
Control kernel based adaptive control
implementation

Raúl Simarro, Pedro Albertos
Department of Systems Eng. and Control

I.U. de Automática e Informática Industrial
Universitat Politècnica de València

Valencia, 46071, Spain
Email: {rausifer,pedro}@isa.upv.es

José Simó
Department of Computer Engineering

I.U. de Automática e Informática Industrial
Universitat Politècnica de València

Valencia, 46071, Spain
Email: jsimo@disca.upv.es

Abstract—A control system with distributed computing re-
sources should always guarantee the safe control of the plant.
In this contribution, the concept of control kernel is used for
that purpose. Two types of nodes with different resources are
defined: the powerful server node and the resource-constrained
light node. This architecture allows to split the control tasks
into two blocks. Those demanding strong computing resources
are allocated in the server nodes and those compelling tasks
required to ensure the safety of the controlled plant are allocated
in the light nodes. Resource limitations lead to control adaptation.
Two simple applications illustrate some of the benefits of this
architecture with one server node and one light node, even the
architecture can be extended to several nodes. In the first case, an
adaptive control is implemented in the server node, providing the
control algorithm to the light node, which is also able to compute
a local safe control action. In the second experiment, two different
control tasks requiring different resources are implemented in a
mobile robot control. To keep bounded the computing time at
the local level, the supervisor decides the time allocated to each
activity, providing the resulting controller to the light n ode.

I. I NTRODUCTION

Adaptive control requires, in a direct or indirect way, to
carry out a parameter estimation task to compute and update
the controller parameters [1]. In many cases, adaptation also
implies changes in the controller structure as well as past data
retrieval. All these tasks may require a lot of computation time,
not being suitable to be implemented in an environment with
limitation of resources.

Moreover, safety is a crucial issue in embedded control
systems [2], [3]. Independently of the number of variables
to be controlled by the same processor, the systems with
hard real time requirements must ensure the delivering of
control actions to all actuators. The quality of the delivered
signal may depend on the processing level: data, computational
algorithms and resources availability, among others, but always
must ensure the safe system operation [4]. Besides components
malfunction, in complex control systems, safety can be af-
fected by either the appearance of high priority aperiodic tasks,
the variation of the controlled system dynamics requiring
switching controllers, the missing of execution deadlinesand
messages or the variation of communications delays. In this
context, in order to run control applications in a safe mode,if
the control action has not been delivered on time by the current

controller, a back-up control action should be delivered atthe
time required by the process. This signal may be the result
of a simple calculation (but sufficiently safe), an emergency
shutdown or simply a safe response such as:keep unchanged.
Note that this operation can be also interpreted as a controller
switching.

There are many different approaches to design and imple-
ment embedded control systems, (see, for instance, [5], [6]).
In this work, the concept ofcontrol kernel [4] is used to
compute the control in two stages. This control architecture has
been implemented on multiple fully automated mobile vehicles
performing activities requiring coordination between them
to avoid obstacles, path tracking, scanning, data collection,
etc.. To do this one of the robots acting as the supervisor
calculates the trajectories to be followed by others, and adapts
to control environmental conditions, so the others can use their
computation time for data collection, processing products, or
other tasks, delegating the calculation of the trajectory to the
supervisor. In case of communication problems or excessive
computation time they can apply a safe control action.

The control kernel approach presents some novel properties
based on the isolation provided by the middleware implemen-
tation. Control tasks are moved to nodes where its executionis
more efficient, based on the observed availability of resources.
As a consequence, the architecture provides a transparent
framework to combine different controllers to be applied as
decided.

The control kernel architecture is summarized in the next
section. Then, the adaptive control algorithm is split intotwo
parts to be implemented in different nodes. The proposed
approach is tested on two simple experimental systems to
evaluate its possibilities. Some results are reported. Finally,
discussion is motivated based on these preliminary results.

II. CONTROL KERNEL ARCHITECTURE

Two node types can be defined, [7]: Light nodes and Service
nodes (see Figure 1). Service nodes are powerful embedded
computers running a full featured RTOS with complete net-
working with I/O capabilities. Light nodes are small and low
power consumption SoC processors with limited computing
and networking capabilities but complete I/O features.

a) b)

RTOS

Ctrl.

App.

Ctrl.

App.…

Service node

CKM

CKM Runtime

…

Controller code pages

Networking

Cyclic

executive

Transducers

management

C1 Cn

Light node

Fig. 1. Control nodes.

A control kernel middleware is implemented in both nodes,
[7]. In a distributed embedded control architecture, many of
these nodes can be interconnected in a wired or wireless
network, see Figure 2.

CKM Runtime

…

Monitoring and capability

Controllers delegation

Sensors and actuators

Controller code pages

In
te
rf
a
ce
s

Networking

Cyclic

executive

Transducers

management

C1 Cn

Light node

RTOS

Ctrl.

App.

Ctrl.

App.…

Service node

CKM

…

……

…

Service node

Service node

Light node

Light node

Light node

Fig. 2. Control Kernel based architecture.

Control Applications run in service nodes on top of a full
featured Control Kernel Middleware (CKM). This middleware
offers abstractions and functionalities related to control tasks
real time execution, access to sensors and actuators, and
communications management. The programming model of
CKM follows the concept of code delegation. In this sense,
a control application delegates the execution of some control
code to the CKM that provides computational resources to
execute it. Note that a control task, once inside the CKM, can
run on whatever service node of the DCS having access to the
communications space of the task.

Light nodes are a cost-effective solution in order to allocate
some computer power as close as possible to each actuator.
This is mandatory in order to reduce the nondeterminism in
the time delivering of the control action to the plant. Light
nodes run a retail of the CKM: the CKM Runtime. This
Runtime communicates with the CKM offering interfaces for
management, sensing and acting as well as code uploading. A
light node can be used as simple slave component to interface
DCS or it can run locally its own controllers in a cyclic
executive environment. Ensuring the delivery of an appropriate

control action guarantees the safety of the system, even if this
action is to stop the plant operation.

In a Control Application, any control task that has been
delegated to the CKM can be transferred to a light node
by uploading the native code page and asking for switching.
Controller pages can be uploaded through the CKM Runtime
without any interference with the controllers currently running
in the node. The uploaded pages are activated for running
by the switching mechanism provided by the CKM Runtime.
Attention should be paid to the system schedulability [8].

In particular, service nodes may include supervising and
optimizing control activities and light nodes can run activities
to drive the system to a safe position or run a simple algorithm
that guarantees a minimum of performance in the system at
any time. In this sense, Light node ensures that a control action
(u(k)) to be sent to the process always exists. This signal may
be just a safe action (disconnect, open, close, unchange, etc.)
or the result of a simple calculus (computed locally in the
node) (ul(k)) or it may be the signal calculated (us(k)) and
received from a service node.

III. A DAPTIVE CONTROL IMPLEMENTATION

A typical structure of adaptive control involves two loops.
The classical feedback loop is keeping the required perfor-
mance of the controlled plant, whereas the extra loop is in
charge of evaluating the quality of the control, performing
a parameter estimation algorithm and determining the actual
control to be applied to the plant. The actual control may be
also rather complex. The adaptation will update the controller
parameters and/or structure. By using the control kernel con-
cept, a slightly different alternative is proposed in this paper.
Two different control actions are computed (Figure 3). One is
very simple and fast, also requiring very few resources, and
it could be just a proportional action. It is areactive control.
For that, no data retrieval is necessary and the computing time
is very short. Unfortunately, the controlled plant behavior will
not be the best achievable with a more sophisticated controller,
but it must ensure the controlled plant stability. This action will
be provided by the light node in charge of the process.

The most desirable control action, as provided by the
adaptive controller which is allocated in the server node, will
be delivered if there are enough available resources (com-
munication bandwidth, computing time, memory accessibility
and so on). In the end, this control action will be based on a
part related to the current measurement (proportional action),
one part computed from the past measurements and errors
(the integral action) and one (or more) parts due to the error
prediction (derivative action). This is clearly illustrated in the
case of using a PID adaptive control [9].

In this case the light node will compute the local control
action based on a local gainKl (1)

ul(k) = Kle(k) (1)

where e(k) is the current error. Depending on the local
resources, this control law can be also based on afrozen PID
controller, provided by the service node but being updated

from time to time, not continuously. On the other hand, the
server node will evaluate (2)

us(k) = Ksek +K1e(k − 1) +K2e(k − 2) + u(k − 1) (2)

by applying the full control structure and adapting the con-
troller parameters.

RTOS

Analyze

CKM

Runtime

Simple

controller

Light node

Service node

CKM

us(k) u(k)

Switching

u(k)

Plant

ul(k)

Fig. 3. Control switching.

Under normal operation, the actual control will beu(k) =
us(k). In the event of a disturbance (lack of communication,
lost of measurement, or just not enough time to compute and
adapt the controller parameters ({Ks,K1,K2}), the light node
will provide the local control action to both the plant and the
server, to be used in future computations, Figure 3.

IV. EXPERIMENTAL WORK

Due to space shortage, two simple applications are presented
to illustrate the possibilities of the control kernel approach. As
already mentioned, the same approach can be used for more
complex applications where there is a general coordination
and adaptation at the server level and a local reactive control.
First, an adaptive control of a simulated process sufferinghigh
priority communication interferences is evaluated. In this case,
the reactive local control is used if the adaptation takes too
much time. Then, for a mobile robot with two different tasks
(tracking a trajectory and avoiding obstacles) two different
control algorithms are used. They are implemented in the
server node, being combined in a weighted way according
to the operating conditions. The time allocated to each one is
adapted to keep constant the total computing time available
for this control. At the local node, the final control action is
computed and delivered.

A. Adaptive control under interferences

A simulated process is controlled to get fast response and
adaptation capabilities. The adaptive control algorithm is run
in the service node and any time a new controller is decided
it is sent to the local controller. In the event of a high priority
aperiodic task (acting as an interference to the control process
computation), the local node keeps running the last updated
controller or a simpler back-up one.

The process transfer function isG(s) = 66.777

s2+9.391s+77.16

and it is assumed invariant, the adaptation being motivated
by the appearance of an interference. It has been simulated
and evaluated in a Matlab/Simulink environment, using the
Truetime tool to evaluate the behavior, as shown in Figure

Fig. 4. Control kernel implementation and simulation.

4. A faster and less performing controller is implemented in
the local node to be directly applied to the plant if there is
no action coming from the server node. Initially, the plant is
controlled through the control action sent by the “complex”
controller implemented in the server node. Att = 6s, an
interference forces the control to be transferred to the basic
control implemented in the light node. The control is softer
and the plant response is degraded, as can be seen in Figure
5, during the time the interference is active. In the first
appearance (interval{6, 7}), the system is in the transient
response and the behavior is degraded. During the second
interval ({8 − 13}) a change in the reference happens and
the response is again degraded but as soon as the interference
disappears, the control is assumed by the service node and the
response is stabilized and improved. It is worth to note that
the basic controller does not include integral action, as can be
seen in the steady-state error appearing in the plant response
before t = 13s. Finally, the interference appears just at the
time of a reference change,t = 15s, and the plant response
is also degraded.

Fig. 5. Switching control due to interferences.

B. Controller adaptation due to goal changes

In the second experiment, a mobile robot is controlled
to follow a trajectory avoiding unexpected obstacles [10].
Both control algorithms are implemented in the server node.
The obstacle avoidance control algorithm involves heavier
computing load, reducing the time used to compute the control
action to follow the trajectory. The local controller sendsto
the server node the sensed information where the robot per-
formance are evaluated allowing the analysis of the operating
conditions and the selection of the most suitable controller by
the supervisor. A decision is taken about how much weight
should be allocated to each control algorithm. The combined
controller task is transferred to the light node.

The performance of the control is illustrated in Figure 6,
where there are two obstacles and a reference trajectory.

Fig. 6. Mobile robot: trajectory tracking and obstacles avoidance.

The goal is to keep bounded the computing time allocated
for the robot guidance. This is shown in the upper graphic
in Figure 7, where the computing time is almost constant. In
the lower graphic, the percentage of time devoted to evaluate
the obstacle avoidance control algorithm is shown. As it can
be seen, in the time intervals characterized by the cycles
{0−70}, {100−130}, {385−410}, no obstacles are detected
and all the computing time is allocated to follow the trajectory.
During the cycles in between, the obstacle starts to be detected
and the server node determines the use of the light node
to compute the control action to mainly avoid the obstacle,
degrading the trajectory tracking performance, (Figure 6).

Fig. 7. Time devoted to obstacle avoidance, keeping boundedthe total
computing time.

V. CONCLUSION

The use of the Control Kernel structure offers many ad-
vantages in allocating different control tasks according to the

operating conditions. Two types of nodes are defined: the
powerful server node, probably taken care of many control
loops and activities, and the resource limited light node,
attached to a process, able to handle some related control
loops. A number of these nodes can be connected in a network
to implement a distributed control system.

In particular, for adaptive control, the more computing
power demanding tasks are implemented in the server node
where the actual controller structure and parameters are com-
puted. This information is transferred to the local node, where
there is also a back-up controller to ensure the delivering of a
safety control action.

Two control scenarios have been considered. In the first
case, based on a simulated plant, the appearance of aperiodic
high priority tasks reduces the availability of computing time
and provokes the switching between the adaptive control
provided by the server and the basic control computed by
the light node (Figure 3), leading to a degrading of the
control performance (Figure 5). In the second experiment,
where trajectory tracking and obstacle avoidance should be
accomplished, the scenario evaluation and the selection ofthe
control algorithm to be used are decided at the server node
level, the light node implementing the controller decided by
the supervisor.

Many other options are open with this control kernel struc-
ture and it is a matter of further research and experimentation.

ACKNOWLEDGMENT

This project has been partially granted by Consellerı́a de
Educación Generalitat Valenciana, under PROMETEO project
number 2008-088, and the CICYT project COBAMI: DPI
2011-28507-C02-01/02.

REFERENCES

[1] K. Astrom and B. Wittenmark,Adaptive Control, 2nd ed., Addison-
Wesley Longman Publishing Co., Boston,MA,USA, 1994.

[2] Q. Li and C. Yao. Real-Time Concepts for Embedded Systems. CMP
Books, 2003.

[3] P. Albertos, A. Crespo, M. Valls and I. Ripoll. ”EmbeddedControl
Systems: Some Issues and Solutions.”16th IFAC World Congress. Prague,
Czech Republic. Elsevier, 2005.

[4] P. Albertos, A. Crespo and J. Simó. ”Control Kernel: A key concept
in embedded control systems.”4th IFAC Symposium on Mechatronic
Systems. 2006.

[5] P. Martı́, M. Velasco, J. M. Fuertes, A. Camacho and G. Buttazzo.
”Design of an Embedded Control System Laboratory Experiment.” IEEE
Transactions on Industrial Electronics 57, n 10 (October 2010): 3297-
3307.

[6] Z. Peng, M. Longhua and F. Xia. ”A Low-Cost Embedded Controller
for Complex Control Systems.” IEEE/IFIPInternational Conference on
Embedded and Ubiquitous Computing. Shanghai, 2008. 23-29.

[7] R. Simarro, J. Coronel, J.E. Simó and J.F. Blanes. ”Hierarchical and
Distributed Embedded Control Kernel.”XVIIth IFAC World Congress.
Seoul, Korea, 2008.

[8] A. Crespo, P. Albertos, P. Balbastre, M. Vallés, M. Lluesma and J.E.
Simó. ”Schedulability issues in complex embedded controlsystems.”
IEEE Conference on Computer Arded Control Systems Design. Munich,
Germany, 2006.

[9] F. Radke and R. Isermann, ”A parameter-adaptive PID-controller with
stepwise parameter optimization”.Automatica Vol 23, N 4, July 1987,
Pages 449457.

[10] A. Valera, M. Valls, P. Albertos, R. Simarro, I. Benı́tez, y C. Llácer.
”Embedded Implementation of Mobile Robots Control.”17th IFAC World
Congress. Seoul, Korea, 2008. 6821-6826.

