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Abstract— In this paper several algorithms to estimate the
attitude of a UAS using low-cost sensors are reviewed and a
new one including the angular velocity is proposed. The fusion
of measurement coming from gyroscopes and accelerometers is
based on the Kalman filter. A quadrotor experimental platform is
used to compare the measurement systems. The estimation results
are evaluated under different conditions and compared against
the results obtained with an industrial measurement device.
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I. INTRODUCTION

In the past years there has been an increasing interest in
Unmmaned Aerial Systems (UAS). Among the UAS, quadro-
tors are of special interest in control from both perspectives,
theoretical and applied [1]. They have been used as testbed
platforms for validation of non-linear [2], robust and pre-
dictive controllers [3]. Disregarding the control strategy, a
high-performance attitude tracking subsystem is a requisite
for developing any other high-level controlling task. A good
example of this statement can be found in [4], where a
full control (vision, collision avoidance, landing/taking-off) is
developed relying on the attitude control.

The key state variables to be estimated are the attitude and
the angular velocity, as they are the primary variables used in
attitude control of the vehicle [5]. Inertial Measurement Units
(IMUs), which are the core of lightweight robotic applications
have experienced a proliferation, resulting in cheaper, and
more accurate devices [6]. The emergence of cheaper IMUs
makes it possible to use UAS for civil purposes like ground
traffic inspection [7], forest fire monitoring [8] or real-time
irrigation control [9].

In this paper, low-cost IMUs are considered those devices
with a price less than 100 USD. These are very cheap
indeed, and they are commonly referred to as hobbyist-level
IMUs. These devices have lower performance in terms of bias
stability, nonlinearities and signal-to-noise ratio than those on
the market for industrial applications. A comparison of a wide
range of IMUs can be found in [10].

It is thus both a challenging and interesting task to obtain
a reliable attitude estimation using low-cost sensors. This is
difficult due to the low performance of the sensors which
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restricts the quality of the resulting estimation. And it is
definitely interesting because the problem of obtaining an
accurate attitude estimation is crucial and it usually represents
a large portion of the cost of an UAS [6].

The sensor fusion problem consists of obtaining an optimal
estimation of the required vehicle state variables with the direct
measurements from multiple sensors. There are many possible
solutions to this problem, e.g., Kalman filters [11], [12] or
complementary filters [13]. This paper aims at providing a
comparative evaluation of attitude estimation algorithms using
low-cost sensors (gyroscopes and accelerometers). Several
aspects must be taken into account while choosing the most
suitable approach for a given application: singularity existence,
convergence guarantee, computational time, bias estimation,
etc. The evaluation will be focused on Kalman filtering
methods, as they provide a suitable framework for an easy
integration in higher level localization techniques based on
laser range finders, cameras or GPS [4].

The major contributions of this paper are to provide a
comparative evaluation of different algorithms in the literature
and propose a slightly modified algorithm in order to improve
the angular velocity estimation. The results show that it is
possible to obtain a performance with a hobbyist-grade IMU
similar to that of an industrial-grade IMU.

The paper is structured as follows. First, the UAV attitude
representation and the measurement problem is reviewed in
Section II. Then, the experimental setup is described and
different measurement devices are considered in Section III.
A review of the most frequently used attitude estimation
algorithms is reported in Section IV, introducing a simple
modification to also consider the velocity estimation. Finally,
Section V summarizes the results after multiple experiments,
showing the advantages of the proposed method.

II. BASIS AND NOTATION

A. Problem statement

The problem of attitude estimation consists on recovering
the true attitude using the signals provided by the gyroscopes
and the accelerometers. The gyroscopes measure the angular
velocity of the body, and thus they can be integrated to obtain
the attitude. This approach yields to a drift in quite a short
time [14], due to the errors introduced by the integration of
bias and noise, as it will be discussed below.



The accelerometers sense the orientation of the gravity
acceleration, from which the attitude can be obtained directly.
However, the accelerometer signal is highly corrupted with
noise due to the vibrations and this approach yields to an esti-
mation too noise to be used in practice. A simple approach that
is widely used and provides good results is the complementary
filtering, where the accelerometers are low-pass filtered and the
gyroscopes are high-pass filtered [15].

In general, filtering algorithms try to fuse the information
of both sensors in order to provide a smooth and fast attitude
estimation [16]. As it was mentioned before, this paper is
focused on Kalman filtering, but different schemes will be
tested. Notations and orientation representations are introduced
next.

B. Attitude representation

Let us denote by {ê1, ê2, ê3} the unit basis vectors of
the Earth-Centered Earth-fixed (ECEF) reference frame, {E},
which is assumed to be inertial.

Let ω = ωBB/E = [p, q, r]T be the angular velocity of the
aircraft with respect to {E} expressed in the body frame {B}.
Thus, the rotational kinematics relating these angular velocities
to the Euler angles, η = [φ θ ψ]T , is expressed as

η̇ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

ω (1)

where φ, θ, and ψ denote the roll, pitch and yaw angles,
respectively.

It is a well-known result that the rate of change of the basis
vectors is given by

dêi
dt

= ωE/B × êi = −ω × êi = [ω]T×êi (2)

where the skew-symmetric operator is defined as

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

According to the roll-pitch-yaw sequence of Euler angles
the rotation matrix is expressed as

BRE =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − cφcψ cφcθ

 (4)

where BRE maps vectors of {E} onto {B}. Noticing that
BRE = [ê1 ê2 ê3] and the time derivative of this rotation
matrix can be derived by generalizing (2), it follows that the
kinematics in terms of the rotation matrix, also referred to as
the Direct Cosine Matrix (DCM), is given by

BṘE = [ω]T×
BRE (5)

Rotations are also represented using quaternions, which are
an extension to the complex numbers. They are mainly used
because they provide a singularity-free representation, and also
because quaternion algebra is computationally efficient. The
unit quaternion is represented by q = [q0 q4]T where q0 =

[q1 q2 q3]T is the vector part and q4 is the scalar part of the
quaternion. The rigid body angular motion obeys the vector
differential equation

dq

dt
= Ω(ω)q (6)

where
Ω(ω) =

1

2

[
[ω]× ω
−ωT 0

]
(7)

The rotation matrix is expressed in terms of the quaternion
components as follows

B
RE =

q21 − q22 − q23 + q24 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) q21 + q22 − q23 + q24 2(q2q3 − q1q4)
2(q1q3 − q2q4) 2(q2q3 − q1q4) q21 − q22 + q23 + q24


(8)

III. EXPERIMENTAL DEVICES

A. Sensor characterization

The output of a MEMS sensor is corrupted by noise and
an offset usually referred to as bias [17]. The bias can be
calibrated prior to each flight. However, it is dependent on the
temperature, and that causes the bias to drift. This effect is
specially remarkable within the first few minutes of operation,
because of the internal warm-up of the electronic components
[18].

For the attitude estimation problem the biases of the gyro-
scopes are much more crucial than the others. The output of
the gyroscopes is time-forward integrated. Even considering
an ideal scenario without bias, the integration of the gyro
output corrupted by white noise would give rise to an error
growing as εw ∝

√
t. The addition of an offset term is even

worse, originating an error that grows proportionally with time,
εb ∝ t. As a consequence, a method is needed to correct the
errors introduced by the integration of bias and white noise.

The biases of the accelerometers are not so important
because, after a calibration, they will result only in a small
offset with respect to the actual horizontal plane, which is
perpendicular to the gravity vector.

Let us consider the sensors are modeled as follows,

ω̄ = ω̃ + βω + ηω

ā = ã + ηa
(9)

where the velocity measurement ω̄ is composed of its actual
value ω̃, plus the bias βω and noise ηω . The same applies for
the acceleration measurements but the biases is not included.
As mentioned above, this errors are not so critical as they are
not integrated over time. The measurement noises are subject
to a Gaussian representation as follows,

E[ηω] = 0 E[ηωη
T
ω ] = Σω = σ2

ωI3

E[ηa] = 0 E[ηaη
T
a ] = Σa = σ2

aI3
(10)

with Σω and Σa diagonal covariance matrices.
A random walk process,

β̇ω = ηβ , (11)

E[ηβ ] = 0, E[ηβη
T
β ] = Σβ = σ2

βI3, (12)


