
Control kernel based adaptive control implementation

Raúl Simarro, Pedro Albertos
Department of Systems Eng. and Control
I.U. de Automática e Informática Industrial

Universitat Politècnica de València
Valencia, 46071, Spain

{rausifer,pedro}@isa.upv.es

José E. Simó
Department of Computer Engineering

I.U. de Automática e Informática Industrial
Universitat Politècnica de València

Valencia, 46071, Spain
jsimo@disca.upv.es

ABSTRACT
A control system with distributed computing resources al-
ways should guarantee the safe control of the plant. In this
contribution, the concept of control kernel is used for that
purpose. Two types of nodes with different resources are de-
fined: the powerful server node and the resource-constrained
light node. This architecture allows to split the control
tasks into two blocks. Those demanding strong comput-
ing resources are allocated in the server nodes and those
compelling tasks required to ensure the safety of the con-
trolled plant are allocated in the light nodes. Resource limi-
tations lead to control adaptation. Two simple applications
illustrate some of the benefits of this architecture with one
server node and one light node, even the architecture can be
extended to several nodes. In the first case, an adaptive con-
trol is implemented in the server node, providing the control
algorithm to the light node, which is also able to compute
a local safe control action. In the second experiment, two
different control tasks requiring different resources are im-
plemented in a mobile robot control. To keep bounded the
computing time at the local level, the supervisor decides
the time allocated to each activity, providing the resulting
controller to the light node.

Categories and Subject Descriptors
C.3 [Special-Purpose and application-based systems]:
Process control systems, Real-Time and emdedded systems

General Terms
Performance, Experimentation, Design

Keywords
Distributed control systems, adaptive control, embedded sys-
tems, control middleware

1. INTRODUCTION
Adaptive control requires, in a direct or indirect way, to
carry out a parameter estimation task to compute and up-

Copyright is held by the authors

date the controller parameters [3]. In many cases, adapta-
tion also implies changes in the controller structure as well
as past data retrieval. All these tasks may require a lot of
computation time, not being suitable to be implemented in
an environment with limitation of resources.

Moreover, safety is a crucial issue in embedded control sys-
tems [5], [1]. Independently of the number of variables to
be controlled by the same processor, the systems with hard
real time requirements must ensure the delivering of con-
trol actions to all actuators. The quality of the delivered
signal may depend on the processing level: data, computa-
tional algorithms and resources availability, among others,
but always must ensure the safe system operation [2]. Be-
sides components malfunction, in complex control systems,
safety can be affected by either the appearance of high pri-
ority aperiodic tasks, the variation of the controlled system
dynamics requiring switching controllers, the missing of ex-
ecution deadlines and messages or the variation of commu-
nications delays. In this context, in order to run control
applications in a safe mode, if the control action has not
been delivered one time by the current controller, a back-up
control action should be delivered at the time required by
the process. This signal may be the result of a simple cal-
culation (but sufficiently safe), an emergency shutdown or
simply a safe response such as: keep unchanged. Note that
this operation can be interpreted as a controller switching.

There are many different approaches to design and imple-
ment embedded control systems, (see, for instance, [6], [8]).
In this work, the concept of control kernel [2] is used to com-
pute the control in two stages. This control architecture has
been implemented on multiple fully automated mobile ve-
hicles performing activities requiring coordination between
them to avoid obstacles, path tracking, scanning, data col-
lection, etc.. To do this one of the robots acting as the
supervisor calculates the trajectories to be followed by oth-
ers, and adapts to control environmental conditions, so the
others can use their computation time for data collection,
processing products, or other tasks, delegating the calcula-
tion of the trajectory to the supervisor. In case of commu-
nication problems or excessive computation time they can
apply a safe control action.

The control kernel approach presents some novel properties
based on the isolation provided by the middleware imple-
mentation. Control tasks are moved to nodes where its ex-
ecution is more efficient, based on the observed availability

SIGBED Review 24 Vol. 10, Num. 1, February 2013



of resources. As a consequence, the architecture provides a
transparent framework to combine different controllers to be
applied as decided.

In this paper the control kernel architecture is used to eas-
ily adapt the control goal and performance according to the
existing resources. The adaptation can be motivated by ex-
ternal disturbances, changes in the process parameters or in
the control goals.

The control kernel architecture is summarized in the next
section. Then, the adaptive control algorithm is split into
two parts to be implemented in different nodes. The pro-
posed approach is tested on two simple experimental sys-
tems to evaluate its possibilities. Some results are reported.
Finally, discussion is motivated based on these preliminary
results.

2. CONTROL KERNEL ARCHITECTURE
Two node types can be defined, [10]: Light nodes and Service
nodes (see Figure 1). Service nodes are powerful embedded
computers running a full featured RTOS with complete net-
working with I/O capabilities. Light nodes are small and low
power consumption SoC (System on a Chip) processors with
limited computing and networking capabilities but complete
I/O features.

a) b)

RTOS

Ctrl.

App.

Ctrl.

App.…

Service node

CKM

CKM Runtime

…

Controller code pages

Networking

Cyclic

executive

Transducers

management

C1 Cn

Light node

Figure 1: Control nodes.

A control kernel middleware is implemented in both nodes,
[10]. In a distributed embedded control architecture, many
of these nodes can be interconnected in a wired or wireless
network, see Figure 2.

Control applications run in service nodes on top of a full
featured Control Kernel Middleware (CKM). This middle-
ware offers abstractions and functionalities related to control
tasks real time execution, access to sensors and actuators,
and communications management. The programming model
of CKM follows the concept of code delegation. In this sense,
a control application delegates the execution of some control
code to the CKM that provides computational resources to
execute it. Note that a control task, once inside the CKM,
can run on whatever service node of the distributed control
system (DCS) having access to the communications space of
the task.

Light nodes are a cost-effective solution in order to allocate
some computer power as close as possible of each actuator.
This is mandatory in order to reduce the nondeterminism
in the time delivering of the control actions to the plant.
Light nodes run a retail of the CKM: the CKM Runtime.

Figure 2: Control Kernel based architecture.

This Runtime communicates with the CKM offering inter-
faces for management, sensing and acting as well as code
uploading. A light node can be used as simple slave compo-
nent to interface DCS or it can run locally its own controllers
in a cyclic executive environment. Ensuring the delivery of
an appropriate control action it guarantees the safety of the
system, even if this action is to stop the plant operation.

In a control application, any control task that has been del-
egated to the CKM can be transferred to a light node by
uploading the native code page and asking for switching.
Controller pages can be uploaded through the CKM Run-
time without any interference with the controllers currently
running in the node. The uploaded pages are activated for
running by the switching mechanism provided by the CKM
Runtime. Attention should be paid to the system schedula-
bility [4].

In particular, service nodes may include supervising and op-
timizing control activities and light nodes can run activities
to drive the system to a safe position or run a simple al-
gorithm that guarantees a minimum of performance in the
system at any time. In this sense, Light node ensures that a
control action (u(k)) to be sent to the process always exists.
This signal may be just a safe action (disconnect, open, close,
unchange, etc.) or the result of a simple calculus (computed
locally in the node) (ul(k)) or it may be the signal calculated
(us(k)) and received from a service node.

3. ADAPTIVE CONTROL IMPLEMENTA-
TION

A typical structure of adaptive control involves two loops
(Figure 3). The classical feedback loop is keeping the re-
quired performance of the controlled plant, whereas the ex-
tra loop is in charge of evaluating the quality of the control,
performing a parameter estimation algorithm and determin-
ing the actual control to be applied to the plant. The actual
control may be also rather complex.

Through control kernel architecture, adaptive control struc-

SIGBED Review 25 Vol. 10, Num. 1, February 2013



PROCESSCONTROLLER

ESTIMATOR

EVALUATOR

ADAPTATION

LAW

ref
+

-

e u
y

�

Figure 3: Typical adaptive control structure.

ture can be implemented by a service node, which estimates
the signal quality and can change the control law based on
the identified needs, while the controller to apply the law
control can be implemented in a light node. Thus, tasks
requiring a high computational cost are delegated to the
service node, while the final application of the control is in
the light one.

The most desirable control action, as provided by the adap-
tive controller which is allocated in the server node, will be
delivered if there are enough available resources (commu-
nication bandwidth, computing time, memory accessibility
and so on). In the end, this control action will be based on
a part related to the current measurement (proportional ac-
tion), one part computed from the past measurements and
errors (the integral action) and one (or more) parts due to
the error prediction (derivative action). This is clearly illus-
trated in the case of using a PID adaptive control [9].

In this case the light node will compute the local control
action based on a local gain Kl (1)

ul(k) = Kle(k) (1)

where e(k) is the current error. Depending on the local re-
sources, the local control law can be also based on a frozen
PID controller, provided by the service node but being up-
dated from time to time, not continuously. On the other
hand, in the server node the control action us(k) (2) will be
evaluated

us(k) = Kse(k) +K1e(k − 1) +K2e(k − 2) + u(k − 1) (2)

by applying the full control structure and adapting the con-
troller parameters.

Under normal operation, the actual control will be u(k) =
us(k). In the event of a disturbance (lack of communication,
lost of measurement, or just not enough time to compute
and adapt the controller parameters {Ks,K1,K2}), the light
node will provide the local control action to both the plant,
as well as to the server, to be used in future computations.

The adaptation will update the controller parameters and/or
structure. By using the control kernel concept, a slightly
different alternative is proposed in this paper. Two different
control actions are computed. One is very simple and fast,
also requiring very few resources, and it could be just a
proportional action. It is a reactive control. For that, no
data retrieval is necessary and the computing time is very
short. Unfortunately, the controlled plant behavior will not

be the best achievable if a more sophisticated controller were
used, but it must ensure the controlled plant stability. This
action will be provided by the light node in charge of the
process.

4. EXPERIMENTAL WORK
Due to space shortage, two simple applications are presented
to illustrate the possibilities of the control kernel approach.
As already mentioned, the same approach can be used for
more complex applications where there is a general coordi-
nation and adaptation at the server level and a local reactive
control.

First, an adaptive control of a simulated process suffering
high priority communication interferences is evaluated. In
this case, the reactive local control is used if the adaptation
takes too much time. Then, for a mobile robot with two dif-
ferent tasks (tracking a trajectory and avoiding obstacles)
two different control algorithms are used. They are imple-
mented in the server node, being combined in a weighted way
according to the operating conditions. The time allocated
to each one is adapted to keep constant the total computing
time available for this control. At the local node, the final
control action is computed and delivered.

4.1 Adaptive control under interferences
A simulated process is controlled to get fast response and
adaptation capabilities. The adaptive control algorithm runs
in the service node. When the control algorihtm proposes a
new controller to keep the control of the system, it is sent
to the local controller node involving a controller switch.
In the event of a high priority aperiodic task (acting as an
interference to the control process computation), the local
node keeps running the last updated controller or a simpler
back-up one.

Figure 4: Control kernel implementation and simu-
lation.

The process transfer function for this application (3) maybe
time-variant, requiring the control adaptation. In this case

SIGBED Review 26 Vol. 10, Num. 1, February 2013



the transfer function is considered constant, the control adap-
tation being motivated by the appearance of an interference.
It has been simulated and evaluated in a Matlab/Simulink
environment, using the Truetime tool [7] to evaluate the be-
havior, as shown in Figure 4.

G(s) =
66.777

s2 + 9.391s+ 77.16
(3)

A faster and less performing controller (1) is implemented in
the local node to be directly applied to the plant if there is
no action coming from the server node. Initially, the plant is
controlled through the control action sent by the “complex”
controller (2) implemented in the server node (Figure 5).

Figure 5: Control structure. Experiment 1

At t = 6s, an interference forces the control to be trans-
ferred to the basic control implemented in the light node.
The control is softer and the plant response is degraded (as
can be seen in Figure 6) during the time the interference is
active. In the first appearance (interval {6, 7}), the system
is in the transient response and the behavior is degraded.
During the second interval ({8− 13}) a change in the refer-
ence happens and the response is again degraded but as soon
as the interference disappears, the control is assumed by the
service node and the response is stabilized and improved. It
is worth to note that the basic controller does not include
integral action, as can be seen in the steady-state error ap-
pearing in the plant response before t = 13s. Finally, the
interference appears just at the time of a reference change,
t = 15s, and the plant response is also degraded.

4.2 Controller adaptation due to goal changes
In the second experiment, a mobile robot is controlled to fol-
low a trajectory and avoid unexpected obstacles [11]. The
trajectory tracking algorithm involves a high computational
cost, because it is necessary to estimate the robot position at
each instant from sensory information. Thus this algorithm
is implemented in the server node, where the information
from sensors is sent by the light node. The light node im-
plements a obstacle avoidance algorithm, thus in case of data
loss between the server and light node, the robot can always

Figure 6: Switching control due to interferences.

avoid obstacles. The robot behavior consists in the combi-
nation of the two previous algorithms. The node supervisor
is in charge of deciding how much weight must be given to
each of the behaviors, in terms of sensory information and
the position of the robot (Figure 7).

Figure 7: Control structure. Experiment 2

The performance of the control is illustrated in Figure 8,
where there are two obstacles and a reference trajectory.

The computing time allocated for the robot in the light node
is bounded. This is shown in the upper graphic in Figure
9, where the computing time is almost constant. In the
lower graphic, the percentage of time devoted to evaluate
the obstacle avoidance control algorithm is shown. As it
can be seen, in the time intervals characterized by the cycles
{0−70}, {100−130}, {385−410}, no obstacles are detected
and all the computing time is allocated to follow the trajec-
tory. During the cycles in between, the obstacle starts to
be detected and the server node determines the use of the
light node to compute the control action to mainly avoid
the obstacle, degrading the trajectory tracking performance,
(Figure 8).

SIGBED Review 27 Vol. 10, Num. 1, February 2013



Figure 8: Mobile robot: trajectory tracking and ob-
stacles avoidance.

Figure 9: Computer Time in light node and task
activation

5. CONCLUSIONS
The use of the Control Kernel structure offers many advan-
tages in allocating different control tasks according to the
operating conditions. Two types of nodes are defined: the
powerful server node, probably taken care of many control
loops and activities, and the resource limited light node,
attached to a process, able to handle some related control
loops. A number of these nodes can be connected in a net-
work to implement a distributed control system.

In particular, for adaptive control, the more computing power
demanding tasks are implemented in the server node where
the actual controller structure and parameters are computed.
This information is transferred to the local node, where there
is also a back-up controller to ensure the delivering of a
safety control action.

Two control scenarios have been considered. In the first
case, based on a simulated plant, the appearance of aperi-
odic high priority tasks reduces the availability of computing
time and provokes the switching between the adaptive con-
trol provided by the server and the basic control computed

by the light node (Figure 5), leading to a degrading of the
control performance (Figure 6). In the second experiment,
where trajectory tracking and obstacle avoidance should be
accomplished, the trajectory tracking algorithm task per-
formed in the server node, while avoiding obstacles task and
the composition of the two behaviors, with the rules pro-
vided by the server node is made in the light (Figure 7).

Many other options are open with this control kernel struc-
ture and it is a matter of further research and experimenta-
tion.

6. ACKNOWLEDGMENTS
This work has been partially granted by Conselleŕıa de Edu-
cación Generalitat Valenciana, under PROMETEO project
number 2008-088, and Ministerio de Ciencia e Innovación
under COBAMI project DPI2011-28507-C02-01/02.

7. REFERENCES
[1] P. Albertos, A. Crespo, M. Vallés and I. Ripoll.

”Embedded Control Systems: Some Issues and
Solutions.” 16th IFAC World Congress. Prague, Czech
Republic. Elsevier, 2005.

[2] P. Albertos, A. Crespo and J. Simó. ”Control Kernel: A
key concept in embedded control systems.” 4th IFAC
Symposium on Mechatronic Systems. 2006.

[3] K. Astrom and B. Wittenmark, Adaptive Control, 2nd
ed., Addison-Wesley Longman Publishing Co.,
Boston,MA,USA, 1994.

[4] A. Crespo, P. Albertos, P. Balbastre, M. Vallés, M.
Lluesma and J.E. Simó. ”Schedulability issues in
complex embedded control systems.” IEEE Conference
on Computer Aided Control Systems Design. Munich,
Germany, 2006.

[5] Q. Li and C. Yao. Real-Time Concepts for Embedded
Systems. CMP Books, 2003.

[6] P. Mart́ı, M. Velasco, J. M. Fuertes, A. Camacho and
G. Buttazzo. ”Design of an Embedded Control System
Laboratory Experiment.” IEEE Transactions on
Industrial Electronics 57, n.10 (October 2010):
3297-3307.

[7] M. Ohlin, D. Henriksson and A. Cervin. ”TrueTime 1.5
- Reference Manual”. Lund University: Department of
Automatic Control, 2007.

[8] Z. Peng, M. Longhua and F. Xia. ”A Low-Cost
Embedded Controller for Complex Control Systems.”
IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing. Shanghai, 2008. 23-29.

[9] F. Radke and R. Isermann, ”A parameter-adaptive
PID-controller with stepwise parameter optimization”.
Automatica Vol 23, N 4, July 1987, Pages 449-457.

[10] R. Simarro, J. Coronel, J.E. Simó and J.F. Blanes.
”Hierarchical and Distributed Embedded Control
Kernel.”XVIIth IFAC World Congress. Seoul, Korea,
2008.

[11] A. Valera, M. Vallés, P. Albertos, R. Simarro, I.
Beńıtez, and C. Llácer. ”Embedded Implementation of
Mobile Robots Control.” 17th IFAC World Congress.
Seoul, Korea, 2008. 6821-6826.

SIGBED Review 28 Vol. 10, Num. 1, February 2013




