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Chapter 1. Introduction

1.1. Goals

The main objective of the project is the creation of a library of free-software components
for the design and development of real-time and embedded systems (RTES).

To help development we will setup a framework encompassing all components, kernels
and tools; we will call this framework the OCERA Framework (OF).

To reduce the difficulty of development within the OCERA framework we have to provide
it in an easy and consistent way so people will be able to develop with not too much
trouble.

It is reasonable to make an effort to avoid, as much as possible, the usual problems
developers face when they begin using new libraries and tools. It is common to have
dependency problems, unresolved paths, header files not found, etc... and those problems
are many times what prevent people from using those tools. We expect to avoid those
problems with the OF.

If someone get the OCERA software package, what should she be able to do with it?
What the common use of this software would be? It is important to answer these ques-
tions in order to study and define how OCERA components will be built.

We try to provide a framework so developers can:

¢ Choose and Configure the OCERA components they need
» Develope their real-time/embedded software

» Use (possibly third parties’) debugging tools

 Build effectively the embedded system image file

1.2. Real-Time in Linux

Linux is a full-featured UNIX implementation, conforming to the POSIX standard. The
Linux kernel was not originally designed for real-time applications. Althought kernel
developers are actively working in improving the responsiveness of the kernel, Linux is
still not suited to support hard real-time applications with tight timing requirements
for at least two reasons:

» Kernel responsiveness. The default mechanims used by Linux for protecting its inter-
nal kernel structures can cause long non-preemptable sections.

» The lack of real-time mechanisms, like priority inheritance, sufficient timing resolu-
tion, etc.

Several mechanisms have been proposed for supporting real-time in Linux. They can be
divided in two distinct classes [Dankwardt00]:

* Mechanisms that use Linux for accessing the hardware. Following this approach, the
latency of the Linux kernel must be reduced as much as possible. It is also necessary
to modify the kernel by introducing real-time mechanisms like priority inheritance,
dynamic scheduler, high resolution timers etc.

¢ Mechanisms that by-pass Linux for accessing the hardware. In this case, the hard-
ware interrupts must be virtualized. The interrupts that are used by critical hard
real time tasks are directly handled by-passing the standard Linux kernel. The other
interrupts are forwarded to Linux when no real-time task is active. Also, cli and sti in-
structions must be modified to avoid that Linux disables interrupts for long intervals
of time.
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There are several on-going projects in both approaches. The so-called "low latency patch"
and "preemption patch" belong to the first one. Also, several research groups proposed
modifications to Linux for introducing real-time mechanisms. Examples of this approach
are Linux/RK by TimeSys, RED-Linux, etc.

The second solution can be implemented in different ways. RTLinux [RTLinux.org] and
RTAI [RTAI] implement a real-time executive (which consists of a interrupt handler
plus a scheduler and some real-time mechanism) and real-time tasks as kernel modules
that are dynamically linked with the Linux kernel and run in kernel space.

A different approach is used by other systems, like L*Linux [L4], in which a small
microkernel is used for running both a modified version of the Linux kernel and real-
time tasks in user space.

RTLinux and RTAI use similar mechanisms to acquire direct control of the hardware, by
intercepting the interrupts and modifying a small portion of the Linux kernel code. On
the other hand, L*Linux differs from previous approaches in that Linux runs completely
in user space as a task on the L* microkernel. Therefore, the L* microkernel has full con-
trol of the "guest" operating system. As a consequence, by introducing a small overhead,
it is possible to implement memory protection and other security mechanisms.

The OCERA architecture is based on the RTLinux architecture. Figure 1-1 presents a
schematic overview of the relations between Linux kernel and RTLinux. RTLinux is
located just above the hardware to represent the tight control that RTLinux has on it.
Also it is important to note that while RTLinux has direct control of the interrupts (dark
angled arrows), Linux works with virtual interrupts delivered by RTLinux. Hardware
devices can trigger an interrupt which will be received by RTLinux, but will not be
delivered to Linux until all real-time tasks are idle.

@Process or thread
C) Operating System

$ Hardware interrupt

{k Virtual interrupt
\

- Dynamic or
static library

UNIX/POSIX APl )
Linux kernel

Drivers

Hardware

Figure 1-1. General Linux and RTLinux overview
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Figure 1-2. Different view of the execution environments

Although RTLinux and Linux run both in kernel space, when RTLinux is installed, the
code of Linux is modified (applying a patch to the sources files and recompiled) to prevent
Linux from disabling interrupts. As a result, Linux has no direct control of the interrupt
and timer subsystems. For this reason, RTLinux is used for hard real-time execution,
and Linux jointly with its user applications is used for background (or non-hard) real-
time activities. In OCERA, we plan to provide components both at the RTLinux level
and at the Linux level.

As a summary of the pros and cons of the RTLinux approach to real-time: RTLinux ap-
plications run faster; can work with the hardware like most programmers are costumed
to do (MSDOS® style); but buggy task can compromise the system integrity due to the
lack of protection.

1.2.1. Concurrent execution paradigm

An operating system can provide concurrent execution in two different forms: processes
and threads. In general, each process has a protected virtual address space, a set of open
files, one single execution flow (program counter), etc. Processes are self-contained units.
A thread, on the other hand, consists of an execution context and a state (i.e., a program
counter, a stack, and local variables). Usually, a thread is contained within a process;
thus, a thread has global access to all states within its containing process. A process
can contain more than one thread. Threads contained by different processes may only
communicate through inter-process communication mechanisms.

The main differences between processes and treads as real-time is concerned are sum-
marised in the following table:

Table 1-1. Process versus thread

Process Thread

OCERA. IST 35102 3
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* Memory protection among processes. * Easy and small support implementation.
* Easy to distribute in a distributed system.|* Fast context switch.

* Well defined and complete program- * Intrinsic shared memory.

ming APL. * Efficient communication.

* Finer grain parallelism.

It is common to use both methodologies in a real-time embedded application. Threads
are better suited to program the low level, hard real-time activities, while processes can
be used for human interaction and tasks that do not require short timing response.
Most of the POSIX real-time extensions are based on the thread model, an example
of this is that solution to priority inversion is only available in thread API
(PTHREAD_PRIO_PROTEC#A#nd PTHREAD_PRIO_INHERIT protocols). POSIX profiles
define subsets of the operating system API which fulfil the requirements of specific
targets. There are four profiles: "Minimal System", "Controller", "Dedicated System"
and "Multipurpose System". The two first profiles do not have process support, only
thread support is required. RTLinux follows the "Minimal System" standard.

There are three different libraries that provide thread support on Linux. The first
implementation was done By Xavier Leroy and is known as the LinuxThreads. It is
integrated and distributed jointly with the standard "C" library. Currently there are
two new competing implementations [Cooperstein02] of the POSIX thread standard
called: “New Generation POSIX Threads” (NGPT) and “Native POSIX Thread Library”
(NPTH). These implementations improve both, compatibility with POSIX standard and
performance.

OCERA components will assume the thread model if not explicitly stated otherwise. The
term “task” will be used to refer to both process or thread.

Bibliography
[Cooperstein02] Jerry Cooperstein, 07/11/2002, The O’Reilly Network, Linux Multi-
threading Advances.
[RTLinux.org] Der Hofrat, Open Source RTLinux Repository.
[RTAI] Paolo Mantegazza, RTAI Home page.
[L4] DROPS - The Dresden Real-Time Operating System Project.

[Dankwardt00] Kevin Dankwardt, 11/2000, Linux Devices.com, Comparing real-time
Linux alternatives.
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2.1. A Tale of two Levels

A real-time application is normally composed by multiple tasks with different levels of
criticality. Although losing deadlines is not desirable in a real-time system, soft real-time
tasks could lose some deadlines and the system could still work correctly. However hard
real-time tasks cannot lose any deadline or undesirable/fatal results can be produced
in the system. From this point of view, a real-time application can be organised in two
levels: hard real-time tasks and soft real-time tasks.

Within the OCERA project we will regard, thus, real time systems from these two levels
of criticality. Both hard and soft real time software will run with the same customized
kernel, from now on the OCERA Kernel (OcK).

2.1.1. Hard Real-Time System Configuration

Hard real time tasks will give precise and deterministic control of the system, very high
time accuracy and very low latency. Hard real time systems will be provided through
a RT-Linux kernel and modules. As explained in "D1.1 RTOS Analysis" hard real-time
tasks are implemented in kernel modules, and as such, development of hard real time
systems will resemble the development at kernel level: no memory protection, no filesys-
tem, etc... Neither the common user space tools and libraries nor the Kernel services are
available for hard rt-tasks.

In this configuration the whole application runs in the RTLinux layer, where hard real-
time performance can be guaranteed. OCERA Linux will be a stripped kernel version
with the minimal functionality and memory footprint just to boot the system and execute
simple background tasks.

Minimal Linux

Y Y
Architecture é
Hard RT e

POSIX API
OCERA RTLinux kernel

Figure 2-1. Hard Real-Time applications

2.1.2. Soft Real-Time System Configuration
Soft real time tasks, on the other hand, do not provide so much time accuracy, they de-
pend on the Linux scheduler (or other scheduler we might install) and they are likely to
miss some deadlines. To minimize latency and deadline misses we will patch the Linux
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kernel in a way that minimizes scheduler latency, give preemptability to the kernel,
provide resource management and Quality of Service (QoS), etc... Soft real time systems
will be developed at user space and then the usual mechanisms for their development
are available.

The RTLinux layer is also optional in the OCERA architecture. It can be removed if it is
not required, which results in a embedded system with a single enhanced Linux OS.

OCERA
Architecture

Soft RT .

POSIX API

OCERA Linux

Hardware

Figure 2-2. Soft Real-Time applications

This architecture should be the first choice when starting a new application design since
it is closer to the standard development methodology of general Linux applications (ap-
plications that do not directy handle hardware and have no timing requirements), and
also it is a more robust execution and debugging environment.

2.1.3. Hard and Soft Real-Time System Configuration

Most complex applications require a hybrid solution, requiring at the same time both
hard and soft real-time, this configuration of the OCERA architecture allows the user to
organise the real-time tasks in two groups: hard real-time tasks and soft real-time tasks.
This special feature is provided by a QoS component which reserves a fraction of the
processor time for the Linux layer without endangering the the correct and predictable
execution of the hard-real-time tasks.

Hard real-time tasks will give precise and deterministic control of the system, very high
time accuracy and very low latency. Hard real time performance will be provided at the
RTLinux layer. The main design criteria at this level is predictability and low overhead
(what is necessary to build a real-time system); therefore, this layer lacks most of the
general facilities found in conventional OS but provides as much determinism as the
underlying hardware provides.

The Linux layer, on the other hand, does not provide so much time accuracy, its execution
depends on both the RTLinux work load and on the Linux unbounded behaviour. To
minimise latency and deadline misses the OCERA Linux kernel will integrate several
patches (low latency patch, preemptable patch, etc.), as well as the OCERA developed
components.

The Linux layer is mainly used for serving user-space applications: in user-space, tasks
can access the full range of Linux services, like drivers, debugging tools, network, graph-
ics, file system, etc.

OCERA. IST 35102 6



Chapter 2. Software Architecture
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Hard & Soft RT
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Figure 2-3. Hard & Soft Real-Time applications

Hard real-time
apphcatwfnaqks -

Although the same API cannot be provided at both levels, some OCERA components are
aimed at improving the API compatibility of both execution layers; being, at the same
time, as close as possible to the POSIX real-time extensions. The benefit will be twofold:

1. It will be possible to develop real-time applications in user-space. At this level, we
can use many debugging facilities like gdb, dynamic memory debuggers, etc., and
the system will not hang on application bugs.

2. For some application, like applications with soft or firm timing requirements, the
decision about which part of the application will run in the kernel space or in user
space has not to be taken at the initial design phase, but can be delayed after the
implementation, at the deployment phase.

2.1.4. Distributed Architecture

Real-time distributed system under consideration consists of application tasks, operat-
ing system and communication support. Hard and soft real-time application require-
ments have strong impact on the architecture of such systems. If given real-time re-
quirements have to be met then communication support has to be able to guarantee
specific characteristics of the message delivery paradigm. The matter is quite complex
since the message delivery is realized via shared media.

Specifically the deterministic protocol behaviour, the message priority and the guaran-
teed message delivery time are required in hard real-time distributed systems. Concise
verification of such systems considering all possible states is needed when analysing
hard real-time applications. Consequently CAN bus is well-suited communication sup-
port for hard real-time distributed systems and it is widely used in this application area.
"OCERA Hard RT CAN architecture" is accessed via POSIX compliant VCA (Virtual
CAN API). VCA offers minimal set of functions enabling to open/close/configure CAN
device and to send/receive CAN message.
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Figure 2-4. Distributed Architecture

Since a complex distributed application possibly consists of non-Linux products (e.g.
sensor - driven by programmable 8-bit micro-controllers) and various third party prod-
ucts (e.g. operator interface - closed non-Linux system that can be parameterised but
not programmed), it is needed to use application level protocol in OCERA architecture.
Choice of CANopen is based on a fact, that it is open, well documented and widely used
in factory automation. "OCERA Hard RT CANopen architecture" is formed by CANopen
communication standard in the same manner as it is used in typical factory automation
areas. It is based on Finite State Machine (FSM), which enables to access data stored in
device Object Dictionary (OD) to other CANopen devices connected to CAN bus. VCA is
used to connect CAN bus and FSM.

On the other hand the network throughput and message delivery time given as statistic
values (e.g. probability distribution functions) are sought in soft real-time distributed
systems. Performance measures based on simulations or stress tests are usually appro-
priate for evaluation of these systems. Consequently RT-Ethernet is well-suited com-
munication support for soft real-time distributed systems since it has high performance,
guaranteed throughput (isolated from external traffic, publisher/subscriber architecture
resulting in restricted traffic from upper layers), and wide range of supporting hard-
ware. "ORTE (Ocera Real-Time Ethernet) architecture" is implementation of RTPS pro-
tocol originally developed by RTI. As a consequence it is composed of one "Manager"
per each node and one "Managed application" per each local or remote user application.
Publisher/subscriber mechanism is used to share data between user applications.
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2.2. Fault-Tolerance Management

The goal of the fault-tolerance in OCERA is intended to provide basic functionalities to
develop robust applications. In order to achieve this objective, specific components will
be developed allowing task monitoring, redundancy management and dynamic reconfig-
uration.

2.2.1. Applications characteristics
OCERA applications can be deployed to one or more nodes configuring a distributed
system, where nodes can be connected through CAN/Open bus or RT-Ethernet network.
The application properties tackled within the project will concern: safety, liveliness and
timeliness.
« Safety means that nothing bad can happen, or in other words that if something goes

wrong, we can insure that a safe state can be and is reached.

» Liveliness means that the system required services are provided.
e Timeliness means that services are delivered on time.
We will not consider security issues.

2.2.2. Faults considered

There are several sources of faults or errors in this kind of embedded applications.
The following hypotheses will be made concerning hardware devices:

» they will be fail-silent,

» byzantine behaviours will not be considered,

 critical hardware components will have a mechanism allowing for safe stop in case of
silent node.

Hypotheses on communications

* communications are atomic,

e 1in case of a silent node. Communications are silent.
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Additionally, it is assumed that kernel crashes results in a silent node.

Prevention of such errors can be done by providing good practice programming rules
that can be used for the development of tasks or drivers. Code analysis tools and specific
compilation techniques with appropriate segmentation strategies can also reduce this
risk. By the end of the project guidelines will be written to help developers write safe
rt-tasks.

Fault-tolerance in OCERA will focus on the management of timing errors and on er-
rors raised by the RTLinux executive. By timing errors we consider missed deadlines
for time-critical tasks and watchdogs fires. We will mostly handle deadline missing and
provide patterns for default actions (for example provide a default value for a periodic
acquisition task restart for the next period and controlling that this does not occur more
than a given number of successive iterations). Other patterns will be developed for dif-
ferent types of tasks. Specific watchdogs will be used to detect fail-silent components
and will thus reveal a miss-functioning in the system.

The fault-tolerance facilities will analyse the possible consequences of such errors and
apply actions decided by the developer at design time and stored in run-time databases.
An application can define several operational modes that will be predefined at design
time. An operational mode is an attribute of the on-board software as a whole, which
purpose is to adapt the system (set of tasks) behaviour to various sets of external con-
ditions. Tasks may have several alternative behaviours. A mode will encompass a set of
tasks and a statement on which behaviour must be adopted for each task. For instance
some applications may have an initialisation mode and then several possible function-
ing modes. Switching from one mode to another can be decided by the application on
reaching a certain state or can be decided by the Application fault-tolerant monitor.
With respect to timing fails, several strategies are proposed: the task is late because of
temporary overload, a task is blocked, a task is waiting for a failed node. They will also
depend on the nature of the task: periodic acquisition task (in this case a default strategy
can be defined by the developer), command task towards an actuator is not responding
(failure can be assumed), computational task (imprecise computation strategy can be
implemented). Within OCERA a global framework consisting of a set of building blocks
will be developed. These building blocks will implement basic strategies in the beginning
of the project and will be enriched as the project progresses.

2.2.3. Fault-Tolerance in OCERA

The approach chosen in the project is to provide a declarative way of managing fault-
tolerance. It is based on a first stage which consists in collecting fault-tolerance require-
ments and default strategies at design and use this information to instantiate run-time
fault-tolerance components that will monitor the application and take appropriate de-
cisions at run-time on abnormal situations. The gathering of information and the con-
figuration phase will be supported by a design/build tool set that will settle the fault-
tolerance infrastructure.

As stated in the introduction, we will focus on the development of a framework offering
basic building blocks aimed at two well identified goals. The first goal will be to provide
mechanisms allowing mode management in order to increase applications robustness
and achieve the safety requirements. The second goal will be to implement transparent
redundancy mechanisms between nodes, which will provide continuity of service.

Two sets of components will thus be developed:

o The first one devoted to mode management consisting of two complementary com-
ponents: i) The FT controller will collect low level information on ongoing tasks and
notify the application monitor on tasks completions or abnormal situations. The FT
controller will apply local emergency actions on faulty tasks. ii) The Application FT
monitor will take global decisions on tasks reconfiguration decisions. These decisions
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will result in new constraints for the QoS scheduler (stop tasks, start new tasks im-
plementing alternate behaviours, etc...)

» The second set of components will implement transparent redundancy facilities for

critical tasks (declared critical by the user). Such tasks will be automatically repli-
cated, using a passive replication method) and a specific protocol will be defined to
permit synchronisation of replicas states. The controlling structure for the manage-
ment of redundancy will rely on two kinds of components.
These components will consist on: a task redundancy manager that will monitor re-
dundancy of a cluster of replicas and decide when to activate or deactivate a replica;
and a task replica manager that is charge of synchronization and communication of a
particular replica with its master for check-pointing.

As a conclusion, the expected results from the fault-tolerance work_package will consist
in a set of design/configuration and run-time components permitting to enhance appli-
cations robustness. Fault-tolerance characteristics targeted are the following :

» A faulty-task will have a degraded behaviour defined at design time and implemented
as a dormant task (with state updates)that will possibly be activated on error detec-
tion. This degraded behaviour will not support a subsequent failure but can be used
to implement a graceful stop.

» A faulty-task or a faulty component that compromise a service may activate a de-
graded service implemented through a mode change activation of several tasks. Sev-
eral cases will be considered : the service can be fulfilled at least partially by a differ-
ent combination of tasks or not, the service is mandatory for the overall application or
not. Different strategies of reconfiguration will be implemented.

» Redundancy mechanisms will permit to insure the continuity of service of a redundant
task. In this case, if the master is faulty, the control will be passed onto the slave and
no degraded mode will be enabled unless the last copy becomes faulty.

2.3. OCERA Kernel

As we said in the previous section, OCERA will produce a kernel that will be composed
by a Linux kernel together with the RT-Linux extension. This unique kernel (per sup-
ported architecture) will allow us to run both kinds of tasks, hard and soft.

The characterization of the OCERA kernel that will give us hard real-time capabilities
is done through the RT-Linux kernel. The RT-Linux kernel guarantees the hard real-
time behavior as explained in the previous section. We will also add some low-level
components that will complement the standard RT-Linux funtionalities.

On the other hand, the characterization of the OCERA Kernel to support soft real-time
capabilities is done through the application of several patches to the standard Linux
kernel and some low-level components we will present later. The patches that we will
include in the OcK are:

« High Resolution Timer Patch
» Preemptable Kernel Patch

» Low Latency Kernel Patch
» BigPhysArea Patch

These patches are currently available but we have to make a considerable effort inte-
grating all of them and making them working correctly on top of a RT-Linux kernel.

As starting point we will use a standar Linux kernel version 2.4.18 and the RT-Linux
extension version 3.1. We will evolve with the following kernels in the 2.4.x series but
we will also be very interested in the development of the 2.5.x series (still in a very
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preliminar development status) since some of the patches and features that we have to
add now to the 2.4.x kernels are to be included into the mainstream kernel development.

2.4. OCERA Framework

In order to facilitate the development of Real-Time and Embedded Systems (RTES) we
will provide a bundle of applications, libraries and source files that will help in the de-
velopment, testing, debuging and deployment of the RTES application, this framework
is what we will call OCERA Framework (OF).

There will be just one framework and it will permit the development of any kind of
RTES, hard, soft or both and for the targeted architecture.

When developing RTES one have to face the tedious tasks of compiling, generating the
binary image, copying it into the target device (usually flash memory), testing, debug-
gung...and back again. In OCERA we are concern about the effort that developers have
to make to debug and deploy their applications and the amount of time spent in these
tasks.

The OF will let us:

» Generate (compile) hard and/or soft real-time applications

We will setup the appropriate directories and compilation rules to make compilation
of RTES a trivial task.

» Configure the target system and utilities.

» Monitor, test and debug the application.
We will adopt a free software tracing tool and integrate it with the OCERA Kernel and
Components; we are still analyzing different possibilities but it is very likely that we
will take LTT (Linux Trace Toolkit) which already has real-time support and provide
it with the POSIX Trace API.

e Generate the final binary image for deployment

2.5. Components

The main goal of this project is to deliver a structured set of components to ease the
development of RTES providing new services not available in current RTOSes. These
components are responsible for providing those new services or functionalities. This will
be mainly performed by means of modifying the current Linux and RTLinux kernels or
adding new software layers over them using their current POSIX APIs.

Most computer applications can be designed following a clear and standard software
engineering methodology like object oriented methodology or client/server model. The
code that is part of the operating system can not be easily categorised or described in a
unique way, specially when the type of operating system is an RTOS. In this case, the
intrinsic characteristic of an RTOS: efficiency and predictability of the code are mostly
opposed to clearly divided and well organised code. It do not mean that the internal
code of the RTOS is bad written or chaotic, what it means is that the RTOS can not be
structured in a well defined and clearly separated blocks of code with clear inputs and
outputs. For example, when RTLinux is loaded (inserted as a kernel module) it takes
the control of the interrupt system by modifying the Linux code while Linux is running,
which is one of the less advisable programming methods but provides the fastest result.
One of the definitions of what is an operating system is that it is the piece of software
that hides all the complexity of the underlaying hardware to provide a clear and orthog-
onal programming environment to user applications.
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2.5.1. Definition

An OCERA component is a piece of software that brings some new functionality or
feature in some of the fields of the Embedded and Real-Time Systems that are of in-
terest for OCERA: Scheduling & RT-Kernels, Quality of Service, Fault-Tolerance and
Communications.

As a piece of software we mean:

» a modification of the Linux kernel or RTLinux executive, which will be released as a
patch file against a specific kernel version or integrated into the final OCERA kernel;

» amodule which can be loaded (with the insmod/modprobe commands) and provides
new functionalities and may use some of the already installed services;

 a library, dynamic or static, which can be linked with the user application;

» or a standalone thread or process (for example a debugging program).

2.5.2. Component Classification

OCERA components can be classified according to two criteria:

» Protection

» Level

According to the “protection” criteria, we can identify components that run in user space
and components that run in kenel space. User space components are Linux applications
running in their own address spaces at the lowest privilege level. Because of the protec-
tion mechanism enforced by the Linux kernel, these components are not able to crash
the system, even if they misbehave and try to access random memory locations.
Components running in kernel space are: the (patched) Linux kernel (including its own
device drivers), the RTLinux executive, and the hard real-time tasks (also referred as
RTLinux tasks or RTLinux applications).

According to the “level” criteria, kernel space components can be located in the RTLinux
layer (as modifications or additions to the RTLinux executive) or in the Linux layer (as
modifications to the Linux kernel, which are independent from RTLinux).

Note that some functionalities can be provided both in user space and in kernel space
(for example, the QoS manager developed by SSSA will be available both as a kernel
module or as an user space daemon), and other functionalities can be implemented at
different levels in kernel space (for example, the CBS scheduler will be implemented
both in the RTLinux layer - by UPVLC - and in the Linux layer - by SSSA). For this
reason, each component documentation will contain precise information about its pro-
tection level (user space / kernel space) ant its location (RTLinux layer / Linux layer).
It is worth to note that the RTLinux layer can be logically divided in three sub-layers:

1. Low-level RTLinux: This kind of components are highly related with the current
RTLinux capabilities or internal algorithms, thus it requires to modify the current
RTLinux source code in order to provide the new functionality or to improve an
available one.

This kind of component will be distributed in a patch-form and hopefully incorpo-
rated in the main stream of the implied kernel source.

2. High-level RTLinux: It only needs the current API of the RTLinux kernel or an
extended API offered by other kernel component in order to implement its new func-
tionality. It does not require to modify the existing kernel source code or any low-
level kernel component.

3. RTLinux Applications: This kind of component uses the kernel API to provide
a new service. It does not require to modify the existing kernel source code or any
kernel component. The main characteristic of these components are that they are
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implemented as an application-level processes/threads, offering some kind of service
to other processes/threads (as a kind of a classical UNIX daemon).

In a similar way, the Linux layer is also split in two layers:

4. Low-level Linux : Like the low-level RTLinux executive components, these com-

ponents modify the current kernel and has to be distributed as patch files.

5. High-level Linux : Components located inside the Linux kernel that use but do

not modify the Linux kernel code. Device drivers are components of this category.

The third level (Linux applications) coincides with user space applications.

Most of the components will fit in one of these categories, but others will require the
modification of several layers. For example, the CBS component at the RTLinux execu-
tive will also require small modifications of the Linux kernel.

2.5.3. Characteristics

Lets enumerate some of the general characteristics of the OCERA components.

Open Source

OC will be released under GPL or GPL like licenses. Some components may be incor-
porated into the RTLinux/Open distribution and in that case they will be covered by
the RTLinux/Open License.

Unique Level of Application

Each OC will be developed just for one level of criticality, either hard or soft real-
time. This will let us separate configuration and parameterization and get smaller
footprints.

We can have, nevetheless, the same feature or service in both levels, hard and soft,
but this would be provided by different components, whether they share API (which
will be the common case) or not.

Uniformized API

All OC will share a common API structure. They will adopt POSIX if available and a
POSIX draft or POSIX-like API if not. All OC will have their API uniformized: names,
profiles, etc...

Compatibility with OCERA kernel

Although the components can be developed for any architecture, kernel, etc... They at
least must be provided compatible with the OCERA Kernels. Notice that there will be
several kernels depeding on the target architectures

Small footprint

Having in mind the development of Embedded Systems, the OCERA components foot-
print will be kept as small as possible

Although there is not specific maximum size for an OCERA basic system (just the sys-
tem and libraries), we should strongly limitate its footprint to allow the development
of embedded systems where non-volatile memory or disk capacity are very reduced.

Uniformity

All OCERA components will be provided in a standard way, including documentation,
examples, etc... This is important for several reasons, first to ease development with
OCERA components, second to allow people to contribute (to the existing components
or adding new ones)

O Well Documented
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Well documented. The following questions will be considered when preparing the
documentation:

¢ What is the component useful for.

¢ Small review of similar or related facilities in other RTOS.

¢ How it can be used: is it a patch, a stand alone module, a thread.

¢ Configuration parameters if any.

¢ Complexity analysis, both temporal and spatial memory worst case analysis.

* How it is installed. In the case that the component could be used independently
of the OCERA distribution, dependencies with other components from OCERA or
external developers will be specified.

O Usage examples
Basic usage examples will come with each component.

O Regression Tests

Regression tests, used to validate the correct implementation of the component.

O Cross partner validation
Every component will be developed by a partner and reviewed by a different one.

« Minimum Dependencies

There can be dependencies between components, but these dependencies have to be
maintained to a minimum

Sometimes we will develop components that make use of features provided by other
components. Separating components increases modularity and eases development,
but we have to take care not to add artificial dependencies. Frequently developers do
not take much care about the dependencies of their software. Keeping dependencies to
a minimum allows exchangeability, minimize the use of memory and system footprint,
etc... so we will develop the components with a “just what needed” philosophy.

2.5.4. External Structure

From the point of view of an external developer that wants to build her RTES using the
OCERA framework, an OCERA component is simply a feature or service that can be
activated or deactivated, and optionally configured or customised for the target applica-
tion.

It might be the case that a selected component modifies the kernel source code but
this should not be an issue for an external development. On the contrary, an external
developer will not notice whether the components she has selected are kernel modules
or they modify kernel sources; for her it will be completely transparent.

The only difference an external developer should notice is that some components will be
activated/deactivated as a kernel feature, and configured in the same way, and others
will be activated as a user process/thread that offers some new service, i.e., as a kind of
a classical UNIX daemon.
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2.5.5. List of Components

Though they will be explained in detail later in, we present here a complete list of com-
ponents that will be develop within OCERA:

+ Kernel and Scheduling

RTL-ADA: Porting of Runtime support of the ADA (GNAT) system to RT-Linux
POSIX Timers in RT-Linux

POSIX Non-realtime signals in RT-Linux

POSIX Barriers in RT-Linux

POSIX Message queues in RT-Linux

Application defined scheduler in RT-Linux

POSIX Trace support

Dynamic Memory Management support in RT-Linux

Constant Bandwidth Server (CBS) in RT-Linux

* Quality of Service

Scheduler for resource reservation in Linux
Quality of Sercive (QoS) manager
User library for accessing previous components

A series of patches to the RT-Linux/Linux kernel to solve problems with preemption,
low-latency and high-resolution timers patches.

e Fault-Tolerance

Design & Building Tool

Application fault-tolerance monitor
Fault-Tolerance controller in kernel level
TaskReplicaAgent

« Communications

Virtual CAN API

CANOpen device

EDS parser and CAN/CANOpen analyzer

Real-Time Ethernet (ORTE) device

Real-Time Ethernet analyzer

CAN model by timed automata/ Petri Nets

Verification of cooperative scheduling and interrupt handlers
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The mainstream development of OCERA will be done in x86 platforms. Although we
have still to face some uncertainties, we have chosen two other architectures OCERA
will support. These architectures are Motorola PowerPC and Intel StrongArm, mainly
motivated by the embedded systems character of the project.

Here we explain with some more details why we have decided to support such architec-
tures.

3.1. x86

Despite the fact that the OC will be mainly developed in x86 environments, the fact that
RT-Linux is originally being developed in x86 (and then ported to other architectures)
and that x86 is the architecture most people have at hand when going to develop, we find
that there is an increasing interest in the development of x86-based embedded systems.
The appearance of smaller and cheaper x86 motherboards together with the commer-
cialization of low-consuming processors (e.g. VIA) and the demand of more performance
makes x86 an architecture appropriate for the real time and embedded market.

3.2. PowerPC

The customers from the critical applications sectors (including namely transport, gas
industry, power stations, ...) usually require Motorola based hardware for security and
reliability reasons.

Important part of embedded applications is based on Motorola processors as they are
designed for control applications (while x86 is mainly focused on PC) and they have
many peripherals integrated on the chip (CAN, Ethernet, timers...)

Developers of real time applications prefer this family for the architecture and free de-
velopment tools. PowerPC seems to be a perspective candidate for the further develop-
ment of embedded applications using RT-Linux.

3.3. StrongArm

StrongARM [SA1100] is a family of high speed, low power processors specifically de-
signed for portable and embedded systems, such as handheld devices. The processors,
which were jointly developed by ARM [ARM] and Digital Equipment Corporation, are
now available from Intel. ARM’s microprocessor cores [Jagger95] are rapidly becom-
ing the volume RISC standard in such markets as portable communications, hand-held
computing, multimedia digital consumer and embedded solutions.

One of the most used processors of the StrongARM family is the Intel SA-1110. It pro-
vides the performance, low power, integration and cost benefits of its predecessor (Intel
SA-1100), plus a high-speed memory bus, flexible memory controller and the ability to
handle variable-latency I/O devices such as high performance graphic devices. The In-
tel XScale processors are an improvement of Intel StrongARM family. It combines high
performance, small size, low power and modest cost.

A wide variety of PDA models used StrongArm processors, such as Sharp Zaurus
[Sharp], Intrynsic Cerf [IntrinsycCerf]. All iPaq handhelds of Compaq [iPaq] contain
XScale or StrongARM processors (depending on products).

This architecture is supported by several embedded operating systems, such as Windows
CE and VXWorks. Linux has been ported to ARM processors (included SA 110 and 1100)
[ArmLinux], and a wide variety of tools and distributions, such as GNU, Debian, have
been developed to support it. It is also available a straightforward port of the XFree86
implementation of the X Window system [HandHelds]. Furthermore, commercial em-
bedded linux distributions [Montavista] support both StrongARM and Xscale.

17



Chapter 3. Hardware Architecture

There is also a patch for RT-Linux (v 3.0) and Linux 2.4.16 that ports SA 1100 processor
[Tmec].

Therefore, since the basic support has been already developed, the main effort will be fo-
cused on adding tools and components for real-time features. This will be very necessary
if consumer electronics market place consolidates for domotic applications.

Hardware Bibliography

StrongARM

[Montavistal Monta Vista http:/ /www.mvista.com /.

[ARM] ARM http:/ | www.muvista.com /.

[Sharp] Sharp Zaurus handhelds http:/ | www.sharpsec.com /.

[IntrinsycCerf] Intrinsyc Cerf Products http:/ [www.intrinsyc.com [ products [compare.asp /.
[iPaql iPaq Compaq handhelds http:/ | www.compagq.com [ products [ handhelds [ pocketpc /.

[HandHelds] Open source software for use on handheld and wearable computers
http:/ Jwww.handhelds.org /.

[Imec] RTLinux patch for StrongARM http:/ | www.imec.be [rtlinux/.
[ArmLinux] ARM Linux Project http:/ /www.arm.linux.org.uk /.

[SA1100] Intel Corporation, SA 1100 Microprocessor Technical Reference Manual,
September, 1998 .

[Jagger95] Edited by D. Jagger, Advanced RISC Machines Architecture Reference Man-
ual, Prentice Hall, July, 1995.

OCERA. IST 35102 18



Chapter 4. Embedded system generation

The final stage of the development of RTES is the generation of the embedded system.
As we outlined in a previous chapter, the OF will permit us to generate the embedded
system image.

Emdebian is a project that gives a tool for the configuration, setup and generation of
embedded systems. It is a very intuitive and easy-to-use graphical tool. We will extend
this tool to include the configuration, parameterization and compilation of the OC.

As we have seen, a component have the possibility to be activated or deactivated. But
how can I activate or deactivate a specific component? The Emdebian-OCERA system
allows us, according to the application needs, to activate or deactivate components, con-
figure the kernel, and finally compile the kernel and components.

With this tool we will also be able to configure the target system: shells, services to
include, root tree, users, binary files, booting, etc...
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Figure 4-1. Emdebian Tool Screenshot

Once we have the system configured and compiled, we will automatically generate the
binary image to be copied into the target. This image will include the corresponding
Linux kernel and system utilities, the OC chosen, the RT-Linux kernel if applicable and
the real-time application developed.

We are still evaluating if it will be possible to deliver some tool to effectively copy the
binary image into the target, through serial port (JTAG), or provide the kernel through
the BOOTP protocol, etc...
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Chapter 5. Kernel Components

5.1. Introduction

In the framework proposed in this project, the division of an application in hard/soft
real-time parts is also used to structure the execution platform. Then, the execution
platform is organised in two levels: a soft real-time level, where all soft real-time tasks
will be allocated, and a hard real-time level, where critical tasks will be executed. Each
of this execution levels is going to be managed by a different operating system kernel.
The Linux kernel will control the execution of all soft real-time tasks and the non-real-
time tasks, as graphical analysers, etc. Under the Linux kernel, and with a more strict
control over the hardware, the RTLinux will execute all critical tasks of the developed
application.

Next, the components organisation from the point of view internal or external developer
is detailed.

5.2. Kernel Components Architecture

From the point of view of a developer that is building new kernel components for the
OCERA project, the kernel components can be classified in two types, depending on
where the source code of that component will be finally allocated.

o Low-level kernel component: This kind of component is highly related with the cur-
rent kernel capabilities or internal algorithms, and therefore it requires to modify the
current kernel source code in order to provide the new functionality or to improve an
available one.

This kind of component will be distributed in a patch-form and hopefully incorporated
in the main stream of the implied kernel source.

o High-level kernel component: It only needs the current API of the kernel or an ex-
tended API offered by other kernel component in order to implement its new func-
tionality. It does not require to modify the existing kernel source code or any low-level
kernel component.

The distribution of this kind of components is quite easier. It can be distributed as a
separated source code tree, while the required API is ensured to be available in the
corresponding kernel.

o Application-level kernel component: This kind of component uses the kernel API to
provide a new service. It does not require to modify the existing kernel source code
or any kernel component. The main characteristic of these components is they are
implemented as application-level processes/threads, offering some kind of service to
other processes/threads (as a kind of a classical UNIX daemon).

This kind of components is quite easy of being distributed. It is also implemented as
a separated source code tree and distributed in the same manner of high-level kernel
components.

These kind of components will be developed for both kernels present in the execution
platform: Linux and RTLinux. In fact, one of the goals of this project, at kernel level, is
to provide the same API in Linux and RTLinux, from the real-time point of view.

The term high-level, low-level or application-level used to classify the components is not
related with the complexity or criticality of the component. It only refers to the fact that
requires or not to modify the current kernel source. This classification can be applied
to soft and hard real-time components, being the low-level components for the Linux
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kernel probably the most complicated to develop and maintain, due to the complexity of
this kernel.

5.3. Kernel Components Description

In this section, a description of the kernel components that will be developed and where
they are situated in the kernel components architecture is presented.

The kernel components presented bellow will be developed mainly for the RTLinux ker-
nel, because some of these services are already available in the Linux kernel.

5.3.1. Low-level kernel components

As it was described above, these components require the modification of the currently
available kernels in order to extends their current API with new real-time functionali-
ties.

¢ POSIX Signals

O Description: This component will provide a mechanism by which a process or thread
may be notified of, or affected by, an event occurring in the system. Examples of such
events include hardware exceptions and specific actions by processes.

The Real-time signals is a deterministic signal extension that allows asynchronous
signal notifications to an application to be queued without impacting compatibility
with the existing signal functions.

O Responsable: UPVLC
O Validator: CEA

e POSIX Timers

O Description: A mechanism that can notify a thread when the time as measured by a
particular clock has reached or passed a specified value, or when a specified amount
of time has passed.

This component needs POSIX signals to notify the timer owner of its expiration and
it has to modify the kernel scheduler to manage timer events.

O Responsable: UPVLC
O Validator: CEA

e POSIX Barriers

O Description: Barriers, are defined in the advanced realtime POSIX (IEEE Std
1003.1-2001). A barrier is a simple and efficient synchronisation utility. A barrier
can be implemented inefficiently by mean of a mutex and condition variables, but
the proposed implementation will relay on special processor instructions to achieve
low overhead.

O Responsable: UPVLC
O Validator: CEA

¢ POSIX Tracing facilities
O Description: Recently, IEEE Std 1003.1-2001, POSIX provides a new debugging fa-
cility: POSIX tracing. POSIX trace implementation jointly with a tool to display and
analyse the logged data will be a very useful tool for realtime developers.
O Responsable: UPVLC
O Validator: CTU
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¢ Application-defined Scheduler support (ADS)

O Description: It is an RTOS API proposal to allow the user application to define the
scheduling algorithm for its system.
This new API will be provide the capability of implementing new scheduling policies
without modifying the kernel scheduler. Using this new functionality, an application
thread can decide how other threads of the same process should be scheduled. It
is also possible that multiple application schedulers coexist in the same real-time
application.

O Responsable: UPVLC
O Validator: SSSA

These components provide basic mechanisms for process/thread synchronisation, timed
execution and system monitoring. All of them are desirable to build real-time applica-
tions and to develop more powerfull real-time components.

5.3.2. High-level kernel components

These kind of components provide a new API that extends the real-time API of Linux
and RTLinux kernels. As they does not require to modify the kernel source code, it can
be provided as separated loadable modules, application libraries or incorporated into the
kernel mainstream, if preferred.

* POSIX Message Queues

O Description: The IEEE Std 1003.1-2001 specification defines a prioritised message
passing facility for the realtime and embedded environments. Among others fea-
tures, this message system will provides: prioritization of messages, asynchronous
notification, and fixed size messages.
This powerfull message passing facility is not available in any of the two kernels,
Linux and RTLinux. This component should provide such facility using only the API
provided by the kernel plus the API provided by the low-level kernel components,
more precisely, using POSIX signals and timers.

O Responsable: UPVLC
O Validator: VT

¢ RTLinux Dynamic Memory Management

O Description: The RTLinux kernel lacks of a dynamic memory manager, and there-
fore, hard real-time threads and drivers that should be allocated in the RTLinux
kernel cannot use any kind of dynamic memory allocation. This is a very strong
restriction in same cases.
This component should provide a highly customisable and fully deterministic man-
ager that allows hard real-time threads and low-level drivers to allocate memory
dynamically.

O Responsable: UPVLC and SSSA
O Validator: CTU

¢ RTL-ADA Porting
O Description: RTLinux applications can be programmed in C and C++ . Another im-
portant programming language for realtime systems is ADA. The ADA run time
support has to be ported to RTLinux in order to run ADA programs. This compo-
nent will provide such support in the RTLinux kernel.
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O Responsable: UPVLC
O Validator: VT

These components and the low-level kernel components will be provide the required
functionalities to develop more complex components, such QoS, communication and
fault-tolerance components and to build reliable real-time embedded applications.

5.3.3. Application-level kernel components
This kind of components is not the typical kernel component, and its existence is reduced
to a small set of threads that provide scheduling and monitoring support to the other
threads. This kind of components will be mainly developed as a QoS and fault-tolerance
components.

e Earliest Deadline first (EDF)

O Description: The EDF is a basic scheduling algorithm with a solid theory back-
ground, mainly used in multimedia applications. This implementation relies on the
Application-defined Scheduler component, which makes it almost independent of
RTLinux code, and very easy to port to other OS.

O Responsable: UPVLC

O Validator: SSSA

¢ Constant Bandwidth Server (CBS)

O Description: Using the facilities provided by the Application-defined Scheduler com-
ponent, this component implements the CBS scheduling algorithm explained be-
fore. As was the case with the previous component, this implementation is highly
portable since it do not modify the RTLinux executive.

O Responsable: UPVLC

O Validator: SSSA

Next figure shows the kernel components distributions inside the OCERA software ar-
chitecture.
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One of the goals of the OCERA QoS component is to provide a predictable Quality of
Service level to both kernel level (RTLinux) and user level (regular Linux tasks). A
correct resource allocation is fundamental to guarantee a predictable QoS, and in order
to precisely allocating resources two requirements must be fulfilled:

1. Tasks must be scheduled with a low latency;
2. A proper scheduling algorithm must be used to guarantee real-time performance to
tasks.

At the kernel level, RTLinux provides low latencies, and the extended scheduler devel-
oped by UPVLC can be used to guarantee the correct CPU allocation.
At the user level, a proper resource allocation can be obtained by combining techniques
analysed in Deliverable D1.1 (the low-latency or kernel preemptability patches) and
novel scheduling strategies. In a traditional RTLinux system, the Linux kernel is sched-
uled in background respect to all the real-time tasks, and as a result user-level tasks
experience big latencies and non predictable delays. This problem can be solved by
scheduling Linux as a real-time task, and not as a background one.
Since the Linux kernel is scheduled by the low-level flexible scheduler implemented in
RTLinux, the guarantees provided by the two schedulers must be combined in a hierar-
chical fashion to control the QoS delivered to the application.
Resource Reservation techniques (described in Deliverable D3.3) are particularly useful
for hierarchically combining the two schedulers, since they permit to reserve a fraction
of the CPU time to the scheduled entities. Hence, this combination allows to reserve a
fraction Bl of the total CPU time to the Linux kernel and then a fraction Bi of the Linux
time to each user-level task. An approximate guarantees can intuitively be provided by
multiplying the two fractions, and an user-level task is reserved a fraction of the total
CPU time equal to about Bi * Bl .

Hence, the QoS component will be based on:

1. Preemptability or low-latency patches that permit to decrease the scheduling la-
tency experienced by user level applications;
2. A high-resolution timers patch that increases the kernel timing accuracy;
3. A loadable kernel module that permits to schedule user-level tasks with a proper
algorithm;
4. Mathematical tools that permit to combine the kernel-level and user-level guaran-
tees.
5. A QoS Manager, which uses the patches and modules described above to properly
allocate CPU to each application.
As a result, the QoS component will use features provided by the Real-Time Scheduling
component, and will depend on it to implement hierarchical scheduling. Note, however,
that the QoS component can be used also if the Real-Time Scheduling component is not
used (i.e., in a non RTLinux-based system). In this case, the loadable scheduler provided
by the QoS module will be the only real-time scheduler in the system, and all the real-
time/time-sensitive tasks will run at user level.
As a final note, we would like to stress that the QoS component gives to the user the
freedom to choose which time-sensitive tasks to run at kernel level, and which ones to
run at user level, allowing the implementation of three different kinds of solutions:

1. A “pure RTLinux” solution, in which all the time-sensitive tasks run at kernel level,

2. A “pure user-level” solution, in which all the time-sensitive tasks run in user space;

3. A “mixed” solution, in which some time-sensitive tasks run at kernel level (as
RTLinux tasks), and the other ones run at user level. OCERA will allow to easily
move a task from one level to the other without having to change the application too
much.
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A description of the Resource management components follows.
Low level Linux components

* Generic Scheduler Patch

O Description: It is a small patch for the Linux kernel that provides useful hooks
to the Linux scheduler. These hooks will then be used by our scheduling module
for implementing sophisticated real-time scheduling policies. This patch has to be
minimally invasive for to limit the overhead and to minimise the need to upgrade it
for new versions of the Linux kernel.

O Responsable: SSSA

O Validator: UPVLC

¢ Integration patch

O Description: This patch will take into account the introduction of the "preemtpion
patch" and "high resolution timers" in the Linux kernel. These new services are
very useful for improving the responsiveness of time-sensitive applications in Linux:
however, they are not compatible with the RTLinux patch. Since these new services
are most likely to be introduced in the next Linux stable release, there is the need
to take into account this problem by modifying the RTLinux executive. Therefore,
this component will be a patch to the RTLinux executive that makes it compatible
with the future versions of Linux.

O Responsable: SSSA

O Validator: UPVLC

High level Linux components

* Resource Reservation Scheduling module

O Description: It will be a dynamically loadable module for the Linux kernel, that
will provide a resource reservation scheduler for soft real-time tasks in the user
space. It will be based on the Constant bandwidth Server. This module is the core
of Workpackage 4, and it will provided in different versions during the course of the
project: a first version will simply provide the CBS scheduler for uniprocessors; a
second version will include mechanisms for reclaiming the spare capacity; a third
version will take into account SMP (simmetric multi-processor systems).

O Responsable: SSSA

O Validator: UPVLC, CEA

* Quality of service Manager

O Description: This component will provide a mechanism for identifying the temporal
characteristics of a task and to adjust its scheduling parameters so to maximise its
quality of service. It will be based on the concept of "feedback scheduler", that is a
controller that measure the QoS experienced by the task and modify its parameters
accordingly. It will be provided in two versions, as a dynamically loadable module
and as a daemon process running in the Linux kernel (i.e. as a Linux application).

O Responsable: SSSA

O Validator: VT, UPVLC

Linux applications

e User API

O Description: This component is a set of one or more libraries that will provide a
convenient API to the user to access the Resource Management services. This API
will be as similar as possible to the POSIX API provided by the RTLinux executive:
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in this way, it will be possible to move a RTLinux thread from the hard real-time
level to the soft real-time level, and vice versa, with little effort.

O Responsable: SSSA
O Validator: UPVLC

Notes

1. The correct guarantee is a little bit more complex, but the intuitive product Bi * Bl
gives an immediate idea of how to compose the guarantees. The correct and precise
analysis will be developed in WP 4.
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fault-tolerance

7.1. Introduction

Fault-tolerance can be provided by the combine use of a set of methods and mechanisms
starting from design and covering all the development process until run-time.

Targeted objectives of Fault-tolerance in the project are twofold : implementation of tools
and mechanisms to support degraded mode management and dynamic reconfiguration
of tasks (based on dynamic scheduling policies) on a local basis (one node) during the
first phase of the project and, redundancy mechanisms to support dynamic reconfigura-
tion in a distributed system in the second phase of the project.

In the project we will not consider that fault-tolerance can only be provided by isolated
separate fault-tolerant components. The methodology we will adopt will be to build a
fault-tolerant system using as far as possible the other OCERA components (scheduling,
resource management and communication) and exploiting in an appropriate way the
new high level facilities they will implement.

The Fault-Tolerance work package will thus not only provide some basic specific run-
time FT components, but it will also provide other OCERA components with require-
ments for new features so that these components can contribute to the overall applica-
tion fault-tolerance. It will also provide a methodology and associated supporting tools
to help application users specify and implement fault-tolerance.

Once specialized, OCERA components will contribute to fault-tolerance provided a few
additional features (such as temporal fault signaling), or specific configuration (within
QoS scheduler) is undertaken, or specific protocol is implemented (in communication).
The main reasons for splitting objectives in two sets is related to the project planning .
We have to reach rapidly a first objective so that a consistent set of components can be
demonstrated at the end of the first phase. Local management of degraded modes can
be achieved in a such a short period of time and still provide the basic building blocks
for the more complete fault-tolerance set of mechanisms. Full implementation of fault-
tolerance will require cooperation of almost every other OCERA component and will
thus take time to specify precisely all the needed requirements and implement them,
this could not reasonably reached within the first period of the project.

While most OCERA components will be run-time components, we have identified a need
for design help tools related to fault-tolerance. These design help tools will be devoted
first to provide the user to specify non-functional features for its application namely,
temporal constraints, declare critical tasks, specify exception handling and alternative
behaviors. It will support also the specification of mode-change. A second help will be
related to configuration of the target system

Indeed, since fault-tolerance will require cooperation of several interrelated components,
it is important that proper configuration and use of the various OCERA components is
consistent. Moreover some additional code will have to be added to provide support for
dynamic reconfiguration. So a building tool will be developed that will configure OCERA
components, instantiate fault-tolerance policies and generate additional code to support
fault-tolerance.

Fault-tolerance will thus be considered at three steps in the life-cycle of an application :

Design

» Specify dependability criteria (temporal and fault-tolerance) related to application
» Feasibility evaluation Off-line analysis

Application building
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e Build tasks
+ Configure schedulers
» Instantiate specific fault-tolerance mechanisms

Runtime

* Monitoring and control
¢ Collecting logs (for tuning)

7.2. Tools and components to be developed

7.2.1. Tools and components to be developed during first
phase of the project

7.2.1.1. Tools

Design tool
The design tool will help user for the

» Specification of tasks
» Specification of real-time constraints
» Specification of fault-tolerance constraints

Building tool
The building tool will permit to

» Configure OCERA components

+ Instantiate F'T components

e Produce additional tasks and/or wrap user code
Starting from information gathered with design tool

7.2.1.2. Components

The specific fault-tolerance components that will be developed within the first period of
the project are dispatched over the user level and the kernel level.

User-level

AFT-monitors

The Application FT-monitor will decide of dynamic reconfiguration of tasks on abnor-
mal situations. It will receive notification of errors from the kernel level and will get
information on load from the QoS scheduler. Depending on the situation, it will apply
degraded mode management policies in order to keep the system in a safe state. For that
it will ask the kernel level to stop certain tasks and ask the QoS scheduler to resched-
ule the new configuration of tasks. Dynamic behavior change can also be activated by
application on detection of alarm conditions on certain tasks.

» First implementation will provide for emergency stop

» Second implementation will provide for degraded mode management

e Third implementation will provide for dynamic mode management depending on load
Kernel level

FT-controller

The FT controller will collect low level information on tasks progress and survey their
lifeliness. It will signal abnormal behaviors detected and possibly activate emergency
tasks.
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7.2.1.3. Interactions with other OCERA components

In this first step, active collaboration with the development of scheduling and QoS com-
ponents in WP4 and WP6 will be necessary.

WP4 will provide error signaling and deadline miss at kernel level

WP5 will provide high level dynamic scheduling necessary to implement dynamic re-
configuration, it will also provide information about anticipated scheduling miss so that
dynamic reconfiguration can alleviate load.

7.2.2. Tools and components to be developed during second
phase of the project

7.2.2.1. Tools

Design tool
Functioanalities will be added in the design tool :

» Specification of fault-tolerance constraints for redundancy

Building tool

The building tool will be extended in order to permit the implementation of distributed
redundant tasks. It will also instanciate communication controllers to be developed in
common with the OCERA communication components

« Code generation for redundancy management will be added

7.2.2.2. Components
User-level

The Application FT-monitor will be enriched and a new component a task redundancy
manager will be added

AFT-monitors

» 4th implementation will provide for dynamic redundancy management (activation or
deactivation of redundancy for certain tasks depending on workload)

Task Redundancy Manager

» The task redundancy manager will monitor redundancy management. It will syn-
chronize, activate and deactivate replicas. Passive redundancy will be implemented

Kernel level
FT-controller

The FT controller will collect low level information on tasks progress and survey their
lifeliness. It will also provide reflexive information on the tasks implementing fault-
tolerant mechanisms.

TaskReplicaAgent

This component will locally monitor interactions of a local replica of a task with the Task
Redundancy manager. It will operate chekpointing, and local activation / deactivation of
a replica.

7.2.2.3. Interactions with other OCERA components

The implementation of redundancy mechanisms requires that data synchronisation over
a distributed network can be achieved. This implies either a specific design approach
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(Time Triggered Systems) or the implementation of specific distributed synchronisation
protocols between replicas.

In this second step active collaboration with the development of communications compo-
nents in WP7 will be necessary in addition to already existing collaboration with other
components. In particular fail-safe communications will have to be implemented and a
checkpointing algorithm will have to be chosen and implemented. A temporal synchro-
nization model will have to be defined in collaboration with WP4.

7.3. Components and tools descriptions

A brief description of each component is given in this section. Only general overview is
given since fault-tolerance is deeply inter-related with other components. This interac-
tion will be analysed further within the WP6 workpackage but is still on-going.

Components at the Low and High level RTLinux

At this level no fault-tolerant component will be specifically developed but the POSIX
Tracing, POSIX Signals, POSIX Timers and Application Defined Scheduling components
described in the Scheduling section will contribute to fault-tolerance thanks to the log-
ging and signalling facilities they will offer.

Components at the Application-level RTLinux

¢ FT controller

O Description: The FT controller will be the low level module that will permit transfer
of FT information from the RT level to the user level and that will activate emer-
gency actions when required. In connection with the RT Kernel it will detect fail
silent situations through watchdogs and transmit deadline miss to the Application
FT monitor.

O Responsable: CEA

O Validator: UPVLC

¢ Application FT monitor
O Description: The AFT monitor will consist of a module that will memorize Tasks
Information and define reconfiguration strategies. It will collect information from
both RT Scheduler and QoS Scheduler. It might also receive alarms from applica-
tions.It will decide of reconfiguration and inform RT scheduler by stopping tasks
and QoS Scheduler by giving a new tasks set (this set will possibly include already
running tasks)

O Responsable: CEA
O Validator: UPVLC

¢ Task Replica Manager

O Description: The task replica manager is a low level module that is in charge of
synchronization and communication of the replica during checkpointing. It will also
detect possible communication failure

O Responsable: CEA
O Validator: SSSA

¢ Task Redundancy manager

O Description: The task redundancy manager will monitor redundancy of a cluster of
replicas, decide when to activate or deactivate a replica.

O Responsable: CEA
O Validator: SSSA
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Components at the Application-level Linux

* Design tool

O Description: The design tool whose goal is to permit the expression of non-functional
features from the user will be developed. A first step will consist in defining a
description language in order to specify explicitly timing characteristics and con-
straints of tasks, possible alternatives for tasks, actions to be done on temporal
faults, on errors. The possibility to specify tasks graphs will be offered. Support for
imprecise computation will be offered. A way to specify critical tasks requiring re-
dundancy will also be defined. The tool will permit to gather this information along
with information on mapping requirements for tasks. Ways of specifying modes at
task and application level will be considered. A possible result of this language def-
inition task might be a UML profile for fault-tolerance. The acquisition tool itself
will be developed using standard GUI programming tool.

O Responsable: CEA

O Validator: CTU

¢ Buiding tool
O Description: The building tool will use information gathered by the design tool
and configure the OCERA platform, it will provide tasks information to kernel
schedulerand QoS Scheduler, instantiate FT mechanisms (AFT monitor and FT-
controllers), and adapt tasks code. When redundancy will be tackled it will produce
code for tasks duplication and checkpointing mechanisms.

O Responsable: CEA
O Validator: VT
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8.1. The Real-Time Ethernet Architecture

8.1.1. Preface

With the explosion of the Internet, the TCP/UDP/IP protocol suite has become the un-
derlying framework upon which all Ethernet communications are built. Their success
attests to the generality and power of these protocols. However, these transport-level
protocols are too low level to be used directly by any but the simplest applications. Con-
sequently, higher-level protocols such as HTTP, FTP, DHCP, DCE, RTP, DCOM, and
CORBA have emerged. Each of these protocols provides well-tuned functionality for
specific purposes or application domains, but none of them is suitable for real-time dis-
tributed applications, where developers need some methods to control data traffic on
bus. For example, none offers deterministic communications, time-aware notifications,
heartbeats, transparent hot-swap substitution, or quality of service control. Modifica-
tion of publish-subscribe protocol (Real-Time Publish-Subscribe) adds parameters, that
offers application developers an easy way to manage communication on bus with differ-
ent deadline requirements.

8.1.2. Communication architectures

Distributed application developers have several choices for writing communication.
There are three main communication architectures (Point-to-Point, Client-Server,
Publish-Subscribe).

Client-Server (CS) : data exchange is done between group of client nodes and one
server node. It works well when all data are located on central server (database ap-
plications). CS architecture is inefficient when data are produced by many nodes and
are consumed by multiple nodes (two transactions are needed), which is typical for dis-
tributed application.

Publish-Subscribe (PS) : nodes "subscribe" to data they need and "publish" data they
produce. Messages are transferred directly between communication nodes. Data are bee-
ing sent without exact destination address, they are received by all nodes and each node
decides itself (with respect to topic identification) whether it is interested in this mes-
sage or not. PS architecture not suited for request/response traffic, such as file transfers.
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Figure 8-1. Client-server model
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Figure 8-2. Publish-subscribe model

8.1.3. Real-Time Publish-Subscribe (RTPS)

Real-time applications require more functionality then the one provided by traditional
publish-subscribe architectures. RTPS adds publication and subscription timing pa-
rameters and properties so the developer can control different types of data flows and
achieve their application’s performance and reliability goals.

Table 8-1. Publication parameters

parameter

description

topic

A string which uniquely identifies the
issues to be distributed.

type

A string which uniquely identifies the
issues’s data format.

strength

This value allows to arbitrate among issues
of the same topic sent by multiple
publishers. It express the relative priority
of one publisher to another. A primary
publisher would have a higher strength
than a secondary publisher.

persistence

specifies duration of time for which an
issue is valid after it is published.

Table 8-2. Subscription parameters

parameter description

topic IA string which uniquely identifies the
issues to be received.

type IA string which uniquely identifies the

issues’s data format.

minimum separation

Fastest rate at which issues should be sent
by the ORTE network stack

deadline

Time period after which the ORTE stack
should notify the subscriber if no issues
have been received.

Figure 8-3 illustrates how RTPS uses the deadline, minimum separation, strength and
persistence properties to provide network communication for real-time applications and
simplify system design. Features shown on the figure are:

Subscription Issue data flow: If a new issue does not arrive by the deadline, the
application is notified.

Redundant Issue hot-swap: During persistance period ORTE stack accepts issues
from publiccations with equal or higher strength. After persistance, it accepts the first
issue, regardless of the publication’s strength.
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Figure 8-3. RTPS timing parameters

8.1.4. ORTE architecture

The OCERA Real-Time Ethernet (ORTE) will be open source implementation of RTPS
communication protocol. This protocol is being to submit to IETF as an informational
RFC and has been adopted by the IDA group. Figure 8-4 shows the network stack lay-
ers. Non Real-Time applications, which are using standard protocols such as HTTP, FTP,
DCOM etc., are running on top of standard TCP or UDP stack. ORTE is new applica-
tion layer protocol, which is build on top of standard UDP stack. Since there are many
TCP/IP stack implementations under many operating systems and ORTE protocol does
not have any other special HW/SW requirements, it should be easily ported to many
HW/SW target platforms. It doesn’t use or require TCP, so it retains control of timing

and reliability.
| Real-Time apps. | | NonReal-Timeapms. |
| ORTE | [ HTTP, FIP,DCOM .|
[ UDP | [er ]
I P |
| Ethermet hardware / MAC |

] Ethernet

Figure 8-4. ORTE layers

The ORTE is composed from three main components, as shown on Figure 8-5:

Database: stores parameters describing both local as well as remote node’s objects.
Processes: perform message processing, serialization/deserialization and communica-
tion between objects.

API: application interface.

BT Apphcation
F 9
,I, ORTE
APT
DRTE

I Pocesmes

Datnbase F
| UUDP stack |
I Eshernes

Figure 8-5. ORTE structure

The RTPS protocol is implemented as a set of objects. Objects are of the following types:

+ Manager (M)
» ManagedApplication (MA)
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» Services

o Writers (Publication, CSTWriter)

» Readers (Subscription, CSTReader)

A Manager is a special object that facilitates the automatic discovery of other Man-
agers. There is one Manager on each participating network node. A ManagedApplica-
tion is an applciation that is managed by one or more Managers. The Publication is
used to publish issues to matching Subscription. The CSTWriter and CSTReader are
the equivalent of the Publication and Subscription, respectively, but are used solely for
the state-synchronization protocol. Each object on network is characterized by GUID
(Globally Unique Id).

The RTPS protocol uses five logical messages:

ISSUE: Contains the application’s user data. ISSUES are sent by Publications to one
or more Subscriptions.

VAR: Contain information about attributes of state of objects.

HEARTBEAT (HB): Describes the information which is available in a writer.

GAP: Describes information which is no more relevant to readers.

ACK: Provides information on the state of a reader to a writer.

Each of these logical messages are sent between specific readers and writers as follows:

Publication to subscription(s): ISSUE, HEARTBEAT
Subscription to publication: ACK
CSTWriter to a CSTReader: VAR, GAP, HEARTBEAT
CSTReader to a CSTWriter: ACK

8.1.5. Database implementation

Status of all objects is stored in ORTE database. The database is set data structures
containing parameters of all known objects. There are not only data describing local
node’s objects, but also description of all known remote nodes’ objects. Since access to
this database should be granted to both ORTE stack processes as well as to applications,
there should be implemented some access control algorythm allowing concurrent access.
Applications use an API call to access the database.

Database contains two types of information. The first type is description of all known
objects without any specification of relationship among them. This information is stored
using a binary tree structure with object’s GUID used as the key. The second type of
information describes relationship among objects. Such relationship is for example as-
sociation between Manager and ManagedApplications or between publishers and sub-
scribers. This information is stored as a (double) linked list of GUID of objects which
belong to certain owner. As an example, such owner is a publisher, the linked list con-
tains list of GUIDs of its subscribers. The communication objects can be represented as
the branch of a tree. Each of the nodes in the branch and its descendants represents an
element of the complex data-structure.

Node 1
l Manager 1 T Managedépp. 1 :p—< Publisher 1 »—{ Publisher 2

I I
lManager o2 I Managedapp., 02 ] Subscriber O1

Node 2

I
IManagertJl| |lv1anagedr‘q::p.t11i Il Publisher O1 [

lManagerZT Managedapp. 2 H Subs ariber 1 l

Figure 8-6. Database example for two publishers and one subscriber

OCERA. IST 35102 37



Chapter 8. Communications Components

Example of content of a database is shown on Figure 8-6. There are two nodes Node 1

and Node 2. The figure shows content of database on both these nodes. The situation

on Node 1 is as follow:

e there is local manager Manager 1

« Manager O2 is local copy of parameters describing Manager 2, which is located on
remote node Node 2

 there is local managed application ManagedApp 1

 there is local copy of remote application ManagedApp 02

» there are publishers Publisher 1  and Publisher 2

 there is remote subscriber Subscriber O1  which is subscribed to data published by
Publisher 1

¢ there is currently no subscription to Publisher 2

Situation in node 2’s database is similar.

Note: letter O, which is placed before numerical index of an object means, that this

database object represents object which belongs to other node than local. For example

node 1’s object ManagedApp O2is local representation of node 2’s object ManagedApp

2.

8.1.6. ORTE processes implementation

The ORTE system spawns several processes during its lifetime as shown on Figure 8-7.
Generaly there are two groups of processes. The first group represents processes in-
volved in real-time application’s data exchange between local and remote nodes. These
processes are responsible for publishing of local application’s data if there are any re-
mote subscribers and also for receiving of remote application’s data if there are any local
subscribers. Another group are processes involved in network management.

A
Database
-«
AF L A a
Pgueuel | Pgueue2 ] PqueueN'
¥ L L Y
4 N 4
Subsciptions NedeManager Publication1 Publication2 Publication™
A A 'y e
ISSUE, HB| |ACK tvar GAP, ACK ISSUE, ACK‘ ISSUE, ACK ISSUE,
A y HE.ACK y HB y HB ! y HE
Data exchange Metatrafic Data exchange

Figure 8-7. ORTE processes

Process Subscription which is responsible for processing of all local subscriptions, i.e.
it receives all application data from all remote publishers to which local applications
want to be subscribed. It performs whole processing of received data including storing
of all data changes into database and, if requested by application, also calling an ap-
plication’s callback functions. This process can listen on more UDP ports where each
port belongs to one local subscription, or on a single UDP port, which is common to all
subscriptions. In any case, this process will never listen on default NDDS port 7400.

Processes Publicationl, Publication2, ..., PublicationN are responsible for
proper publication of local data to all its subscribers across the network. Each process
is associated with queue Pqueuel, Pqueue2,... PqueueN . Data changes are stored

(using proper API call) into certain queue. Process which is associated with this queue
reads its content and sends ISSUE message to all subscribers and waits for their ACK.
Each process in this group use its own UDP port, they will never use default NDDS port
7400.
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Process NodeManagement is responsible for whole management traffic. It is the only
process which uses default NDDS port. Since management traffic does not have real-
time requirements, it is designed as single process which processes both incomming
as well as outgoing requests. During evaluating phase it may be split to two separate
processes, one for incomming requests and second for outgoing requests.

8.1.7. API implementation

First implementation will be designed like one application running in user space using
standard Linux 2.4 kernel. Since the main purpose of this version will be to test this
implementation against another commercially available implementation, there will be
no any standard API provided. The real-time capabilities will not be focused during this
phase too. The next version will be written as a Linux kernel module. Interface between
this module and an application will use standard ioctl  function and read/write opera-
tion. The function will be divided into three categories:

e Administration - create and destroy database (InitDB, DestDB, SetParamDB, Get-

ParamDB,...)
o Publish - create and destroy publishers, sending data (CreatePub, DestroyPub, Snd-
Data,...)

e Subscribe - create and destroy subscribers, receiving data (CreateSub, DestroySub,
RecDataPoll, @RecDataCallBack, ...)

There are two type of subscribers - polling or callback. Polling subscriberes have to ask
ORTE layer by RecDataPoll  API call whether new data are available. Callback sub-
scriber creates an callback function, which will be passed to ORTE stack. ORTE stack
will call this function every time when new data will be available.

8.2. RT-CANopen architecture

8.2.1. Overview
8.2.1.1. List of abbreviations

List of abbreviations used in the document
CAN

Controller Area network
COB

Communication object (CAN message). A unit of transportation in a CAN network.
Data must be sent across a network inside a COB.

COB-ID
COB-Identifier.

Unique ID of the COB. The identifier determines the priority of the COB in the
MAC sub-layer too.

EDS
Electronic Data Sheet
FSM"
Finite State Machine
CANopen FSM in this article means a state automat processing CAN messages.

HDS®
Handlers Definition Sheet
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NMT
Network ManagemenT

COBs designated for network management ie. initialize, start, stop nodes etc.; this
service is implemented according to master-slave concept.

oD
Object Dictionary
Common representation of device parameters, process variables, configuration,
communication settings and device data types. Accesible as SDO objects from
CANopen network. The textual description of OD is called EDS file.
PDO
Process Data Object
CANopen objects designed for real-time process data exchange.
RPDO
Receive PDO
PDO received by device in order to set appropriate PDO mapped objects value.
RTR
Remote Transmission Request
CAN message to initiate RPDO object sending.
SDO
Service Data Object
CANopen service objects designated for manipulation with slaves object dictionar-
ies.
SFO
Special Function Object
Special purpose messages ie. SYNC, time stamp, emergency, node/life guarding,
boot-up objects.
TPDO
Transmit PDO
PDO transmitted by device when device specific event occurs (ie. timer or object
value is changed) or as a response to the RTR or after SYNC object.
VCA’

Virtual RT-CAN API
* - this abreviations are not standardised yet and they are valid only in OCERA project

8.2.1.2. Goal of the work

The goal of our team work is to develop set of software tools and real-time
modules/applications necessary for building of CANopen network solutions. We also
want to make tools to facilitate the CANopen slaves and master configuration using the
textual EDS files and the bus monitoring. By developing the CANopen real-time driver,
software slave and master we will get basic blocks to connect to working CANopen
network. Any industrial CANopen device can be plugged to this network.

To reach that goal, the next points have to be fulfilled.
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» to develop CAN API called the virtual CAN API (VCA), usable for user space threads
and also for the RT-Linux ones.

e to develop a RT-Linux CAN driver providing VCA interface to the application RT-
Linux threads and also to the user space ones.

» to develop software CANopen slave.
« to develop software CANopen master.

» to develop EDS parser tool for setting software CANopen master and slave parameters
in the convenient way.

8.2.2. Architecture

8.2.2.1. Virtual CAN API (VCA)

The virtual CAN API is the interface to connect application thread either with the CAN
hardware card or with other software layers substituting CAN bus. The application
thread can be in RT_Linux/kernel space or in the user space.

8.2.2.1.1. RT-CAN driver

RT-CAN driver resides in the RT-Linux address space as the real-time thread. It means,
that any CAN message can be handled in a deterministic time horizon.

Two interfaces are exported. First one is the set of handlers needed for device /dev/canxx.
The second one is the Virtual CAN API (VCA) designed for driver communication with
POSIX threads.

As you can see in the following figures, RT-CAN driver contains the table of buffers
for transmitted and received CAN messages. This buffers can be considered, from the
CANopen point of view, to serve as the RPDO and TPDO buffers. The COB-ID mask can
be registered to each buffer. Driver also contains the FIFO for receiving and transmitting
the CAN messages. This FIFO will be used for the SDO communication.

Next figures show possible usage of the VCA.

8.2.2.1.2. RT-Linux space VCA usage

HW, RT-Linux / kernel space

CAN driver

CAN bus

—1 RT-Linux
thread

i-» SDO FIFO >

> PDO buffers -»

RPDOI0]
RPDO[1]

| CAN card |
A

virtual CAN AP

Figure 8-8. RT-Linux space VCA usage

Real-time application thread uses directly VCA of RT-CAN driver for the communication
with a CAN bus.
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8.2.2.1.3. User space VCA usage
HW, RT-Linux / kernel space , user space
2
2 —
Z © CAN driver 3 libCAN [g] application
o 3 |spoFFo S <Z( _
= [€> <\>) < 2| (mainly for
S PDO buffers 3 % development
RPDO[0] -~ = purposes)
RPDO[1] S

Figure 8-9. User space VCA usage

In Figure 8-9 the application thread and CAN driver reside in different address spaces.
To connect kernel space and user space, we use device /dev/can xx. The applications
which will not use VCA can use directly /dev/can and the standard set of I/O operations
(read, write, ioctl). A libCAN is needed to grant the same API to user space and kernel
space threads. This approach supports portability of application threads between the
kernel and user spaces on the source code level.

8.2.2.1.4. CAN bus substituting layer with VCA

RT-Linux / kernel space , user space

CAN
substitution
layer

application

(mainly for
development
purposes)

t Idevican xC ——9
7y
v

virtual CAN API]

Figure 8-10. CAN bus substituting layer with VCA

On Figure 8-10 we can see option, that gives us an opportunity to exploit the VCA even
if no real CAN hardware is used. This solution is designed mainly for development pur-
poses and testing. The dashed line in the figure means that CAN substitution layer can
optionally operate on some other device than /dev/can (ie. Ethernet). CAN substitution
layer can be also a kind of user space application providing the VCA. This can be very
useful during development or for educational purposes.

8.2.2.2. RT-CANopen slave

8.2.2.2.1. Overview

RT-CANopen slave (only slave or CANopen slave will be used instead in rest of this
section) is the software solution based on the hardware, RT-CANopen FSM threads,
EDS file and HDS file (see Figure 8-11).

; computer

CAN slave |g] | Object
driver|S < Fsm [ < dictionary
O O
E 4—>> 2 \Rd 2 (D)
m w

' PDO handlers

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 8-11. RT-CANopen slave architecture

EDS ||| [HDS

CAN bus

<
<]
]
2
5]
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CANopen slave components description

Slave FSM: Slave FSM means set of RT-Linux threads providing PDO and SDO com-
munication via CAN driver VCA. Slave FSM also calls appropriate handler PDO com-
munication and looks into the slave’s object dictionary in case of SDO request.

PDO handlers: User written module containing handlers for reading/writing PDO
mapped object data from/to hardware.

EDS: EDS means the Electronic Data Sheet, text file describing all objects in the slave
object dictionary. EDS is parsed in order to create the slave OD.

HDS: HDS means the Handler Definition Sheet, text file describing the linking PDO’s
COB-ID with required handler in order to grant correspondence between the CANopen
object value and technological process data from the hardware. For example a ther-
mometer with the analog output connected to PC A/D convertor card needs handler
which reads temperature from the card output port and gives it to the FSM. The slave
designer have to write this handler code while the FSM source code remains always the
same, OCERA written.

A

8.2.2.2.2. User space OD slave architecture
A HW RT-Linux / kernel space , user space
S | |
‘ . | EDS || [HDS
° CAN CANopen FSM I (oD driver OD daemon I
[ dri = |
o S|, [driver = =l | [E :
7| =z € P<q - < < > ole—> OD (object dictionary)
g PDO buffers <Z,: % SDO/NMT 8 8 g CANopen object[0] 1 ¢ ¢
— reDO0] ||| [ n L CANopen object[1] 4_)| EDS parser
5 5 < & . unix
S — :

RPDOI[1]

|
|
PDO :
|
|

CAN bus

Y oo T L e !

s]lzé)ureandlers PDO handlers table|| [ _diagnostic pipes  Jf | 5| Visualisation tool
< > [«

D R . handler[0]

........... handler[1]

functions for .
communication
with other cards

A

| other hardware |
N

(user written)

Figure 8-12. User space OD slave architecture

As can be seen on figure above CAN driver sends the CAN messages to CANopen FSM
via VCA. FSM handles messages of two main categories, process data (PDO) and service
data (SDO, NMT, SFO).

The process data (PDO objects) are handled separately of the service ones. Slave FSM
exploits CAN driver message buffers as the buffers for the slave PDOs. This approach
is necessary because some CAN chips have such buffers integrated. On the other hand
this can speed up PDO object handling. Slave FSM role lies in updating this buffers after
device specific event such is timer event or process object value change. The CAN driver
sends objects from its buffers when needed (after SYNC object or as a response to RTR
object). Consequently slave FSM has to read this buffers after WPDO object arrival.
The PDO handler module is used to synchronize PDO mapped objects values and real
world data examined or set by computer hardware. Every PDO mapped object has as-
signed its reading and writing routine called PDO handler. These handlers are written
by control system developer in order to fit general FSM concept to specific hardware and
real world process.

Some of SFO are handled directly by CAN driver. Such objects are the SYNC or RTR
frames

Other objects (SDO, NMT) are sent through the SDO API to OD driver. OD driver is
responsible for all object dictionary manipulations, that means getting and setting object
values. If the PDO mapping change occurs due to SDO object processing, OD driver
informs slave FSM (via SDO API) to correct PDO handlers table to reflect PDO mapping
status in OD properly.
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OD driver communicates with OD daemon, which resides in the user space, through RT
FIFOs. OD daemon offers set of primitives to provide basic manipulations with OD like
get/set object value, add object, delete object etc. OD daemon also owns slave OD in its
memory space.

Slave OD can be loaded onto OD daemon memory by EDS parser. EDS parser is the
graphical front end to the OD daemon connected with it via Unix socket. This gives us
the opportunity to control the daemon and slave OD remotely using TCP/IP. EDS parser
is also responsible to read HDS and make appropriate changes in daemon OD and also
(via daemon SDO API) in slave FSM PDO handler table. This ensures that the proper
handlers will be called for certain PDO objects.

For diagnostic and visualization purposes the diagnostic couple of pipes exists. This
pipes can be connected to the diagnostic and monitoring application.

8.2.2.2.3. Kernel space OD slave architecture
A HW, RT-Linux / kernel space . user space
J compilation
,,,,,,, | Salbuiinieied nialiilieliiaiinf il
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° with other cards

(user written) "'

Figure 8-13. Kernel space OD slave architecture

This architecture is very similar to the previous one. The main difference lies in OD
position which is a part of OD driver module now. Every other part of slave remain the
same. OD driver module is compiled from source code generated by EDS parser from the
slave EDS, HDS and the empty OD driver template.

Benefits of the kernel space solution

» Faster SDO object processing.

» Slave does not need user space applications to work properly.

» Slave can be implemented to other POSIX compliant real-time OS like RTEMS.
 Suitable for CANopen slave realization in embedded systems.

Disadvantages of the kernel space solution

» OD is static, no objects can be added or removed.

« EDS parser can not explore OD any more. The diagnostic pipe has to be used for that
purpose and all the information must be communicated through SDO API and slave
FSM.

8.2.2.3. RT-CANopen master architecture

RT-CANopen master architecture is very similar to the user space slave one. CAN driver,
FSM, OD driver and OD daemon are the same. New blocks, PDO processor and PDO
object table are introduced and OD daemon contains OD of all slaves connected till now.
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Figure 8-14. RT-CANopen master architecture

PDO objects table is a memory mirror for transmitted and received PDOs. When a new
RPDO comes, it is written into the table and PDO processor is notified by master FSM
about this event. On the contrary, when PDO processor updates some object in the write
part of PDO table, the FSM should be notified to allow it to transmit object change across
the network.

PDO processor is an user written set of functions designated for processing objects from
read part of PDO table and generating new value of objects in write part of PDO table.
New generated write objects can be sent across the CAN, if the processor notifies master
FSM. This way the RPDO-TPDO mapping rules or control algorithms can be realized.
We expect to design PDO processor as a special PDO handler (from slave FSM point
of view). This approach gives us the opportunity to have the same FSM for slave and
master.

The master OD daemon holds one or more slave EDS. That means, that the slave OD
daemon is a special case of the master one. Thanks to this generalization we can have
also one code for the master and slave OD daemon.

When we look at the paragraphs above, we can see, that the User space CANopen slave
and the CANopen master share the same code, which can be any time configured to run
as a master or as a slave.

8.2.3. Conclusion
The RT-CANopen architecture design is based upon 4 basic elements.
The Virtual CAN API introduces either real CAN network or any substitution of that
sublayer to the application threads. Application threads can reside in user space or in
kernel/RT-Linux space.
The CANopen FSM is an kernel space state machine connected to VCA, which can han-
dle the process data (PDOs) and service data (SDO, NMT, SFO). The PDOs are handled
by PDO handler functions. The service data objects are resent through a SDO API to
OD driver for other processing and its response is sent back if necessary.
The OD driver manages a device OD. It is also able to communicate with FSM via EDS
API to provide it information about every particular object. The OD driver can be real-
ized either whole in the kernel space or partially in the user space (OD daemon).
The EDS parser serves for processing EDS and configuration files. Processed data are
loaded into OD daemon (master, user space slave). EDS parser can also generate OD
driver module source code in C (kernel slave concept).
This philosophy gives us the opportunity to reuse common elements to build the
CANopen master or slave even to define it in process of configuration.
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8.3. Verification of Distrubuted Systems

8.3.1. Problem statement

Figure 8-15 illustrates mayor topic of verification of distributed systems . Figure shows a
control system consisting of n independent processors and communication bus with gen-
eral communication protocol. Let us consider the parallel machines running applications
in the real-time operating system (RTOS) environment and further let us consider the
communication protocol behaving in Real-time manner. The crucial problem is whether
the general real-time control system (RTCS) [Buttazzo97] behaves in this manner too.
For simplicity we suppose that each processor is running only one task so there is no
problem with scheduling. And further let us suppose the communication protocol to be
deterministic (CAN, Token ring etc.).

To resolve the above mentioned problem we use a mathematics formalisms based on
Petri Nets and communicating automata theory. Especially we use the tools that have
been already used to solve similar problems (PEP tool, UPAAL etc.). The tools are able to
model concurrent systems and mainly verify it. To reach the mentioned goal we need to
create model of RTCS. The work includes the model of the communication protocol, the
model of RTOS and the model of the application. After that we create model of RTCS.
Finally we need correctly define dangerous system properties that can assign the system
to undesirable states (Deadlock, missing deadline etc.).

Such model plus properties to be verified will be passed to the verification tools, exactly
verified with included methods (SPIN algorithm, temporal logic, etc.). Due to the model
checking we can say that the system can avoid the states.
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Figure 8-15. Real time control system structure with denotation of
computation/communication times

8.3.1.1. Modelling of communication protocol

We are modelling and verifying a communicating system we have to understand the
idea of communication protocol design [Holzmann91]. At the start of the design we must
answer the next five questions:

» What service should be provided by the protocol?

¢ What assumptions are about the environment in which the protocol is executed?

¢ What vocabulary of messages should be used to implement the protocol?

» What encoding (format) of each message in the vocabulary should be used?

« What procedure rules are guarding the consistency of message exchanges?

If we satisfactorily answer the questions we can suggest concrete structure of commu-
nication protocol. During solving of the question problem we have to ask for kind of
properties of the protocol. For example type of transmission of bits over a physical cir-
cuit, error-control problem, flow-control problem and so on. It is evident that the most
complicated design problem the most difficult his resolving. Partitioning the problem to
small subproblems is reason that tell us common sense. The subproblems can be either
easy to solve or they have been solved before. One of them can be ISO/OSI model of
protocol layers, encoding of messages (e.i. CRC) or access control at physical media (i.e.
MACQ).

In OCERA project we are interested in CAN bus communication protocol due to its real-
time properties (see "Survey on RTOS"). The protocol will be modelled and it will be
included to RTCS as communication part.
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8.3.1.2. Model of RTOS

The term real-time is frequently used in many application fields. The definitions [But-
tazzo97] adopted by us is that the main difference between a real-time and non-real-
time task is that the real-time is characterised by a deadline, which is the maximum
time within which it must complete its execution. In critical applications, a result pro-
duced after the deadline is not late but wrong! RTOS is operating system in manner of
the definition.

We need RTOS model in this point of view. The model connects application part and
communication part of RTCS verified by verification tools.

8.3.1.3. Tools

To modelling and verifying the models above we use a tools that are allowed do that with
sophisticated mathematical formalisms. This tools are based on Petri Net or communi-
cating automata and they proved their qualities in research community. Our intention
is to use them in applications based on RTOS and fieldbus systems.

8.3.1.3.1. PEP tool

PEP tool (Programming Environment based on Petri nets) [Best98] [PEP] is able to
model concurrent systems and to verify them by partial model checking based on a com-
positional denotation Petri nets semantics. The language supported by the tools covers
block structuring, parallel and sequential composition, synchronous and asynchronous
communications and so on.

Modelling allows to create either graphical version of Petri net model or structured pro-
gram code of the model in B(PN)? (Basic Petri Net Programming Notation) [Best83] or
SDL (Specification and Description Language) [PEP].

PEP contains those verification components:

o FC2Tools (verification based on networks automata)
 SMV (CTL model checking)

e SPIN (linear temporal logic with optional partial order reduction)Deadlock free
checker

8.3.1.3.2. UPPAAL

UPPAAL [UPPAAL]allows modelling, simulation and verification of real-time systems.
It is appropriate for systems that can be modelled as collection of non-deterministic
processes with finite control structure and real-valued clocks, communicating through
channels or shared variables.

Typical application areas of the tool include real-time controllers and communication
protocols in particular, those where timing aspects are critical.

8.3.1.4. Remarks

The goal of our work is to use the proved tools to create some models of OCERA soft-
ware components. A future application developer will need to create only a model of his
application tasks and to define the model properties to be verified.

The essential part of the work will be an example of the RT application, its model and
properties verification.
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8.4. Communications Components Summary
Components at the High-level RTLinux

* CANopen device

O Description: OCERA RT CANopen device is a software solution based on OCERA
RT Linux and VCA capable to exchange its data with any industrial CANopen de-
vice following the CANopen communication standard. It can be configured to work
as CANopen master, CANopen slave or CANopen NMT master. Type of CANopen
device is specified by loading appropriate Electronic Data Sheet (EDS) into device
Object Dictionary (OD).

O Responsible: CTU

O Validator: UC

Components at the Application-level RTLinux

¢ Virtual CAN API (VCA)

O Description: The Virtual CAN API introduces CAN network to the application
threads. Application threads can reside in the soft real-time space or in
the hard real-time space. VCA offers minimal set of functions enabling to
open/close/configure CAN device and send/receive CAN messages.

O Responsible: CTU

O Validator: UPVLC

¢ EDS parser and CAN/CANopen analyzer

O Description: This component captures the traffic on CAN bus and analyze it on
the level of CAN massages. A CANopen device Electronic Data Sheet (EDS) can be
loaded into analyzer. In that case the analyser can send and receive SDO communi-
cation objects and show its impact in a device Object Dictionary (OD). The analyser
olso offers basic CAN open NMT functionality.

O Responsible: CTU

O Validator: UC

Components at the Application-level Linux

¢ Real Time Ethernet (ORTE) device

O Description: The Ocera Real-Time Ethernet (ORTE) is open source implementation
of RTPS communication protocol. This protocol has already been submit to IETF as
an informational RFC and has been adopted by the IDA group. RTPS is new applica-
tion layer protocol, which is built on top of standard UDP stack. This protocol stack
adds real-time capabilities to standard Ethernet technology. Publisher/subscriber
mechanism is used to share data between user applications. The component will be
a library linkable against the user applications.

O Responsible: CTU

O Validator: SSSA
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* Real Time Ethernet analyzer
O Description: This component enables to developer to capture network traffic and
to analyse it on the level of Ethernet frames, IP and UDP datagrams and RTPS
messages. Real Time Ethernet analyzer is not stand alone application, but it is a
plug-in module for Ethereal network analyzer.
O Responsible: CTU
O Validator: SSSA

Verification

¢ CAN model by timed automata /Petri Nets

O Description: This component is theoretical study offering methodology tool support
for analysis of distributed system consisting of n independent processors and deter-
ministic communication bus (CAN). In order to verify distributed RT system, appli-
cation designer needs to create model of application tasks and to interconnect this
model with communication bus model provided by this component. Finally he/she
needs to define system properties to be verified (deadlock, missed deadline etc.). The
approach is illustrated in the form of examples in PEP verification tool.

O Responsible: CTU

O Validator: CEA

¢ Verification of cooperative scheduling and interrupt handlers

O Description: This component is theoretical study offering methodology and tool
support for model checking of real-time applications running under multitasking
operating system. Theoretical background is based on timed automata by Allur and
Dill. As this approach does not allow to model pre-emption we focus on cooperative
scheduling. The cooperative scheduler under assumption performs rescheduling in
specific points given by "yield" instruction in the application processes. In the addi-
tion, interrupt service routines are considered, and their enabling/disabling is con-
trolled by interrupt server considering specified server capacity. The server capacity
has influence on the margins of the computation times in the application processes.
Such systems, used in practical real-time applications, can be modelled by timed
automata and further verified by existing model checking tools. The approach is
illustrated in the form of examples in the real-time verification tool UPPAAL.

O Responsible: CTU

O Validator: CEA
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Please, add all the terms that you think it may be useful to be here:

User space

The execution environment (characterized by restricted privileges, addres-space
protection, etc.) in which Linux applications run.

Kernel space

The execution environment of the Linux kernel (maximum privilege, no address-
space protection, etc.)

Linux module

A object file which can be dynamically linked (and unlinked) into the running Linux
kernel with the insmod command. A module can access to all the Linux kernel
functions and data structures (if they are exported).

Linux kernel

The kernel, as released by Linus Torvalds at kernel.org. The Linux kernel version
currently used in the OCERA project to is 2.4.18. At the end of the project, the
version will probably be upgraded (depending in the kernel evolution) and all the
components will be ported to the new version.

RTLinux layer

The term “RTLinux layer” is used for identifying the RTLinux exectuive and the set
of real-time tasks using it.

Linux layer

The term “Linux layer” is used for identifying all the code running in kernel space
that does not depend on RTLinux.

OCERA component

A piece of software that brings some new functionality or feature in some of the
fields: Scheduling, Quality of Service, Fault-Tolerance and Communications. De-
pending on the type of facility and its role, a component can be: a patch, a stand-
alone module, a library, or a thread.

OCERA framework

The development environment provided to the final user for building and installing
applications using OCERA components.

RTLinux executive

The Linux patch and the set of kernel modules that provide the RTOS functionality
out of the scope of Linux kernel. In the strict sense, it is not an operating system,
since it can not boot nor have many of the facilities required take full control of a
computer. RTLinux only manages the set of hardware devices required to provide
deterministic timed behaviour.
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Open RTLinux or RTLinux/Open

The version of RTLinux released by FSMLabs covered by the Open RTLinux license.
It is a small RTOS which coexists with Linux kernel and intercepts the low level
interrupts and processor control instructions which allows to have the control of the
computer at any time independently of the Linux kernel state.

OCERA Linux kernel

The Linux kernel containing existing, as well as the OCERA developed, patches to
enhance the real-time capabilities. This kernel will be considered as a Soft Real-
Time system.

RTLinux/GPL
Same than RTLinux/Open. FSMLabs use both terms interchangeably.

RTLinux/Pro
The commercial version of RTLinux developed and distributed by FSMLabs.

Task

A executing unit, which can be a normal process or a thread.

User Space Task (or User Space Application)

Task (or application) running in user space, that uses the Linux services only by
invoking system calls.

RTLinux Task (or RTLinux Application)

Task (or application) running in kernel space, that directly uses the RTLinux ser-
vices
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