
Integrated Schedulers for a Predictable
Interrupt Management on Real-Time Kernels

S. Sáez and A. Crespo

Department of Computer Engineering
Universidad Politécnica de Valencia
{ssaez,alfons}@disca.upv.es

Abstract. To analyse the timeliness behaviour of a real-time system is
one its key aspects. A big effort has been performed by the real-time
community to develop accurate and more general schedulability analysis
that can ensure the correct execution of the system. However, few works
have analysed the side effects introduced by the scheduler and undesired
execution of Interrupt Service Routines. Previous works addressed the
interrupt interference by proposing an Integrated Interrupt Model that
avoids unpredictable disturbance from external interrupts. Even so, the
scheduling overhead due to the unnecessary activation of low priority
tasks remains still unaddressed in this model. This work proposes a new
Virtual implementation of an Integrated Interrupt Event-Driven Sched-
uler that copes with this pending issue. It also analyses the behaviour
of the commonly used dual queue scheme under this kind of schedulers
and proposes a more appropriated data structure to avoid unnecessary
overheads.

1 Introduction

Real-time computing systems cope with its intrinsic complexity by decomposing
the system software in a set of concurrent tasks with timing constraints. These
timings constraints, that must be met for correct operation, are usually repre-
sented by a deadline and a task period. To guarantee such constraints, exten-
sive research has been performed on schedulability analysis of real-time systems
[1]. Schedulability tests are designed to take into account the system workload
characteristics and the kind of scheduler used by the real-time operating system.
Fixed-priority scheduler is one of the most popular and widely accepted real-time
schedulers, and therefore it is present in almost all the commercial real-time op-
erating systems [2]. However, a wide gap still exists between scheduling theory
and its implementation in operating system kernels, since the system scheduler
is usually assumed to be executed without any kind of overhead.

Few works have analysed the side effects introduced by the scheduler and the
associated operating systems routines [3–5]. These works analyse the temporal
behaviour of real-time schedulers classifying them into event-driven, that relies
on an external hardware device that generates interrupts upon task arrivals, or
timer-driven, that uses periodic interrupts from a programmable hardware timer

to execute the scheduler at fixed intervals. Katcher et al. emphasize the impor-
tance of integrating timer interrupts into the scheduling scheme in order to avoid
unnecessary interrupts, i.e., timer interrupt that will wake up a low priority task
while a higher priority task is in execution. This integrated interrupt model has
been further extended by Leyva-del-Foyo et al. in [6–8] to include all hardware
interrupts that can be produced in a real-time kernel. These authors introduce
an integrated model for task and interrupt management and propose differ-
ent hardware and software implementation approaches. This integrated model
is carefully analysed under each proposed implementation and the utilization
bound reductions compared with the one obtained from a non-integrated model.

The integration of hardware interrupts and real-time tasks gives rise to a
real-time task set composed by Hardware Activated Tasks and Software Acti-
vated Tasks respectively [8]. The release of Harware Activated Task is strictly
controlled by an Interrupt Hardware Abstraction Layer in [7] or more loosely
controlled using an optimistic approach in [8]. However, the Software Activated
Tasks are normally released by means of a timer interrupt, and this fact is not
addressed in these works. For example, on [7] is suggested that the timer inter-
rupt still could be considered an Interrupt Service Routine, since it will never
be handled by the application. This approach, although reduces the unnecessary
overhead introduced by the Interrupt Hardware Abstraction Layer, could give
rise to an unnecessary invocations of the system scheduler when the task that
is woken up has a lower priority than the currently executing task. An inte-
grated event-driven scheduler, as proposed by Katcher et al., could cope with
this scenario whenever the Hardware Interrupt Controller was able to manage
multiple prioritized timers. However, this capability is usually not available in
the hardware interrupt controller integrated in nowadays processors.

This work proposes to complete the integrated interrupt model with an in-
tegrated event-driven scheduler that modifies the hardware timer to interrupt
only when a higher priority task has to be woken up. This kind of scheduler
could avoid unnecessary task activations, reducing the disturbance introduced
by the operating system kernel. The adequacy of traditional scheduling imple-
mentations based on a dual queue scheme, a ready-queue and a wait-queue, to
implement this new kind of scheduler is also addressed. Finally, a new fixed-
priority scheduler based on a Cartesian tree [9] is proposed to overcome the
detected drawbacks of the traditional dual queue approach.

The rest of the paper is organized as follows: next section describes the system
model and the notation used in the rest of the paper. Section 3 introduces the
model of integrated interrupt management. Then section 4 presents how the
scheduler can be integrated in this new model. Section 5 presents dual-queue
scheduling schemes, its computational cost and main drawbacks when used in
an integrated interrupt model. Section 6 presents a new scheduler that avoids
previous drawbacks. Finally section 7 presents some additional considerations
and then section 8 summarise some of the main results.

2 System Model and Notation

The notation used in this work is based on the one presented in [7] but with
some small differences. It can be summarized as follows:

HAT Hardware Activated Task. A task that is released by an external interrupt.
SAT Software Activated Task. A task that is activated by a timer interrupt or

by other task.1

τx Real-Time task with period Tx, worst-case execution time Cx and priority
px.

rx Next activation instant of task τx while it is in the wait queue.
H(i) Set of tasks with a priority higher than task τi. HSAT(i) are the SATs that

belongs to H(i). A similar definition holds for HHAT (i).
HSAT(i)

⋂
HHAT (i) = ∅.

L(i) Set of tasks with a priority lower than or equal to task ti. LSAT(i) and
LHAT (i) are defined as in H(i).

R and W Represents the tasks present in the ready queue or wait queue re-
spectively. The number of tasks in these queues will be represented as NR

and NW . Intersection with task sets L(i) and H(i) will be denoted by using
superscripts, e.g., HR(i) = R

⋂
H(i).

The notation for system overheads is shown next:

δisr Total processing time for the enter and leave code of an Interrupt Service
Routine, including basic communication with the Hardware Interrupt Con-
troller (interrupt ack, end-of-interrupt, etc.).

δhic Communication cost with the Hardware Interrupt Controller to mask un-
desired external interrupts.

δctx Time required to perform a task context switch, including CPU registers
context, MMU context (if required), etc.

δSched Processing time required to determine the next task to be executed. It can
be differentiated in δSched−A, when it is computed during a task activation,
or δSched−T, if it is computed when the active task is going to be suspended.
It can also be suffixed as δSched

T or δSched
I to differentiate between traditional

schedulers and integrated interrupt schedulers proposed in this work.

3 Integrated Interrupt Management Model

An extended explanation of the Integrated Interrupt Model is presented in this
section along with the issues that still remains unaddressed. A complete expla-
nation of this model can be found in [7, 8].

The Integrated Interrupt Model proposes to use a common priority space
where real-time tasks and traditional Interrupt Service Routines (ISR) are map-
ped. This gives rise to a set of Hardware Activated Tasks (HAT) and Software

1 However, this work only considers the software activated task released by a timer
interrupt.

Activated Tasks (SAT) which timely execution can be analysed using well known
methods [10, 1]. This model avoids to perform a probably unbounded number
of ISR executions while high priority tasks are in execution, but also introduces
additional system overheads.

3.1 Hardware Activated Tasks

The conversion of the existing ISRs into HATs allows the system to control when
a given external interrupt is attended with respect to traditional real-time tasks,
i.e. SATs, and the rest of HATs by means of a correct priority assignment. The
disturbance associated to the execution of ISRs, that previously affect to all
priority levels due to the independence of priority spaces, is moved to a given
priority level in the common priority space where higher priority tasks will not
be affected. The reduction of CPU utilization due to the interrupt disturbance
for a given task τi is denoted in [7] as UiS . That work also concludes that the
time required to process the enter and leave code of the ISR, δisr, is replaced
by a usually larger time required to perform the context switches of the implied
HAT, δctx. Whether the utilization reduction due to this new overhead is lower
than the previous lost of utilization UiS or not, allows the system designer to
determine the adequacy of the integrated interrupt model for a given real-time
system.

This integrated priority space for tasks and interrupts requires to change the
interrupt priority level2 of the Hardware Interrupt Controller (HIC) each time
a new task enters into or exits from execution to avoid the undesired activation
of HATs. If the HIC is not included inside the CPU encapsulation, then the
communication with this external device through the input/output subsystem
could carried out an important overhead that also has to be incorporated into
the schedulability tests. Moreover, if the HIC does not support an interrupt
priority level, a Virtual Custom Programmable Interrupt Controller can be in-
corporated to Interrupt Hardware Abstraction Layer to offer this functionality.
As this Virtual Custom PIC emulates the availability of the interrupt priority
level by means of interrupt masking on the real HIC, additional overheads are
introduced to compute the adequate mask for each priority. These additional
operations performed during task activation and deactivation are the ones that
introduce a higher context switch time. A complete analysis of these overheads
can be found in [7, 8].

3.2 Software Activated Tasks

Although the integrated model allows the system designer to control the activa-
tion of HATs by means of properly assigned priorities, the correct activation of
SATs remains unaddressed. SATs are theoretically activated by software mech-
anisms such as semaphores, mutexes, barriers, execution time timers, timing
events and so on. While the tasks activated by semaphores, mutexes, barriers

2 This level specifies the minimum priority of an interrupt for the CPU to be notified

and suspension objects are released by code executed directly or indirectly by
other task, in the case of temporal events, it is the ISR of the timer interrupt
the final responsible of producing the timed event. In such a way, a subset of
the SATs, in particular the real-time periodic tasks, are indirectly activated by
the occurrence of a hardware interrupt. After this SAT activation, the sched-
uler is executed in order to determine if the recently activated task has a higher
priority than the one is currently under execution. If the activated task has a
lower priority, then the current task is resumed. However, an unnecessary activa-
tion procedure has been performed that has introduced an unexpected overhead
during a higher task execution. This overhead is similar to the one produced by
hardware interrupts in a non-integrated model, but with the additional overhead
of executing the system scheduler.

The interference due to unnecessary SAT activations, USAT
i , is the decrease

of least upper utilization bound at priority level pi and can be computed as
follows:

USAT
i =

∑
τk∈LSAT(i)

δisr + δSched−A
T

Tk
(1)

where δSched−A
T can be typically decomposed in the following actions: to remove

the time event from the wait queue, δSched−A
wq , to insert the newly activated task

τk into the ready queue, δSched−A
rq , and to check the top of the ready queue to

find out which task will be the next running task, δSched−A
next .

δSched−A
T = δSched−A

wq + δSched−A
rq + δSched−A

next (2)

While δSched−A
next can be considered constant when a new SAT has been ac-

tivated, the other two overhead terms, δSched−A
wq and δSched−A

rq , depends on the
data structures used to maintain the ready and wait queues. These overheads
are analysed in section 5.

This scheduling overhead can also be expressed as an additional blocking
time, that higher priority tasks can suffer from lower priority tasks, and it should
be taken into account during the Response Time Analysis [1] when traditional in-
terrupt models are used. The next equation summarises this additional blocking
time:

BSAT(i) = |LSAT(i)| × (δisr + δSched−A
T) (3)

In order to avoid this effect, the integrated interrupt model has to grant that
no timer interrupt that activates a lower priority task (τk ∈ LSAT(i)) will be
raised during the execution of a higher priority task τi. This can be achieved
using an Integrated Interrupt Event-Driven Scheduling scheme as it is proposed
by Katcher et al. in [3]. Next section briefly introduces this kind of schedulers
and proposes a software-based implementation.

4 Integrated Interrupt Event-Driven Schedulers

In Integrated Interrupt Event-Driven Scheduling systems all the tasks are initi-
ated by external interrupts which have priorities that fully match the software
task priorities. Upon the activation of each task τi an interrupt is posted to the
processor that only starts the corresponding ISR if the priority pi is higher than
the priority of the currently running task τr, i.e., τi ∈ H(r). If task τi does not
belong to H(r), then the activation interrupt of task τi remains pending. This
behaviour requires a special hardware within the processor or a HIC that holds
the active task’s priority in a register and raises a real interrupt only when the
pending interrupt with the highest priority has a priority greater than the cur-
rent priority level. A similar Custom Programmable Interrupt Controller (CPIC)
is described in [6] with some differences: As all the tasks are considered HATs,
the CPIC has to provide enough hardware timers, with its associated priority
level, to implement all periodic real-time tasks in the system.

As the functionalities to be provided by the HIC are not commonly available
in current processors or PICs, an approach similar to the Virtual CPIC presented
in [7] is proposed next.

4.1 Virtual Integrated Interrupt Event-Driven Schedulers

This work proposes the use of a Virtual Integrated Interrupt Event-Driven Sched-
uler (VIIED Scheduler). Under this kind of scheduler, while the current task τr
is running, the HIC is programmed to raise only timer interrupts belonging to
activation instants of higher priority tasks, {rh : τh ∈ HSAT(r)}. The activation
instants that belong to lower priority tasks, {rl : τl ∈ LSAT(r)}, are ignored,
including the case in which an activation instant rl is closer than the closest rh.
This behaviour prevents the scheduler to wake up a task with a lower priority
than the current one. Thus, if a VIIED scheduler is incorporated to the inte-
grated interrupt mode presented in [7, 8], a fully integrated interrupt model can
be achieved and the system can avoid disturbances shown in sections 3.1 and
3.2.

To achieve this behaviour, each time the scheduler is invoked to determine
the next ready task with the highest priority, τr, it has to examine the wait
queue to find out which of the suspended tasks, τp, with a priority higher than
pr, has the closest activation instant. We call this task, τp, the next preemptor
of τr and it can be expressed as:

τp ∈ HW (r)/ 6 ∃τq ∈ HW (r) : rq < rp (4)

Once τp is determined, the HIC has to be programmed to raise the next timer
interrupt at time rp. If HW (r) is empty then there is no task into the wait queue
with a higher priority than the current one, and therefore, the timer interrupt
does not need to be programmed. In such a case, the currently active task will
run until its suspension, at which time the system scheduler is invoked again.
This can only happen when the highest priority task is running.

Taking into account the new functionality that has to be implemented by the
scheduler in this model, the new scheduling overheads δSched−A

I and δSched−T
I can

be expressed as follows:

δSched−A
I = δSched−A

wq + δSched−A
rq + δSched−A

next + δSched−A
np (5)

δSched−T
I = δSched−T

rq + δSched−T
wq + δSched−T

next + δSched−T
np (6)

where δnp is the time required to find the next preemptor on each case, and
δSched−T
rq , δSched−T

wq and δSched−T
next are the execution times required to remove the

active task from ready queue, to insert its next activation on the wait queue and
to determine the next activate task among the ones found in the ready queue.

The efficiency of a VIIED scheduler will strongly depend on its ability to
perform all the steps included in δSched−A

I and δSched−T
I in a fast and bounded

manner. A lot of study has been carried out to analyse the behaviour and tem-
poral costs of different kinds of priority queues, including under the real-time
perspective [11]. Next section analyses common data structures used to imple-
ment the ready and wait queues on several real-time kernels. The main drawbacks
that arise when they are used to implement a VIIED scheduler are also analysed.

5 Dual-Queue Scheduling Schemes

Today’s real-time operating system kernels are usually based on a dual-queue
scheduling scheme. This scheme uses one queue to store active tasks, called ready
queue, and the other one to store timed events, called wait queue. Timed events
stored in the wait queue usually has a reference to the suspended task that has
to be woken up upon the arrival of such an event.

Several open source real-time kernels found in the bibliography have been
analysed and the differences found among them in the scheduling scheme are
mainly centred in the data structures used to implement these queues. While
PartiKle [12] and MarteOS [13] use priority bitmaps plus an array of ordered
linked lists to implement the ready queue and a heap to implement the wait
queue, Open Ravenscar Kernel [14] and Shark [15] kernels implement both
queues with ordered linked list. The only one that does not follow the dual-
queue approach is RT-Linux [16] that uses a very simple scheme based on a
single one unsorted queue.

5.1 Time complexity of queue operations

The ready queue operations usually required by a scheduler to implement a fixed-
priority scheduling policy are: insert, delete or delete-min, and find-min.
Among the structures used to implement the ready queue, the priority bitmap
clearly outperforms any other data structure since it has a constant temporal cost
(Θ(1)) with respect to the number of ready tasks3 in all the required operations.

3 The temporal cost is O(P), where P is the number of priority levels, but this value
is fixed in a given system

The queue operation required to implement the wait queue in a conventional
event-driven scheduler are the same than in the ready queue. As the normal key
used for storing timed events are absolute activation instants, and they are not
bounded, the priority bitmap cannot be used for wait queues. In these situations
a typical data structure to be used is any binary tree that offers a good temporal
behaviour on the required operations. As shown above, one of the preferred ones
is the binary heap [17]. In this case, the temporal cost of find-min operation
is Θ(1) and Θ(log(n)) for insert and delete-min. Other binary trees as AVL
and Black-Red trees[17] can also be used, as they have similar temporal costs,
although the constant that multiply any operation cost is usually higher than
the one of binary heaps.

However, to implement a VIIED scheduler a new queue operation find-pre-

emptor is required to be implemented in the wait queue, as it is shown in equation
(4). This operation is not commonly available in used data structures, as it
needs a second key to sort the wait queue nodes: the priority of the task to be
activated. Since data structures used to implement wait queues only uses one
key, the cost of finding the item that accomplishes the next preemptor condition
has an asymptotic upper bound of O(NW), being NW the number of timed
events stored in the wait queue.

When a sorted linked list is used to implement the wait queue, the nodes can
be traversed by increasing activation instant. Since the next preemptor condition
holds for the closest timed event with an associated task priority higher than
the current one, the find-preemptor operation can stop as soon as one node
fulfils the higher priority condition. This gives rise to lower temporal bound of
Ω(1) and an average-behaviour that depends on the distribution of timed events
inserted in the wait queue. However, due to the temporal cost of the insert

operation (O(n)), the linked lists are only useful for real-time system with small
real-time task sets.

On the other hand, as the ordering of siblings in a binary heap is not
specified by the heap property, no order about nodes can be assumed and no
in-order traversal is possible. Then, the tight temporal cost of the operation
find-preemptor is Θ(n). As some implementations of AVL trees can maintain
an in-order linked list together with the binary tree, they could be a good sub-
stitution of binary heaps when used on VIIED schedulers with a large number
of tasks.

From here on, the worst case execution time of a queue operation will be
referred as QRoper and QWoper for the operation oper over the ready and wait
queue respectively.

5.2 Dual-queue scheme drawbacks

As shown in the previous section, the temporal behaviour of the queue operations
used by a fixed-priority real-time scheduler can be tightly bounded by using
the appropriated data structures. Despite of the inability of the currently used
data structures to efficiently address the find-preemptor operation, the major
drawback of the dual-queue scheduling scheme is the use of separate queues

for ready and suspended tasks. This section describes the disadvantages derived
from this dual-queue scheme.

Given a running task, τr, a VIIED scheduler prevents the activation of lower
priority tasks by means of avoiding the unnecessary timer interrupts. However,
when the next preemptor task τp is activated, the lower priority tasks which
activation is pending still remain in the wait queue. Being τp the next preemptor
of τr, this set of pending tasks Pp(r) can defined as:

Pp(r) = {τk ∈ LW (r)/rk ≤ rp} (7)

Then the number of tasks, Np, that have to be moved to the ready queue
while activating τp is Np = |Pp(r) ∪ {τp}|.

When evaluating the cost of removing these pending tasks, it has to be taken
into account that some wait queue implementations are not able to perform
a find-min operation without performing a set of delete-min operations to
remove the previously activated tasks Pp(r). This is the case of the commonly
used heap. If the wait queue has this constraint, then the scheduling overhead
δSched−A
I is defined as:

δSched−A
I = Np × (QWdelete−min +QRinsert) +QRfind−min +QWfind−preemptor (8)

Although the QRfind−min can be considered constant, as it is known that the

highest priority task is going to be τp, the term Np × (QWdelete−min + QRinsert),
referred as pending task processing time, could give rise to an important execution
time overhead during the activation of τp.

On the other hand, when the running task finishes, the system has to deter-
mine the next running task and the next preemptor. This implies to update the
ready queue and wait queue, before determining the next running and preemptor
tasks. This scheduling overhead is shown next:

δSched−T
I = QRdelete−min +QWinsert +QRfind−min +QWfind−preemptor (9)

Additionally, due to the internal design of the scheduler, these scheduling
overheads, δSched−A

I and δSched−T
I , are in fact blocking times, since the system

scheduler is commonly designed as an uninterruptible routine. Therefore, no
higher priority tasks can be activated while the scheduler structures are being
updated.

Schedulers implementation comparison In order to determine if this im-
plementation of the integrated interrupt model is adequate for a given real-time
system, the overhead introduced by a traditional interrupt model, δT , due to the
tasks that have to be activated during the execution of τr has to be compared
with the new δI .

When using a traditional scheduler, the maximum overhead at a priority level
pr, referred as δT (r), is:

δT (r) = δisr + 2× δctx + δSched−A
T +BSAT(r) + δSched−T

T (10)

On the other hand, from equations (8) and (9) the overhead at a priority
level pr when using a VIIED Scheduler, δI(r), can be summarised as:

δI(r) = δisr + 2× (δctx + δhic) + δSched−A
I + δSched−T

I (11)

Thus, the condition that has to be fulfilled by a VIIED scheduler to worth
its use into an integrated interrupt model can expressed as:

δI(r) ≤ δT (r),∀τr (12)

although the condition could be applied only to the critical priority levels.
Taking into account that in the worst case scenario Np is limited by the

number of tasks with a priority lower than pr, i.e., Np ≤ |LSAT(r)| + 1, the
inequality shown in (12) can be simplified as follows:

2× δhic + 2×QWfind−preemptor ≤ |LSAT(r)| × (δisr + δctx +QRfind−min) (13)

Therefore, as QRfind−min has a constant execution time in an efficient ready
queue implementation, the maximum temporal cost at a given priority level pr
for QRfind−preemptor can be O(|LSAT(r)|). As currently used wait queue implemen-
tations do not use the priority to sort the timed events, the computational cost
for finding the next preemptor is usually O(NW). In such cases, the system will
need an additional data structure that are able to sort pending timed events in
priority order to find the next preemptor with a tighter computational cost. A
possible data structure to perform this task could be a priority-indexed array of
sorted event queues, as it has O(|LSAT(r)|) for QWfind−preemptor.

Despite of the accomplishment of this inequality, the dependency of δSched−A
I

with the number of blocked task in Pp(r) introduces an additional undesirable
behaviour: the release jitter of task τp, defined as the interval between the ex-
pected activation rp and the real activation rp + δisr + δctx + δSched−A

I , becomes
significantly incremented.

These disadvantages are normally intrinsic to the dual-queue scheduling sche-
me. The next section presents a VIIED scheduling algorithm based on a single
queue model that tries to avoid both problems: release jitter and pending tasks
processing time.

6 A Scheduler based on Cartesian Trees

This section describes a VIIED scheduler that uses only one data structure to
store ready and suspended tasks. This data structure is based on Cartesian trees
and it is intended to reduce the temporal cost of finding the next preemptor,
Qfind−preemptor, to constant time. It was already presented in a previous work to
implement a real-time scheduler [18].

Cartesian trees were introduced and named by Vuillemin [9]. The name is
derived from the Cartesian coordinate system for the plane. A Cartesian tree
for a set of points has the sorted order of the points by their x-coordinates, and
it has the heap property according to the y-coordinates of the points. In this
work the x-coordinates will be the task priorities and the y-coordinates their
activation instants. In such a way, the Cartesian tree becomes a heap structure
that stores the closest activation instant in the root node. However, as each node
also have a priority, the final tree has an interesting property: the left child of
each node is the next task to be activated with a priority lower or equal than its
parent node and the next task to be activated with a priority higher than the
parent node is the right child. So, the next preemptor of a given task is directly
located in its right child node, and therefore, to find the next preemptor of any
task can be performed in constant time. We denote this usage of the Cartesian
trees: Scheduling Cartesian Tree or SC-Tree.

a: 20

p: 11

 4

a: 107

p: 22

 5

a: 83

p: 6

 2

a: 163

p: 36

 0

a: 162

p: 16

 1

a: arrival

p: priority

 id

a: 241

p: 19

 3

Fig. 1. A Scheduling Cartesian tree

Figure 1 shows an example of a SC-Tree with 6 tasks. Each task τi, is rep-
resented by three parameters: its identifier, i, its activation instant, ri, and its
priority, pi. As it can be observed the activation instants of the nodes maintains
no order but the heap property.

Let the node 4 represents the currently running task τ4. All the suspended
tasks with a higher priority, HW (4), can be found in the right sub-tree, and the
lower priority ones, LW (4), in the left sub-tree. Moreover, the closest suspended
task of HW (4), i.e., the next preemptor, can be found directly on the right
child of node 4, i.e., the node 5. The right branch, depicted in grey in Figure

1, will be referenced as preemptors branch, and it contains the only tasks that
can preempt the previous one in the branch during its execution. As it will be
explained bellow, this preemptors branch has interesting properties.

Although this structure reduces Qfind−preemptor to constant time, provided
that a reference to the current task’s node is available, this does no avoid the rest
of drawbacks presented for the dual-queue scheduling schemes. So, the followed
approach in this work is to use the SC-Tree not only as a heap of timed events
with fast next preemptor operation, but also use the same SC-Tree as ready
queue.

Let us follow the explanation with the depicted example of Figure 1. When
task τ5 becomes active at instant 107, no modifications will be performed on the
SC-Tree, but just a change in the currently running task reference to point to
node 5, that was the previous preemptor. At this time, the node 4 is the parent
of currently running task τ5. Task τ4 is still active but it is not the highest
priority task any more. Task τ2 is also active, but it does not matter, since has a
lower priority than τ5 and τ4. The next preemptor will be τ0 with an activation
instant r0 = 163, which is the absolute time value used to program the next
timer interrupt into the HIC. If the activation instant r0 is reached before task
τ5 completes is execution, the task τ5 will be preempted, and the scheduler would
behave as in the later case, moving the currently running task reference to task
τ0. If task τ5 finishes is execution before r0 and ask for delaying its execution
until its next period, the node 5 is modified with the new activation instant and
pushed down until its new location in the SC-Tree. The new currently running
task will be τ4, i.e., the old parent of τ5 that still remains active. The next
preemptor would be τ0 only if the new activation instant of τ5 is not lower than
r0.

SC-Tree computational cost As it has been explained, the structure of the
SC-Tree only changes when a task finishes its execution. When a task becomes
active there are no actions to perform but to change the currently running task
reference to the previous preemptor (right child), so the time required to deter-
mine the next active task QSAfind−min has a constant computational cost (Θ(1))

and also to determine the next preemptor QSAfind−preemptor once the currently run-
ning task reference has been updated. In such a way, the scheduling overhead
due to task activation δSched−A

I will be:

δSched−A
I = QSAfind−min +QSAfind−preemptor (14)

which are both constant time. This behaviour allows the system to minimize the
release jitter of a task under this VIIED scheduler.

On the other hand, when a preempting task finishes, the task that must be
resumed is the task located at the parent node, so QSTfind−min has also a con-
stant execution time. Therefore, only the time to push down the next activation
of the finished task is significant in the preemption process. This new opera-
tion push-down for a given finished task τf has a worst-case execution time
QSTpush−down that depends on the number of pending activations between now

and rf . In the worst case, the number of tasks will be NW and, therefore, the
cost will be O(NW).

SC-Tree blocking time Another important advantage of the SC-Tree is that
the push-down operation is only executed when the task finishes its execution.
If some higher priority task is activated during the push-down operation, the
operation can be preempted and resumed when the higher priority tasks finishes.
Although the SC-Tree would remain in an inconsistent state until the operation
was resumed, the interesting property is that the preemptors branch is never
modified by a lower priority task, and therefore, the inconsistent SC-Tree still
can be used to determine the next preemptor of the running task until pending
push-down operations are concluded.

7 Additional considerations

This section presents some additional considerations that have to be taken into
account when a fully Integrated Interrupt Model is used in a real-time system.

In the traditional interrupt model, the scheduler cost of changing the priority
of the running task, e.g. when it enters/leaves a protected object and the Imme-
diate Priority Ceiling Protocol is used, is considered negligible or has a constant
asymptotic cost.

When an Integrated Interrupt Model is used, to change the priority of the
current task requires to update the system priority level. To avoid unnecessary
interrupts when the system priority level changes, the HIC has to be repro-
grammed and the next preemptor has to be computed when the task enters
and leaves the protected object. The cost of these operations can be considered
excessively high to be applied each time a task access to a protected object.

However, if the base priority is pb and the real inherited priority, pa, is not
enforced by the VIIED Scheduler, any task τi with a priorities pi ∈ (pb, pa] will
be activated but not executed. Additional blocking times have to be computed
for these tasks similar to the one presented in equations (3) and (10).

BPO(i) =
∑

k∈L(i)−L(b)

δisr +QWdelete−min +QRinsert +QRfind−min (15)

This blocking time is equivalent to the one for the traditional interrupt model
but only for the task between priorities pb and pi. This overhead has to be
compared with the overhead due to update the system priority level when the
tasks enters and leaves the protected object that is presented next:

QPO = δhic +QRinsert +QRdelete−min + 2×QRfind−min + 2×QWfind−preemptor (16)

where QRinsert represents the overhead of inserting a pseudo-task at the new
priority level pa and QRdelete−min is the overhead to remove this pseudo-task at

the end of the protected action. In the case of the SC-Tree, QRinsert is replaced
by Qpush−down.

To compute the cost of these operations for a given system scheduler allows
the system designer to decide if it is worth following a fully integrated interrupt
model or if it could be relaxed during the execution of protected actions.

8 Conclusions and Future Work

Previous works addressed the interrupt interference by proposing an Integrated
Interrupt Model that avoids disturbance from external interrupts. However, the
overhead of processing unnecessary activations of lower priority Software Acti-
vated Tasks has not been properly addressed in this model.

This work proposes a new Virtual implementation of an Integrated Interrupt
Event-Driven Scheduler that avoids the hardware requirements of an Integrated
Interrupt Event-Driven Scheduler. A new data structure based on Cartesian
trees has been proposed to avoid the main drawbacks of implementing a Virtual
Integrated Interrupt Event-Driven scheduler following a dual-queue scheduling
approach. A comparison of the run-time behaviour of system schedulers used in
an integrated model has been previously presented in [18].

The proposed SC-Tree scheduler has shown to be better suited for a fully
integrated interrupt model, completely avoiding release jitter and scheduling
blocking times that arise with conventional dual-queue schedulers.

Also a complete analysis of the implied overheads and blocking times when
the integrated interrupt model includes Software Activated Tasks has been pre-
sented. This analysis allows the system designer to determine if the fully inte-
grated interrupt management is suited for the real-time system under develop-
ment.

Future work will try to extend the analysis to fully integrated interrupt man-
agement systems based on dynamic priorities and the suitability of the SC-Tree
scheduler in such environments.

Acknowledgements

This work has been partially supported by the Spanish Government’s projects
COBAMI (DPI2011-28507-C02-02) and Hi-PartES (TIN2011-28567-C03-01-02-
03) and the European Commission’s MultiPARTES project (FP7-ICT-2011.3.4,
Contract 287702).

References

1. Audsley, N., Burns, A., David, R., Tindell, K., Wellings, A.: Fixed priority pre-
emptive scheduling: An historical prespective. Real-Time Systems 8(2/3) (March/-
May 1995) 173–189

2. POSIX.13: IEEE Std. 1003.13-1998. Information Technology -Standardized Ap-
plication Environment Profile- POSIX Realtime Application Support (AEP). The
Institute of Electrical and Electronics Engineers. (1998)

3. Katcher, D., Arakawa, H., Strosnider, J.: Engineering and analysis of fixed priority
schedulers. IEEE Transactions on Software Engineering 19(9) (September 1993)
920–934

4. Jeffay, K., Stone, D.L.: Accounting for interrupt handling costs in dynamic priority
task systems. In: Proceedings of Real-Time Systems Symposium. (December 1993)
212–221

5. Burns, A., Tindell, K., Wellings, A.: Effective analysis for engineering real-time
fixed priority schedulers. IEEE Transactions on Software Engineering 21(5) (1995)
475–480

6. Leyva-Del-Foyo, L.E., Mejia-Alvarez, P.: Custom interrupt management for real-
time and embedded system kernels. In: Proceedings of the Embedded Real-Time
Systems Implementation (ERTSI 2004) Workshop 25th. (December 2004)

7. Leyva-Del-Foyo, L.E., Mejia-Alvarez, P., de Niz, D.: Predictable interrupt man-
agement for real time kernels over conventional PC hardware. In: RTAS ’06: Pro-
ceedings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, Washington, DC, USA, IEEE Computer Society (2006) 14–23

8. Leyva-Del-Foyo, L.E., Mejia-Alvarez, P., de Niz, D.: Predictable interrupt schedul-
ing with low overhead for real-time kernels. Real-Time Computing Systems and
Applications, International Workshop on 0 (2006) 385–394

9. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4) (1980)
229–239

10. Joseph, M., Pandya, P.: Finding response times in real-time systems. The Com-
puter Journal 29(5) (1986) 390–395

11. Mhatre, N.: A comparative performance analysis of real-time priority queues.
Master’s thesis, Florida State University (2001)

12. Peiro, S., Masmano, M., Ripoll, I., Crespo, A.: PaRTiKle OS, a replacement of the
core of RTLinux. In: 9th Real-Time Linux Workshop. (2007)

13. Aldea-Rivas, M., Gonzalez-Harbour, M.: MaRTE OS: An ada kernel for real-
time embedded applications. In: Proceedings of the 6th Ada-Europe International
Conference on Reliable Software Technologies, London, UK, Springer-Verlag (2001)
305–316

14. Puente, J., Zamorano, J., Ruiz, J.F., Fernandez, R., Garcia, R.: The design and
implementation of the open ravenscar kernel. ACM SIGAda Ada Letters XXI(1)
(March 2001) 85–90

15. Gai, P., Abeni, L., Giorgi, M., Buttazzo, G.: A new kernel approach for modu-
lar real-time systems development. In: Proceedings of the 13th IEEE Euromicro
Conference on Real-Time Systems. (June 2001)

16. Barabanov, M.: A linux-based realtime operating system. Master’s thesis (1997)
17. Knuth, D.E.: The art of computer programming, volume 3: (2nd ed.) sorting and

searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1998)

18. Sáez, S., Lorente, V., Terrasa, S., Crespo, A.: Efficient alternatives for imple-
menting fixed-priority schedulers. In: 10th International Conference on Reliable
Software Technologies - Ada-Europe. (2005) 39–50

