in more detail in [23], [24].
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Likewise from (1b), M(η) describes the inertia matrix for
the full rotational kinetic energy of the vehicle expressed in
terms of the generalized coordinates η , C(η , η̇) represents
the Coriolis matrix, η = (ψ,θ ,ϕ) defines the orientation
vector of the vehicle and τMi represents the torque produced
by motor i. In order to preserve the sign of rotation for
counter-rotating rotors, τMi can described as

τMi =CQi ρApr3ωi|ωi|k̂

where r represents the rotor radius, ωi describes the rotor
speed, ρ denotes the density of air and Ap defines the
propeller disk area. CQi is the dimensionless rotor torque
coefficient. These coefficient can be obtained using the blade
element theory [22]-[24].

III. CONTROL ALGORITHM

When the control algorithm is developed to control or
navigate this flying vehicle, the complete nonlinear dynamic
model is always simplified or linearized. In the last years,
the linearized model of this vehicle is commonly represented
by a chain of integrators in cascade. Although the algorithms
are obtained using the linear model, these are validated, in
the most cases, with the nonlinear model and in other cases
implemented and tested in flight tests.

Theorem 1 ([25]): Let consider a system with the form

ṙ1 = r2
... (3)

ṙn = ur

and the saturation function

σbi(s) =

 −bi for s <−bi
s for −bi ≤ s ≤ bi
bi for s > bi

with bi > 0 is constant. Then the following control law

ur =−
n

∑
i=1

σbi(K̄iri) (4)

stabilizes the system (3) for all K̄i > 0 constant and bounds
every state ri using the nonlinearity σbi .

Rewriting (4) for the quadrotor system we obtain

ū =−σb2z

(
K̄2z ż

)
−σb1z

(
K̄1z(z− zd)

)
(5a)

τψ =−σb2ψ
(K̄2ψ ψ̇)−σb1ψ

(
K̄1ψ (ψ −ψd)

)
(5b)

τθ =−σb4θ
(K̄4θ θ̇)−σb3θ

(K̄3θ (θ −θd))

+σb2θ
(K̄2θ ẋ)+σb1θ

(K̄1θ (x− xd)) (5c)

τϕ =−σb4ϕ
(K̄4ϕ ϕ̇)−σb3ϕ

(K̄3ϕ (ϕ −ϕd))

−σb2ϕ
(K̄2ϕ ẏ)−σb1ϕ

(K̄1ϕ (y− yd)) (5d)

where x, y, and z denote the position of the quadrotor, ψ,θ ,
and ϕ are the yaw, pitch and roll angles respectively. The
control inputs are described by u = ∑ fi, τθ , τϕ and τψ that
represent the main thrust and the pitching, the rolling and
the yawing moment, respectively. In addition, ū = u−g and

zd , xd , yd , ψd , θd and ϕd are the desired values for each
state. It has been proved in [25] that the previous control law
stabilize the quadrotor system (1).

Notice that (5) stabilizes the quadrotor even if the desired
position is far. The main practical constraint is when realizing
flight tests, the quadrotor moves so slowly (due to the
bounds). Observe also that, when using the previous control
strategy the states of the quadrotor go to the origin (ri → 0),
or in other cases, to a constant desired value (ri → rid ). Some
research teams have worked with (or with similar) control
schemes proposing some improvements to the algorithm in
order to ameliorate the convergence; someone add gains
outside the saturation function while others prefers adaptive
saturation functions. Nevertheless, the stability analysis has
not been carried out.

In order to improve the convergence of the states to the
desired positions preserving the bounds inputs, we have
linked the desired angular values with the position errors,
i.e.

θd = σθd (kθd (x̂− xd)) (6)
ϕd = σϕd (kϕd (ŷ− yd)) (7)

where |θd | ≤ bθd and |ϕd | ≤ bϕd , ki > 0 is a constant gain
to improve the convergence and bi > 0 with i : θd ,ϕd the
maximum desired angle. Remark that when using previous
equations the convergence is realized very quickly keeping
the states bounded and the stability of the closed-loop
system.

For paper length the stability analysis will be given only
for the lateral and longitudinal dynamics (four integrators in
cascade).

Theorem 2: Consider the system (3) with n = 4, then, the
following control law

ur =−σb4(ζ4)−σb3(ζ3)−σb2(ζ2)−σb1(ζ1) (8)

with

ζ4 = K̄4r4

ζ3 = K̄3(r3 − rd3); rd3 = f (ζ1) with |rd3 |6 bd3

ζ2 = K̄2r2

ζ1 = K̄1(r1 − rd1); rd1 = constant

makes the closed-loop system stable and improves the con-
vergence of the states.
Remark: In Theorem 2, rd3 = f (r1,rd1) is a bounded func-
tion and is related directly with the first state.

Proof: To simplify the analysis, a recursive methodol-
ogy is proposed. Let us assume that

ξi = σbi(ζi)+ξi−1 and |ξi|6 bξi i : n, ...,2
ξ1 = σb1(ζ1)

and
ζ̇n = K̄nur =−K̄nξn (9)

Define the following positive definite function

Vn =
1
2

ζ 2
n
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whose derivative with respect to time is

V̇n = −K̄nζn (σbn(ζn)+ξn−1)

Proposing bn > bξn−1
and using definition of the saturation

function, this signifies that |ζn|> |ξn−1| and implies that V̇n <
0. This means that, ∃ a time Tn, such that, |ζn|6 bξn−1

and
ur =−ζn −σbn−1(ζn−1)− ...−σb1(ζ1), ∀ t > Tn.

Define βn−1 =
ζn
K̄n

+
K̄nζn−1
K̄n−1

, thus, β̇n−1 =−ξn−1. Similarly
that for n, the following positive definite function is proposed
Vn−1 =

1
2 β 2

n−1. Differentiating with respect to time, we have

V̇n−1 = −
(

ζn

K̄n
+

K̄nζn−1

K̄n−1

)
(σn−1(ζn−1)+ξn−2)

6 −
(

κn−1 +
K̄nζn−1

K̄n−1

)
(σn−1(ζn−1)+ξn−2) ∀ t > Tn

with κn−1 =
bξn−1

K̄n
. Notice that bξn−1

= bn−1 +bξn−2
. Propose

K̄2
n > K̄n−1 then sign(κn−1 +

K̄nζn−1
K̄n−1

) = sign(ζn−1). Define
bn−1 > bξn−2

, therefore the previous inequalities implies that
V̇n−1 6 0.

The base case of the recursion occurs when the V1 function
is analyzed and this case will be treated a little different.
Propose V1 =

1
2 β 2

1 ; with β1 6 κ1+
K̄nζ1
K̄n−1

and β̇1 =−ξ1. Thus,
its derivative with respect to time is

V̇1 6 −
(

κ1 +
K̄nζ1

K̄n−1

)
σ1(ζ1)

then if | K̄nζ1
K̄n−1

|> κ1 then V̇1 6 0. Then b1 need to be chosen
to satisfy the previous inequality.

Observe from the previous analysis that all the states go
to zero (or a constant desired value). We take the case when
the state goes to a desired function (it is the case for the r3).
For this case, rd3 is defined as a bounded function of the first
state, i.e.

rd3 = σrd3
(krd3

(r1 − rd1)) (10)

with krd3
is a constant gain. From the definition of the

saturation function this implies that rd3 is bounded and
from its construction is also decreasing, i.e. |rd3 |6 brd3

and
rd3 → 0 when (r1− rd1)→ 0. Observe from (10) that rd3 has
a maximum value, thus, if brd3

= max |rd3 | is chosen for the
analysis of convergence then, the previous analysis yields.

IV. EXPERIMENTAL PLATFORM

The proposed controller has been validated in flight tests.
Our experimental platform consists of a quadrotor flying
vehicle, an embedded navigation system and a ground sta-
tion, see Figure 2. The vehicle is based on a Mikrokopter
structure and has four brushless motors controlled by drivers
i2c BlCtrl. The total mass of the prototype is 1100g. A
battery LiPO 11.1V 6000 mAh is employed to energize all the
electronic systems. The electronic onboard is equipped with
an IGEPv2 board based on the Texas Instruments system on
Chip OMAP3530 with an ARM CortexA8 processor running
at 720 Mhz and a Digital Signal Processor (DSP) C64x+

Fig. 2. Experimental Platform

running at 520Mhz. In addition, the quadrotor is equipped
with an IMU 3DMGX3-25 to measure the vehicle attitude, an
ultrasonic range finder SRF10 for the altitude measurement
and a PS3eye camera used to compute the optical flow.
The electronic board, the sensors and the control algorithms
compose the embedded navigation system.

All the information collected by the microprocessor is sent
to a ground station using a Wi-Fi connection. Its objective
is to graph the states to supervise the system responses, to
tune the control parameters and to redefine tasks or missions,
all in real time. The base station is written with the QT
library, making it a multi-platform. For flight manual phases
a Playstation 3 joystick is used. The ground station and the
joystick are connected using bluetooth communication.

Remark that only some states can be measured
(z,ψ,θ ,ϕ , ψ̇, θ̇ , ϕ̇ , ẋ, ẏ) with the sensors of the vehicle. Ob-
serve also that to apply the controller is necessary all the
states, and in our case we do not have a sensor to measure the
vertical velocity (ż), and the planar position (x,y). Therefore,
these states need to be estimated to realize hover, tracking
trajectory or navigation missions with this prototype.

V. ESTIMATION ALGORITHM USING AN EKF

Fusing data from different sensors improves the perfor-
mance of the overall sensing system. For example for aerial
navigation outdoors, fusion of GPS (Global Position System)
with INS (Inertial Navigation Systems) outputs by means
of filtering techniques increases the localization precision
required by UAV missions. Some works about indoor posi-
tion control for flying objects based on localization systems
or Simultaneous Localization and Mapping (SLAM) have
been already reported in the literature. However, the most
of them either depend on a highly accurate and expensive
localization system that needs to be deployed manually [29],
[30] or they need a high amount of (mostly off-board)
computing processing [31]. Other works fuse information
from two or more sensors. For example; in [32], the authors
use a low-cost video system with a Kalman Filter (KF) for
data-fusion algorithm that includes measures from inertial
sensors. In addition, vision algorithms + KF with on board
computation have been proposed using landmarks [33], [34].
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Similar works but with off-board computation have been also
presented in the literature [35], [36].

Notice that, the techniques for data fusion are numerous
and most of them are mainly based on the fusion of the
position (obtained by GPS, laser or vision) and inertial
sensors, with the objective to estimate the translational
velocities. Remark that for our platform these approaches can
not been used because our prototype is not equipped with a
position sensor. Thus, other challenge that we are addressing
in this paper is the development of a 3D indoor localization
system that can be an efficient and viable solution for
UAV applications with denied position measurement. Our
originality lies in estimating, with a good precision, on-
board and in real time the xy-position based mainly in the
translational velocities. In our best knowledge, this result is
novel and it can be extended to outdoor applications. Similar
works are based in dead reckoning, however, dead reckoning
is subject to cumulative errors.

Therefore in this part and in order to improve the dead-
reckoning technique, a position estimation algorithm based
on the Extended Kalman Filter (EKF) is presented.The
algorithm fuses the measures coming from a camera onboard,
an ultrasound and an IMU to estimate onboard and in real
time the quadrotor relative position (x̂, ŷ) and the vertical
velocity, ˙̂z. Another characteristic of this work is that all the
image processing is computed on board simultaneously with
the control law.

A. The EKF

The Kalman Filter is acknowledged as the most pop-
ular estimation algorithm probably because it is easy to
implement (linear system). When either the system state
dynamics or the observation dynamics are nonlinear, the
conditional probability density functions that provide the
minimum mean-square estimate are no longer Gaussian and
its evaluation represents an high computational burden. A
non optimal approach to solve the problem is the EKF. The
EKF algorithm is basically composed of a prediction step,
which involves developing a state and the covariance estimate
of the next time step based on the current estimatation and
system dynamics model; and an update step or filtered cycle,
where the new measurement processing and the prediction
update are computed using the new information.

Let consider the following nonlinear dynamics with exter-
nal inputs

x̄k+1 = f(x̄(k),u(k))+α(k)

yk = g(x̄k)+β (k)

where x̄k+1 represents the states vector, f(x̄(k),u(k)) denotes
the nonlinear dynamics of the vehicle, yk signifies the output
equation, g(x̄k) is the desired vector output. Likewise α(k)
and β (k) are assumed to be Gaussian noises with covariance
matrices Qk and Rk respectively. Then, the equations for the

EKF are given by

ˆ̄xk+1|k = f( ˆ̄xk|k,uk|k) (11a)

ŷk+1|k = g(x̄k+1|k) (11b)

Pk+1|k = APk|kAT +Qk (11c)

Kk+1|k = Pk+1|kGT (GPk+1|kGT +Rk+1)
−1 (11d)

ˆ̄xk+1|k+1 = ˆ̄xk+1|k +Kk+1(yk+1 − ŷk+1|k) (11e)

Pk+1|k+1 = Pk+1|k −Kk+1|kGk+1 +Pk+1|k (11f)

where A =
[

∂ f
∂ x̄ (

ˆ̄x,u)
]

and G =
[

∂g
∂ x̄ (

ˆ̄x)
]
. Similarly, Kk+1|k

defines the gain filter and the initial state ˆ̄x(0) and the initial
covariance P(0) are assumed to be known.

Remark that contrary to the Kalman Filter, the EKF may
diverge, if the consecutive linearizations are not a good
approximation of the linear model in all the associated
uncertainty domain.

B. Model adaption

Usually the quadrotor operates in a attitude range within
±30◦ and therefore, the equations of motion are approxi-
mately decoupled about each attitude axis. Its dominant dy-
namics are associated with the longitudinal/lateral dynamics
of the vehicle. For quasi-stationary maneuvers the flapping
angles are so small and then, the longitudinal and lateral rotor
thrust can be neglected. On the other hand, usually the drag
force is neglected in computing the drag moment [22], [24].
This force was found to cause a negligible disturbance on
the total moment over the flight regime of interest, relative
to blade flapping torques.

In recent times, a simplified nonlinear model - taken from
(1) - has increased its popularity in the UAVs and control
communities [26], [37], [38]. It is because this model retains
the main features that must be considered when designing
control algorithms for flights tests. The discrete-time form,
considering a sampling period Ts small enough, of this
simplified nonlinear model is the following:

x̄k+1 =



ẋkTs + xk
−( uk

mX4
sin(θk))Ts + ẋk

ẏkTs + yk
( uk

mX4
cos(θk)sin(ϕk))Ts + ẏk

żkTs + zk
( uk

mX4
cos(θk)cos(ϕk)−g)Ts + żk

θ̇kTs +θk
τθk
Mx

Ts + θ̇k

ϕ̇kTs +ϕk
τϕk
My

Ts + ϕ̇k

ψ̇kTs +ψk
τψk
Mz

Ts + ψ̇k



(12)

where M j with j : x,y,z, represents the constant inertia matrix
in the j-axis and Ts = tk+1−tk; with tk is the time t at instant
k.

When the EKF filter is implemented numerically the most
common problem is to choose the covariance matrices. If
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these matrices are not well conditioned in some cases the
filter diverges. However from our experience, the system
matrices, A and G, need to be adjusted off-line or on-line
to improve the performance. This fact could be obvious
if observing equation (12). Notice from this equation that
some constant parameters need to be considered for each
vehicle (mass, inertia matrix, etc.). A fatal and common error,
when using estimation algorithms, is to “normalize” these
variables.

Our numerical implementation is given in three parts.
Firstly, equations (11) and (12) are executed and validated
off-line in Matlab code. This was a crucial part where the sys-
tem matrices were re-adjusted when using real data collected
by the ground station. In addition, a small identification
part was carried out to describe the altitude dynamic. On
the other hand, the state transition and measurement noises
have been generated from Gaussian distributions. The second
part involved the Kalman algorithm implementation in the
microprocessor of the helicopter in C language. The goal
in this part was to validate on-board, on-line and in open-
loop system the algorithm. The most difficult part here was
to compute the matrices operations. In this way, several
flight tests were carried out in manual form. The behavior
of the aerial vehicle was depicted in the ground station to be
analyzed on-line, nevertheless some small adjustments were
realized to improve the convergence of the EKF. In the last
part, the EKF and the control algorithm were validated in
closed loop.

C. Optical flow - OF

As previously discussed, one contribution of this work
lies in the estimation of the horizontal position (x,y) using
the translational velocities (dead-reckoning technique). This
methodology is improved using an EKF and the estimation
is corrected with the angle and angular rate measurements
coming from inertial sensors. The translational velocities
are derived from the optical flow. However, the heart of
this estimation come from the computation of the OF. In
the following paragraphs, a brief description and the main
equations to calculate the OF are described.

It is well known that OF is used to calculate the motion
between two images frames. The techniques to determine
the optical flow can be categorized as differential methods,
correlation, energy and frequency based methods. In this
work, the Lucas and Kanade algorithm is employed. This
algorithm is a differential method that takes the advantage
of spatiotemporal derivatives of image sequences [39].

Let us define I(xim,yim, t) as the grayscale density with the
form

I(xim,yim, t) = I(xim +∂xim,yim +∂yim, t +∂ t)

where I denotes the intensity and (xim,yim) represents the
position of a point in the image. Here after, we will consider
that I = I(xim,yim, t), Ix =

∂ I(xim,yim,t)
∂xim

, Iy =
∂ I(xim,yim,t)

∂yim
, It =

∂ I(xim,yim,t)
∂ t . Then, using the Taylor series

Ixvxim + Iyvyim + It = 0

Fig. 3. Optical flow scheme

with vxim ,vyim define the xim,yim components of the optical
flow. Define ∆I = [Ix, Iy]

T and VOF = [vxim ,vyim ]
T , thus it

follows that
∆I ·VOF + It = 0 (13)

Observe from previous equation that there are two unknowns
and only one equation, therefore other condition is necessary
to find a solution. The algorithm of Lucas and Kanade also
suggests that the optical flow (vxim ,vyim) is constant over a
neighborhood (a window of p× p, with p > 1) centered on
the pixel that we want to calculate the displacement. Then
from the previous, it can be computed p2 equations with
form

V = (AT A)−1AT b (14)

where

A =


Ix1 Iy1
Ix2 Iy2
...

...
Ixn Iyn

 , b =


−It1
−It2

...
−Itn


and n = p2. And finally using (13) and (14) the optical flow
VOF can be computed.

It has been demonstrated in several works that if a camera
is fixed in a vehicle in a way that they share the same
movements, the OF computed by the camera is directly
related with the translational velocity of the vehicle with the
following relation (see Figure 3)

VOFx = −zẋ
z

VOFy = −zẏ
z

where ẋ and ẏ are the velocity vector of the vehicle in the
plane x−y, z represents the altitude and z defines the focal
distance. From previous equation, it is easy to compute the
translational velocities.

VI. RESULTS FROM FLIGHT TESTS

Several flight tests were carried out to validate the
observer-control scheme. All the algorithms are computed
on-board, on-line with two cases: in manual and autonomous
mode. For each mode, we performed several flights following
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different trajectories; a line in the x or y-axis, a diagonal line
in the x− y plane, a square, etc. All the estimated positions
were manually verified, i.e., we placed in the horizontal
workspace (ground) landmarks each one meter.

A. Manual flight tests

Before realizing autonomous control of the quadrotor
vehicle, we conducted a number of flight tests in manual
form in order to validate the EKF implementation and to
verify the accurate of the estimation of the states.

For paper length, we present in the following figures the
results for the rectangle trajectory with ℓ1 = 5m in the x̂-
axis and ℓ2 = 6m in the ŷ-axis. This result is presented in
Figures 4–6. The x̂ and ŷ estimation is presented in Figure 4.
In same figure we can observe small oscillations, this results
is normal and it is due to the pilot flight skills.

In Figure 5 the z and ˙̂z performances are introduced. In
Figure 6 some variations in the altitude can be observed,
these behavior are normal when an amateurish pilot flies the
helicopter with a rectangle trajectory.
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Fig. 4. x̂, ŷ position estimation in manual mode and with rectangle
trajectory.
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Fig. 5. Altitude z performance in open-loop and with rectangle trajectory.
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Fig. 6. Vertical velocity ˙̂z performance in open-loop and with rectangle
trajectory.

B. Autonomous mode

Since the experiments demonstrated that the algorithm
maintains accurate state estimates, we proceeded to testing
the algorithms and the control law in closed loop. We have
carried out several flights tests in closed loop to validate the
performance of the flying vehicle. Only two cases (square
trajectory and user-desired path) are depicted in following
graphs to illustrate these results.

One mission was to realize a square with 2 m in each side.
Figures 7–11 introduce these results. In Figure 7 a 3D posi-
tion response is shown when the aerial vehicle follows a tra-
jectory with coordinates (x0,y0,z0) = (0,0,0.6), (x1,y1,z1) =
(2,0,0.6), (x2,y2,z2) = (2,2,0.6) and (x3,y3,z3) = (0,2,0.6)
all in meters. Observe that even if the flying vehicle is
not equipped with a position sensor, the EKF is capable
to estimate the x̂ and ŷ position with a excellent precision
using essentially the translational velocities in this plane (see
Figure 9) and the attitude of the vehicle.
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Fig. 7. x̂, ŷ,z responses when the flying vehicle realize a square trajectory
autonomously.
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In Figure 8 we introduce the performance of the vertical
velocity. Notice from Figure 7 that no significant variations
in the altitude are presented and consequently, its velocity
response is small. In this experiment, the helicopter moves
in x and y axis and it can be corroborated in Figure 9 where
the horizontal velocities are depicted. In this figure, we can
remark the four movements that the helicopter performs.
These movements produce changes manly in the pitch and
roll angles, see Figure 10.
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Fig. 8. ˙̂z estimation when the quadrotor follows a square autonomously
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Fig. 9. ẋ and ẏ behavior obtained from OF technique.
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Fig. 10. Attitude response of the flying vehicle.
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Fig. 11. Angles rate performance

These flight tests are also illustrated with some videos at:
http://www.hds.utc.fr/∼lmunozhe/dokuwiki/doku.php?id=en:videos
or http://www.dailymotion.com/video/xtxrth position-control-of-a-
quadrotor-using-data-fusion tech.

The previous experiments have proved the good
performance and good precision of the proposed control-
observer scheme. In order to prove the behavior in
difficult trajectories and the no accumulative errors in
the estimation we have realized some user-free paths
(videos corresponding to these flight test can be found at:
http://www.hds.utc.fr/∼lmunozhe/dokuwiki/doku.php?id=en:videos
or http://www.dailymotion.com/video/xu6db5 video-paths).

To overwhelm the mission, we place four obstacles like
pillars. Remember that the vehicle is not equipped with
others sensors to avoid obstacles, then, a bad estimation and
a worse tuning of the control parameters will result in the
crash of the helicopter against the columns. The objective
of the mission was to follow a trajectory given by a set of
desired coordinates. In this mission, the aerial vehicle cross
the four pillars, turns one of them, goes to the center of the
pillars and lands, all in autonomous mode, see Figure 12.

The desired coordinates were: (x0,y0,z0) = (0,0,0)m,
(x1,y1,z1) = (0,0,0.6)m, (x2,y2,z2) = (2,0,0.6)m,
(x3,y3,z3) = (2,4,0.6)m, (x4,y4,z4) = (4,4,0.6)m,
(x5,y5,z5) = (4,2,0.6)m, (x6,y6,z6) = (2,2,0)m, and

Fig. 12. The desired mission with obstacles.
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(x f ,y f ,z f ) = (2,2,0)m. In Figures 13–17 we illustrate the
states responses of this difficult mission.
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ŷ(m)

z
(m

)

Fig. 13. x̂, ŷ,z response of the helicopter when it realizes the trajectory.

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

˙̂ z
(m

/
s)

Fig. 14. ˙̂z response when using the EKF and a classical Euler derivation.
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Fig. 15. ẋ, ẏ response.

A 3D view of the x̂, ŷ,z response is introduced in Figure
13. Notice in this figure that the quadrotor realizes very
well the desired mission. The ˙̂z performance is showed in
Figure 14. Two performances of this state using different
approaches are showed in this figure. In the figure the dashed
line (green) represents the behavior when using the classical
Euler derivation while the solid line (blue) illustrates the
performance the EKF is used. Observe in this figure that
the EKF has a better behavior than the classical approach.

In Figures 6 and 8 we only present the ˙̂z behavior with the
EKF. In closed-loop system the EKF approach was the only
employed.

Note in Figure 12 that the quadrotor needs to realize the
following displacements to complete the mission: first, in
the positive longitudinal axis, secondly in the positive lateral
axis, after that in the positive longitudinal axis, fourthly in
the negative lateral axis and finally in the negative longi-
tudinal axis. This can be corroborated in Figure 15. These
movements imply changes in the pitch and roll angles and
in the angular rate of the vehicle, see Figures 16 and 17.
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Fig. 16. Attitude behavior.
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Fig. 17. Angular rate behavior.

VII. CONCLUSION AND FUTURE WORK

A navigation algorithm improvement has been presented
in this paper. The control algorithm is simple, nonlinear and
easy to implement and tuning in real time. The improvement
in the control law is such that the desired values in the
angles are in relation with the position error, with this, the
convergence to the desired navigation values is faster. On the
other hand, after several approaches adopted to estimate the
position of an aerial vehicle using vision information, in this
paper, we have developed this position estimation using an
Extended Kalman Filter for a quadrotor. One characteristic
of this algorithm is that it fuses only measures from an IMU,
an ultrasonic sensor and a camera.
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Some research teams use external measurement systems to
locate the vehicle but the main drawback of these solutions
appears when the aerial vehicle is not in the workspace of
the external measurement system (VICON, GPS,...). In these
cases, those systems become impractical or unusable. This
methodology could be adopted to locate an aerial vehicle
(plane or helicopter) in indoor our outdoor environments.
Future work consists in realizing flight outdoor using oth-
ers devices to measure the translational velocities and the
altitude (ẋ, ẏ,z). To improve the autonomous navigation the
observer-control scheme will be fused with a laser sensor
(Hokuyo) to avoid obstacle in unknown environments.
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