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Abstract

Real-time systems are often designed using a set of pe-
riodic tasks. Task periods are usually set by the system
requirements, but deadlines and computation times can be
modified in order to improve system performance. Sensitiv-
ity analysis in real-time systems has focused on changes in
task computation times, using fixed priority analysis. Only
a few studies deal with the modification of deadlines in
dynamic-priority scheduling. The aim of this work is to pro-
vide a sensitivity analysis for task deadlines in the context of
dynamic-priority, pre-emptive, uniprocessor scheduling. In
this paper, we present a deadline minimisation method that
achieves the maximum reduction. As undertaken in other
studies concerning computation times, we also define and
calculate the critical scaling factor for task deadlines. Our
proposal is evaluated and compared with other works in
terms of jitter. The deadline minimisation can be used to
strongly reduce jitter of control tasks, in a real-time control
application.

1 Introduction
1.1 Motivation

Real-time systems are often designed using a set of peri-
odic activities running on top of a real-time operating sys-
tem. For instance, in control systems, the correct behaviour
of the closed-loop controller requires that the system meet
timing constraints such as periods and latencies, which are
expressed as deadlines. Widely established scheduling poli-
cies, such as Rate [18] or Deadline Monotonic [16] for fixed
priorities and Earliest Deadline First (EDF) for dynamic
priorities assign priorities according to timing parameters,
sampling periods and deadlines respectively.
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Both timing parameters, periods and deadlines, are sus-
ceptible to adjustment during the design phase of the con-
trol system. While modifications in the periods may require
the redesigning of the controller in order to adjust it to the
new rate, deadline adjustments do not. A modification in
the deadline of a control activity can, for instance, increase
or decrease the task priority if Deadline Monotonic crite-
ria is used in a fixed priority scheme. When using the EDF
scheduling policy, a deadline modification does not have a
direct effect on the task priority as in the case of fixed pri-
ority scheduling. The effect is acknowledged in a variation
in the task response time throughout the task activations. In
both cases, this effect can be measured through the output
jitter of the task.

In control systems, the influence of jitter on performance
quality is not always easy to analyse. From a control per-
spective, sampling jitter and latency jitter can be interpreted
as disturbances acting upon the control system. The input-
output latency decreases the stability margin and limits the
performance of the system. If the jitter and the latency
are small, then these can be overlooked. Otherwise, they
should be accounted for in the control design or, if possible,
compensated for at run-time. Further information regarding
these issues is detailed in [9]. Output jitter has in general a
negative effect on the control performance. In general, out-
put jitter has a negative effect on the control performance.
This can be significant depending on the term known as
control effort [1]. The control effort measures how sensi-
tive a control task is to time delays. The reduction of the
output jitter and the subsequent improvement in the control
performance, is directly associated to the reduction of task
deadlines.

In other real-time applications, as in multimedia systems,
a bound of output jitter is needed in order to have an ac-
ceptable quality of service. Delay jitter can be eliminated
by buffering at the receiver, but the amount of buffer space
required can be reduced if the network provides some guar-
antees about jitter [23].

The output jitter reduction can be regarded as a more



general question related to deadline minimisation. Ques-
tions such as: ”By how much can a task deadline be re-
duced?”, or, "Which is the maximum deadline reduction
factor needed to maintain the schedulability of a set of
tasks?, can be of interest for a set of applications. Most
of the work on feasibility analysis in real-time systems pro-
vides a yes or no answer, in other words, whether the system
is feasible or not. However, given a schedulable set of tasks,
is it possible to determine the smallest deadline or period,
or the largest computation time, which will still render the
system schedulable? This kind of analysis is referred to in
the literature as sensitivity analysis.

1.2 Related work

Sensitivity analysis has focused on permissible changes
on tasks WCET, mainly because this has been applied to
fault tolerance design. In this sense, [15, 24, 20] define the
Critical scaling factor, as the largest possible scaling fac-
tor for task computation times while the task set to remain
schedulable. These works assume Rate Monotonic priority
assignment and deadlines equal to periods.

Sensitivity analysis for computation times using EDF
scheduling has been performed in [2]. Moreover, the Op-
tional Computation Window (OCW) is defined as the pos-
sibility that a task can execute in n activations in a window
of m consecutive invocations with an increased computa-
tion time than the initially assigned. Deadlines less than or
equal to periods are assumed.

Sensitivity analysis for task periods can be found in [6].
In this paper, periods are modeled as springs with given
elastic coefficients and minimum lengths. Requested varia-
tions in task execution rates or overload conditions are man-
aged by changing the rates based on the spring elastic coef-
ficients. This work assumes deadlines equal to periods and
EDF scheduling. This technique is very useful in multime-
dia applications, since in control systems a modification in
the period requires to redesign the controller.

Regarding deadline sensitivity analysis, as far as the au-
thors are aware, there are no studies which focus on this
topic, that is, to find the minimum deadlines while main-
taining the schedulability of the system. However, there are
some papers which assign new deadlines to tasks in order
to achieve a secondary objective. In [4] the goal is to min-
imise output jitter and in [8] new deadlines for control tasks
are calculated in order to guarantee close-loop stability of
real-time control systems.

Regarding output jitter, several studies use scheduling
solutions in order to reduce this. In [17] the difference be-
tween two consecutive finishing times of the same task is
required to be bounded by a specific value. In [11] a new
scheduling approach is presented to minimise jitter in dis-
tributed real-time systems. In [19, 14], high priority tasks

are used to reduce the jitter. In [13] new deadlines are as-
signed to tasks scheduled under EDF, using an integer linear
program. It can be noted that, in all these studies dealing
with deadline reduction, this reduction is not optimal in the
sense that deadlines can be minimised any further.

In order to minimise control jitter, other strategies have
been used. In [10, 7, 3] subtask partition is proposed. Fur-
thermore, in [10] and [3] control jitter is both reduced and
determined off-line the variation range, enabling control de-
signers to take decisions before executing the control sys-
tem in order to achieve a better performance.

1.3 Contributions of this paper

As explained in the prevoius section, although there are
works that deal with deadline reduction, there are not works
that focus on finding the minimum deadline of a task while
preserving feasibility in dynamic priority systems. The aim
of this work is to provide a sensitivity analysis for task dead-
lines in the context of dynamic-priority, preemptive, unipro-
cessor scheduling. Two different kind of analysis are carried
out:

e Finding the maximum reduction for one task dead-
line. Note that the maximum reduction implies that a
lower deadline makes the system not feasible. We will
demonstrate that, in this case, both output jitter and
worst case response times of tasks are known off-line.
Therefore, there is no need to calculate them.

o Finding the maximum reduction for all task deadlines,
that is, the critical scaling factor for task deadlines.
This implies that a lower scaling factor makes the sys-
tem not feasible.

This deadline reduction can be used subsequently to re-
duce output jitter, control jitter and response times of tasks.

1.4 Outline

The remainder of this paper is organised as follows: Sec-
tion 2 introduces the computational model and the assump-
tions used. Section 3 describes the deadline minimisation
algorithm. In section 4 the critical scaling factor for task
deadlines is presented. An example to illustrate how the
deadline minimisation works is presented in Section 5. We
have implemented the deadline minimisation algorithm, and
the critical scaling factor calculation, and we have con-
ducted some experiments in order to assess the validity and
effectiveness of our proposals. The results and the com-
parison with other related works are presented in Section 6.
Finally, in Section 7 some conclusions are highlighted and
future lines of research are discussed.



2 System model and notation

Let7 = {T1, ..., T,,} be a periodic task system scheduled
under EDF. Each task 7; € 7 has the following temporal
parameters T; = (C;, D;, P;). Where P; is the period; D;
is the deadline relative to the start time; and C; is the worst
case execution time, C; < D;. In this work, we consider
that Dz S P, Qe

Each task 7T; produces a sequence of jobs J;; =
(ri,j,Cs,d; ), where r; ; denotes the arrival time (or re-
quest time) of the jth job of the task T3, and d; ; = 7; ; + P
is the absolute deadline. The sequence of jobs J; ; are
arranged by absolute deadline in ascending order. Subse-
quently, a task set can be seen as an infinite number of acti-
vations.

Definition 1 Ler G, (t) = > | C; [%-‘ It denotes the

maximum cumulative execution time requested by activa-
tions of T whose arrival times are before time t.

Note that G (t) function does not depend on task dead-
lines. Changing the deadlines of the tasks have no impact
on the value of this function.

Definition 2 /5] Let H.(t) = >, C; L%J. It de-
notes the maximum cumulative execution time requested by

Jjobs of T whose absolute deadlines are less than or equal to
t.

Feasibility test for EDF consists of checking that V¢ <
R H,(t) <t, where [0, R) is the ICI of the task set 7. ICI
stands for Initial Critical Interval and it is the first interval
where the processor is not idle [21]. R is the smallest ¢ > 0
such that t < G.(t). In fact, there is no need to confirm that
H,(t) <t applies for all t < R to determine whether 7 is
feasible, except in the designated scheduling points [15].

Definition 3 The set S of scheduling points for T is defined

by:

S-,-:{dl,j / 1§z§n7 lSJSkZA dZ’JSR}
where k; = [%-I denotes the number of activations of

T; in[0,R).

D’

Definition 4 Let o; = 1 — 5* be the deadline reduction

factor of T; where C; < D} < D;

Definition 5 Let ]*** =1— % be the maximum deadline
reduction factor of T;

Definition 6 Let A* be the critical scaling factor of 7. It
denotes the smallest scaling factor for task deadlines, above

which the task set remains schedulable for alli | T; =
(Cl‘, AD“ Pl), where A Z A*,

If 7 is a schedulable task set, then A* < 1, otherwise
A* > 1. Note that a; = 1 — A*.

3 Deadline minimisation method

This section describes theory and algorithm used to re-
duce a task deadline until its minimum value is reached. In
other words if we continue to reduce it, the system becomes
unfeasible.

The theorems presented in this section are based on
the H.(t) function throughout the ICL. Note that if a task
deadline is modified, the ICI does not change (this de-
pends on task periods and computation times) and, when-
ever H,(t) < tin [0,R), system feasibility is assured.
Moreover, while calculating the minimum deadline of a task
there is no need to re-calculate H., (¢t) function.

First of all, we will calculate the minimum deadline for
the first job of a task and next, the minimum deadline of the
task itself.

Theorem 1 Let 7= {T},...T;,...T;,} be a feasible set of n
periodic tasks. Let J; 1 be the first job of T;. If there exists
a time ty such that C; < t1 < D; and H.(t1) = H;(D; —
€) > t1 — C; then the sequence of jobs J1 1, .., J] 1, ., Jn.k,
with J| ; = {0, Cy, H,(t1) + C;} is schedulable.

Proof Let d;; = H(t1) + C; be the absolute deadline of
Ji 1. We need to look at in which scheduling points H (t)
changes. In Figure 1 ¢1, D; and d; ; are represented for a
better understanding of the theorem.

There are no scheduling points in the time interval
[t1, D;) since H(t) is a non-decreasing step function that
changes its value only at scheduling points, and H,(t1) =
H:(D;—e¢). Both H,(t) (the new H(t) function with J; ;
instead of .J; 1) and H.(t) are the same function for ¢ < t;
and ¢t > D; due to the fact that the set of scheduling points
remains the same except for job J{y1 which changes from
Djtod; ;.

H'(t)

Figure 1. Graphical representation of theo-
rem 1



Then, the system is feasible in [0,¢1] U [D;, R]. It is
also feasible in [t1,d; ;) U (d] ;, D;] since the condition
H,(t1) = H.(D; — €) guarantees that there are no more
scheduling points. It only remains to prove that J;, is
schedulable int = d ;.

The new H. function in d; ; will be

H(d;,) = H:(t1) + C;
Since d§,1 = H.(t1) + C;, it follows that
H.(d;,)=d;, +C;i—C;
= d;,l

Corollary 1 If it does not exists such t1 then d; ; = C; and
the systems is schedulable.

Proof This situation can occur when:

e There are not scheduling points in [0, D;). In this case,
clearly C; is a valid deadline for J; ;.

e Or it exists a scheduling point with enough slack, that
is E!tg / H-,-(tg) = H-,-(Dl — 6) < to — Cl In this
case, 7 is schedulable in ¢y since H (t2) = H-(t2) +
C; < ty. It is also schedulable in C; since there are no
scheduling points in [0, C;) and H,(C;) = C;. |}

Corollary 2 d; 1 is the minimum deadline for job J; 1.

Proof Clearly, if d’ 1= = (};, this is the minimum deadline
for J; 1. Blseif d} ; = H,(t1)+Cj, then d; | — e will render
the set of jobs unfeasible. We need to look at schedulability
intmin =di; — €

Since t,in = d2,1 — e = H,(t2) + C; — € and substituting
H, (t1) in the previous equation:

H;—(tmzn) =tmin +C; — C; + €
= linin T €

and then, 7 is not schedulable in ¢,,5,. |}

The previous theorems show how to calculate the mini-
mum deadline for the first job of a task. However, it does
not imply that all the job deadlines can be reduced the same
amount. Next definition extends the calculation of d; ; for
any job J; ;.

Definition 7 Let d; ; = H.(t1) + C;
where Tt C; <t; < dij and H.,—(tl) = H.,—(dij — 6) >
t, — CZ

If such t1 does not exists, then d;, j= C;

It is important to note that d;yj (when 1 < 5 < k;)is
not the minimum deadline of J; ;. Although 1 is valid in
the sense that H.(¢) < ¢, schedulability of T is not guar-
anteed. This is due to the fact that H(t) is defined for pe-
riodic tasks, whose job deadlines have the same value in
each activation. However, by theorem 1 (extended for a job

= {ri,;,Ci,d; ;} instead of J;;), we can assure that

(d’ )= d; We will base the next theorem on this
result to calculate the minimum deadline of a task.

Theorem 2 Let {J; 1, .., J; .} be an ordered sequence of
jobs of T; in [0, R) where J] ; = {ri;, Ci, 7]} Then,
= {T,..,T/,...T,,} with T’ {C’l,mam 1(d;

rm) P;}is schedulable.

Proof Suppose that jobs belonging to T; are arranged in
ascending order by its relative deadline (dgy j — Tij)- This
results in max’ | (d} ; —r; ;) = d} , =7k, As job dead-
lines are calculated in accordance with theorem 1, then in
every t; = d; ;, it can be assured that H.(t;) = t;.

If a new deadline of task 7} is chosen as DD; = d;y ki1
Tik,—1 SO that d;’kFl — Tigy—1 < d;,ki — Tk, let us de-
termine if 7; is schedulable at its scheduling points:

o Ifj = k; — 1 then H.,—(tj) = tj.

o If j < ki — lthen H.(t;) = t; +dj,  —dj; —

Tik;—1 + Tij As d;,kifl = Tik;—1 > d{L’J — Tij» then
H-,-(tj) < tj.
o If] = k‘l then H-,—(t]) = tj+d;,kiflid;,k;i7Ti7ki*1+

'
Tik;- AS dz‘,kifl
t;.

—Tiki—1 < d;yj—ri,j,then H-,—(tj> >

As a consequence, the maximum relative deadline for
jobs, calculated as described in theorem 1, has to be chosen,
otherwise the system will not be schedulable. |

Corollary 3 Let WC RT; be the worst case response time
of task T;. Then,

WCRIT; = D"n

where D™ = maT L (di i)

Proof We know that H,(D™") = D", Then, we can
assure that in ¢ = DI™" a certain task will finish its exe-
cution at its deadline. The only case in which this does not
occur is when two or more tasks have their deadline arrival
at D™ that is, when a multiple scheduling point exists.
Let’s see that if D" = maav;c ((d] ;—rij),int = D"
then no other scheduhng points are present.

Let ¢; be a scheduling point of T}, and let’s suppose that
in ¢; there is enough slack time for T3, so t; — H.(t;) = C;.
Let t3 be a scheduling point with ¢35 — H,(t3) < C; and
t3 < tj. By theorem ], tmin = Dlmzn = H-,—(t3) + Cl



As t3 and t; are two consecutive scheduling points:
H‘r(tj) - H‘r(tB) > C;
Therefore, H,(t3) < H-(t;), since C; # 0. Then
ty = He(t;) + Ci
tj > Hr(tg) + C;
tj > tmin

Hence, it is not possible that the resulting D" coin-
cides with another existing scheduling point. This means
that, as in D;m” there is no slack time, the worst case re-
sponse time of 7; is known and equal to the minimum dead-
lineof ;. |}

Under fixed priority scheduling (without offsets), the
problem of finding the worst case response time of a task is
equivalent to the problem of calculating the response time
of that task of the first activation. This is not longer true
in EDF. Instead, the worst case response time calculation
requires the analysis of several different scenarios, which
has pseudo-polynomial time complexity [22]. For this rea-
son, we want to remark the importance of these results. The
method presented in this section does calcualte the mini-
mum deadline for a task and also it solves the problem of
computing the WCRT under EDF.

Based on the previous theorems, an algorithm to min-
imise the deadline of a periodic task 7; (Table 1) has been
developed. The algorithm starts at time ¢t = jP; + D; and
computes the slack time in the immediate previous schedul-
ing point of ¢. If the slack is greater than C}, the algorithm
continues backwards to the next scheduling point; else d; j
of J; j is calculated. The procedure is repeated for all jobs
of T; whose deadline is in the interval [0,R). Once the
deadline minimisation algorithm is applied to a task T3, its
deadline reduction factor is:

_ D:nzn
D;

This algorithm has pseudo-polynomial time complexity
in the size of the problem instance. However, as stated
in [4], this bound is quite reasonable in practice whenever
the system has a relative small utilization. Moreover, minor
changes on some periods may reduce drastically the com-
plexity to polynomial time [12].

The deadline minimisation algorithm shows how to min-
imise the deadline of one task in the set. When the goal is
to minimise the deadline of more than one task, two alter-
natives are proposed:

ai:].

e When all the tasks have the same importance, dead-
lines of all tasks will be reduced with the same ra-
tio. Thus, we must calculate the critical scaling factor,
which is the central issue which is discussed in detail
in section 4.

Table 1.
1. Deadline minimisation algorithm:
2. input: 7, T3;
3. R« Calculate_ICI(7);
4HAD) = X5 G [
5. deadline «— C;
6. ki—|F]
7. DM™n" —
8. forsin0..(k; — 1) loop
10. deadline = C};
11. while t > sP; + C;
12. ift = ([P%]] — 1)P; + Dj then
13, slack =t — H,(t)
14. if slack < C;
15. deadline = H,(t) + C; — sP;;
16. exit-while;
17. end-If;
18. end-If;
19. t—1t—1;
20. end-while;
21.  D™" = maz(DM™", deadline);
22.  end-loop;

23. D; = D™in,

e When there are some tasks more important than others,
these tasks are selected for reducing their deadlines.

In the second case, the solution is to apply the dead-
line minimisation algorithm to the most important task, up-
date its deadline to the minimum value obtained and repeat
the previous steps to the next important task. The order in
which tasks are chosen determines the amount of deadline
reduction of each one. Clearly, if a task is minimised in sec-
ond place, its deadline reduction («;) may be not that large
as if it were minimised in first place. The task selection cri-
teria should follow some semantic approach. In [1], a crite-
ria for determining the importance of a control task based on
a the control effort is used. The control effort measures the
effort required for the controller to fulfil the control specifi-
cation. A task with higher control effort is more sensible to
the output jitter and can produce a performance degradation
of the control response. In this case, the criteria consists on
the selection of the task with higher control effort first.

3.1 Output jitter analysis

As stated in [4], output jitter refers to the variation be-
tween the inter-completion times of successive jobs of the
same task. This section presents the output jitter analy-
sis of a deadline minimised task. This analysis has the
advantage that can be made off-line, due to the property
WCRT; = D™". And, due to the same property, this
analysis is not a bound but the exact value for output jitter.



The minimum and maximum separation between succes-
sive completions of T are:

p;naw — P1 =+ Dznzn _ Cz
pzmm =P

Hence, the absolute jitter of T; is:

AbS;]itt@T(Ti) = max(p;naz — P, P — p:mn)
= maz(D{"" — C;,0)
— D'Z(mln _ Cz

When the deadline minimisation algorithm achieves the
maximum reduction factor (o; = «***) for T}, we say that
task T; is jitter-free.

The relative jitter of T; can be obtained as a fraction of
its period:

_ AbsJitter(T;) D™ — C;

RelJitter(T;
el Jitter(T;) 2 2

4 Critical scaling factor calculation

If we want to minimise all task deadlines, but we do not
have any preference regarding which task deadline requires
the greatest level of reduction, then we have to calculate the
critical scaling factor A*.

The method consists of calculating the point with the
minimum slack. This slack is the maximum amount that
a task deadline can be reduced. However, the same amount
for all task deadlines will lead to different ratios. Hence, as
a first approach A* is chosen as the minimum ratio when
new task deadlines are D} = D, — slack. These steps are
repeated until there is no slack available. Table 2 shows the
algorithm.

Table 2.

Critical scaling factor algorithm:
input: 7;

R « Calculate ICI(T);

A* 1

slackmin = mink (t — H, (t)):
while slackmin! = 0

SO0 X NN W=

A* =min(1 — SMCDM)
D; = A*D;; '
slackmin = min{ (t — H,(t));
1 end-while;
1 return A*;

It is important to note that now the minimisation is not
optimal, in the sense that some tasks may reduce its dead-
line even more, but they are limited by other tasks. This

way, the worst case response time of the tasks does not have
to be equal to A*D;. Hence, the output jitter analysis pre-
sented in the previous section is not applicable here.

S Example

Now, we are going to illustrate the deadline minimisa-
tion method by means of an example. Consider a system
of three tasks: 7 = Th = (1,7,7), T = (3,10,10),
T3 = (5,20,20). The minimisation sequence will be T,
T}, T3. The ICI of this system is [0, 10). Figure 2 depicts
H.(t) function.

T1=(17,7) T2~(3,10,10) T3=(5,20,20)
25

20

Figure 2. H, function

In order to apply the deadline minimisation algorithm to
T5, we have to calculate the number of jobs of 75 within
[0,10), that is, the ko parameter. For Ty, ko = 1. Then,
from ¢t = D, = 10, the algorithm searches backwards
the next scheduling point. This point is £ = 7. As can
be seen in figure 2, the slack at time ¢ = 7 is 6. Since
Cy = 3 < 6, we should continue searching backwards the
next scheduling point, but the search ends because no more
scheduling points before time 7 exists. Then, we can assign
Dyt = Cy = 3.

Now, the new task system becomes 7" = {T = (1,7,7),
T = (3,3,10), T3 = (5,20,20)}, and the next task to
minimise deadline is T7. Figure 3 depicts H.(t)" function.

For Ty, k1 = 2. Let’s apply the deadline minimisation
algorithm to each job:

e Jii: Algorithm starts at £ = 7. The only scheduling
point in [0,7) is in t = 3. Slack time in ¢ = 3 is 0.
Thend}, = HT'(3)+C1 =3 —-1=4.

e Jo1: Algorithm starts at ¢ = 14. We have to search
scheduling points from ¢ = 14tot = P; + C; = 8.
As the only scheduling pointin [8,14) isin¢ = 13 and
in this time there is sufficient slack time, then d}; = 1.



T1=(1,7,7) T2=(3,3,10)=(1,7,7) T3=(5,20,20)
25

20

10 H().

e

0 5 10 15 20 25

Figure 3. H, and H_ functions

Finally, D7"" = max(d},,db;) = 4.

‘With the minimisation of 77 deadline, the new task set
ist’ =1 = (1,4,7), T4 = (3,3,10), T3 = (5,20, 20).
Figure 4 depicts the new H (t) function.

For T3, k3 = 1, subsequently we have to find the
scheduling points in [5, 20). Table 3 shows the scheduling
points in this interval and the slack time associated. Ac-
cording to theorem 1, D5 = dj ; = H)/(4) 4+ C3 = 9.

T1'=(1,4,7) T2'=(3,3,10)(1,4,7) T3=(5,20,20)
25

20
15 |

10 H ()

. s
/Iél = g

0 5 10 15 20 25

Figure 4. H. and H! functions

Table 3. Slack time in [5, 20)

t | Slack=t— H!(t)
18 9
13 5
11 6
4 0

Therefore, the minimised deadline task set for order
(Tp,Th,T3) is 7 = T] = (1,4,7), Ty = (3,3,10),
T} = (5,9,20). Table 4 shows the initial and final dead-
lines and the deadline reduction factors for the three tasks.

This table also shows the calculation of A*, and the dead-
lines associated with this parameter (rounded to the nearest
upper integer).

Table 4. Results of deadline minimisation for
order TQ, Tl, T3

D; [ D™ [ o; | a™e® [ A* [ A*D;
T1 | 7 4 (043 085 | 05| 4
|10 3 |070] 070 |05 5

T3 | 20 9 055 ] 075 | 05 10

6 Experimental evaluation

In this section a series of simulations and comparisons
with other works are presented to evaluate our deadline min-
imisation proposal.

A massive number of tests have been run, specifically,
1000 task sets have been generated for each utilisation.
Each task was generated by randomly choosing the task pe-
riod as an integer between 5 and 100, and then randomly
selecting the task computation in such a way that the to-
tal system utilisation is approximately equal to the desired
load.

The experiments are focused upon evaluating the level
of the deadline reduction («;) in several conditions: i) when
only the deadline of one task is minimised; ii) when all task
deadlines are minimised with the same percentage (A*);
iii) as the deadline minimisation algorithm can be used to
minimise jitter a third group of experiments is focused on
the comparison with other works which propose a deadline
scheme for reducing output jitter and control jitter.

6.1 Reducing the deadline of a task

Regarding the minimisation of one task deadline, exper-
iments have been run with 5 and 10 tasks in each set.

As can be seen in Figure 5, with 10 tasks minimisation
rises to 90% and the maximum deadline reduction is accom-
plished for all utilizations (reduced deadlines are equal or
very close to task WCET). With 5 tasks, a smaller reduction
is achieved, and it moves away from the maximum as the
system utilisation increases. The main reason of this lower
reduction is the experiment design. As the experiment gen-
erator tries to obtain a set of tasks for a specific utilisation,
in general, the computation time of the tasks is greater than
if the number of tasks is lower for the same periods. As a
consequence, in a set of 5 tasks, a task is preempted for a
shorter time period.
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Figure 5. One task deadline minimisation
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Figure 7. Critical scaling factor

6.2 Reducing all deadlines in a set of tasks

Figure 7 depicts the simulations obtained when A* is
calculated for tasks sets with 3, 5 and 10 tasks. As system
load and number of tasks increase, the deadline reduction
decreases (A* approaches to 1).

6.3 Comparing the proposal with other
works

This section describes the comparison with relevant
works that deal with deadline reduction in order to: i) re-
duce output jitter; ii) reduce control jitter.

6.3.1 Output jitter reduction

Next simulations present the comparison with the work de-
veloped by Baruah et al. ([4]). This work proposed two
methods for reducing the output jitter of a set of tasks:
Method 1 minimises jitter in polynomial time, whereas
Method 2 reduces it in pseudo-polynomial time. Figure 8
represents both methods for the reduction of the relative
jitter over the complete task set and the relative jitter ob-
tained with the deadline minimisation method presented in
section 3. The tasks have been ordered by their period, so
the first task chosen to apply the deadline minimisation al-
gorithm is the task with the shortest period. As in the work
presented in [4], simulations have been run with 5 and 10
task sets. Our proposal achieves better results because the
deadline reduction is optimal, whereas the deadlines calcu-
lated in [4] can be reduce even more without jeopardising
schedulability.
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Figure 8. Output jitter comparison

6.3.2 Control jitter reduction

Finally, the deadline minimisation method is used to reduce
the jitter of control tasks in real-time control applications.
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Figure 9. Output jitter comparison

Control jitter is defined as the variation in the response time
of the task that sends the control action to the target system.
Note the difference with output jitter, which is defined as
the variation between successive periods, rather than over
the lifetime of the system.

‘We have compared our method with the task models pre-
sented in [7] and [10]. Figure 10 shows the average control
jitter (relative jitter of the task that sends the control action
to the target system) of the following task models:

o Standard model: This is the original task set consisting
of 3 control periodic tasks.

e COUS model: This model was proposed in [7]. Each
control task is split into two subtasks: Calculate Out-
put subtask (CO) and Update State subtask (US). New
deadlines are calculated for each subtask. Control jit-
ter is associated to CO subtask. This model produces a
task set with 6 tasks.

e IMF model: This is the model presented in [10] and it
splits the system in three subtasks (Initial, Mandatory
and Final). As in the COUS model, new deadlines are
obtained for initial and final subtasks, and a fixed off-
set is assigned to final tasks. Here, control jitter is as-
sociated to Final task. The original task set of 3 tasks,
becomes 9 tasks.

e Deadline min: This is the standard model to which the
deadline minimisation method has been applied where
tasks have been sorted by period.

As figure 10 illustrates, the worst jitter is, as it is ex-
pected, for the standard model. The best results are obtained
with the IMF model, whereas the COUS and the deadline
minimisation model are very similar in terms of control jit-
ter. This is also expected, because the more partitioning is
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Figure 10. Control jitter comparison

made, the lesser computation time for final tasks, and hence,
the lower jitter. However, some important remarks:

e IMF and COUS models make a task partitioning which
implies more context switches than in a non partition-
ing task model. As Deadline minimisation model and
COUS have similar jitter, it is better to choose our pro-
posal that has less tasks.

e IMF applies a fixed delay to the final task. This means
that the control action is delayed to achieve a very
small jitter. This may cause a bad performance de-
pending on the controlled system. For this reason, it
is sometimes better to have a slightly bigger jitter with
no fixed delay. In these situations, we would choose
the deadline minimisation model.

7 Conclusions and future work

The implementation of multi-loop control systems im-
plies the definition of a set of tasks running under timing
constraints. The task scheduling is a fundamental issue in
real-time control algorithm implementation to obtain the
desired performance of the control system. Task parame-
ters, such as computation times, periods and deadlines, are
susceptible to adjustment during the design phase of the
control system. Modifications in the periods may require
the redesign of the controller in order to adjust it to the new
rate. As a consequence, sensitivity analysis has mainly fo-
cused upon changes in task computation times. Although
there are some works that deal with deadline modification,
we have not found any sensitivity analysis of task deadlines,
in other words, to find the minimum deadline of a task with-
out jeopardising system feasibility, either for fixed or dy-
namic priority scheduling.



This paper proposes a sensitivity analysis for periodic
task deadlines, using EDF scheduling. The deadline min-
imisation algorithm reduces a task deadline to the limit,
while the critical scaling factor calculation establishes the
same reduction ratio for all task deadlines within the sys-
tem. The first method should be applied when it is im-
portant to reduce one task deadline in particular, this being
more important than the others. While the second method
is more useful when all tasks in the system have the same
significance.

The sensitivity analysis presented in this paper has sev-
eral advantages. As the simulations have shown, output jit-
ter is strongly reduced. Moreover, in the case of deadline
minimisation, the deadlines obtained are equal to the worst
case response times of a task. Note that the calculation of
WCRT in EDF is quite complex. Using our algorithm, there
is no need to calculate the WCRT of a task.

As future lines of research, we can combine the deadline
minimisation method with the control effort concept. The
control effort of a task expresses the sensitivity of the task
to time delays, i.e, to output jitter. In order to improve sys-
tem performance, tasks with higher control effort are prone
to greater reductions in their deadlines than the rest of the
tasks.
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