
WP3 - Market Analysis

Deliverable D3.3 - New Approaches from
Academia

WP3 - Market Analysis: Deliverable D3.3 - New Approaches from Academia
by Luca Abeni, Patricia Balbastre, Adrian Matellanes, Agnes Lanusse, Ondrej Dolejs, and Zdenek
Hanzalek

Published September 2002
Copyright © 2002 by Ocera

Table of Contents
..1
1. Introduction ..1
2. A Survey of Real-Time Scheduling ..2

2.1. Introduction..2
2.2. Scheduling algorithms ...2

2.2.1. Priority-driven algorithms ...3
2.2.1.1. Fixed-priority scheduling ...3

2.2.1.1.1. Schedulability analysis ...3
2.2.1.2. Dynamic-priority scheduling..4

2.2.1.2.1. Schedulability analysis ...4
2.2.1.3. Resource sharing...4
2.2.1.4. Aperiodic scheduling...5

3. Resource Reservation ...7
3.1. Reservation Guarantees ..7
3.2. Reservation Based Scheduling ..7
3.3. State of the Art...8

4. Fault-tolerance analysis ...10
4.1. Introduction..10
4.2. Dependability: a few definitions..10

4.2.1. dependability ..10
4.2.2. Attributes of dependability ..10
4.2.3. Impairments to dependability ...11
4.2.4. Means for dependability...12

4.3. Fault-tolerance issues ..12
4.3.1. Error processing ...12
4.3.2. Fault treatment ..14

4.3.2.1. Fault diagnosis..14
4.3.2.2. Fault passivation ..14
4.3.2.3. Reconfiguration...14

4.3.3. Remarks ..14
4.3.4. Real-time and fault-tolerance ..15

4.4. Existing mechanisms study...16
4.4.1. Examples of fault-tolerant architecture..16

4.4.1.1. Delta-4 experience ..16
4.4.1.2. The MARS experience ..17

4.4.2. Fault-tolerant basic mechanisms...18
4.4.2.1. System-based fault-tolerance...19
4.4.2.2. Libraries of fault tolerant mechanisms19
4.4.2.3. Adaptive Fault Tolerance and graceful degradation.................20
4.4.2.4. Object oriented approaches and inheritance of fault-tolerance

mechanisms ...20
4.5. Conclusion ..21

5. Survey on real-time communications ...22
5.1. ISO/OSI communication model ...22

5.1.1. Physical layer ...22
5.1.2. Data link layer..22
5.1.3. Network layer ...22
5.1.4. Transport layer...23
5.1.5. Session layer ...23
5.1.6. Presentation layer ..23
5.1.7. Application layer ..23
5.1.8. Reduction of ISO/OSI model for control applications...........................23

iii

5.2. Network Topology ..23
5.2.1. Peer-to-peer...24
5.2.2. Bus...24
5.2.3. Star..24
5.2.4. Ring ...25
5.2.5. Free topology...25

5.3. Communication delay ..25
5.3.1. Peer-to-peer...25
5.3.2. Bus...25

5.4. Media Access Control (MAC)...26
5.5. Buses in RT applications ...27

5.5.1. Profibus (Process Field Bus) ..27
5.5.2. CAN (Controller Area Network) ..28
5.5.3. TTCAN (Time Triggered CAN)..29
5.5.4. Fieldbus Foundation...30
5.5.5. LON...30
5.5.6. Time-Triggered-Protocol (TTP/C) ..31
5.5.7. TCN (Train Communication Network) ...32
5.5.8. Ethernet ..32
5.5.9. Modbus TCP ...33
5.5.10. RTI (Real-Time Innovations) ...33
5.5.11. RTNet..33

5.6. Concluding remarks...33
Bibliography..35

OCERA. IST 35102 iv

List of Tables
1. Project Co-ordinator ..1
2. Participant List..1
3. Document Version..1

List of Figures
2-1. Schedulers classification ..2
3-1. Scheduling Example...8
5-1. ISO/OSI communication reference model ...22
5-2. ISO/OSI model for fieldbus systems ..23
5-3. Examples of the network topologies ..24
5-4. Communication delay on peer-to-peer topology..25
5-5. Communication delay on bus topology ..26
5-6. MAC methods ...26
5-7. Mixed MAC in Profibus ..27
5-8. Message filtering in CAN...28
5-9. Media access control in CAN ...29
5-10. Wired AND in CAN MAC...29
5-11. Communication scheduling..30
5-12. Communication scheduling..31
5-13. Media access control in TTP/C...31
5-14. TDMA rounds in TTP...32
5-15. RTI communication model ...33

v

Document presentation
Table 1. Project Co-ordinator

Organisation: UPVLC
Responsible person: Alfons Crespo

Address: Camino Vera, 14. CP: 46022, Valencia, Spain
Phone: +34 9877576

Fax: +34 9877579
E-mail: alfons@disca.upv.es

Table 2. Participant List

Role Id. Name Acronym Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore S. Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA CEA FR
CR 5 UNICONTROLS UC CZ
CR 6 MNIS MNIS FR
CR 7 VISUAL TOOLS S.A. VT E

Table 3. Document Version

Release Date Reason of change
1.0 November, First Release

1

Chapter 1. Introduction
In this document we will present the different tendencies of current Real-Time systems
research. The purpose of this analysis is to consider the maturity and feasibility of those
different tendencies and evalute if they are appropriate for their inclusion in the OCERA
project.

Of course, we will not cover all areas of current Real-Time research, but we aim to
present the most important results that are relevant for the areas covered by the
OCERA project.

This document is structured as follows, in Chapter 2, A Survey of Real-Time Scheduling
we will present current trends in task scheduling, in Chapter 3, Resource Reservation
we analyzed resource reservation, in Chapter 4, Fault-tolerance analysis we will con-
sider the future of fault-tolerance in embedded and real-time systems and finally we
will consider communications.

1

Chapter 2. A Survey of Real-Time
Scheduling

2.1. Introduction
Scheduling theory allows to know whether a real-time system is feasible (schedulable)
or not, that is, if tasks will meet its timing requirements. A task is said to be feasible
if, in the worst case, its output is delivered before the deadline. Depending on the con-
sequences of a missed deadline, real-time systems can be classified in hard and soft. In
a hard real-time system a missed deadline can cause catastrophic damage, while in a
soft real-time system deadlines can be missed without compromising the integrity of the
system. Note than in real-time systems scheduling, specially in hard real-time, the main
objective is that all tasks meet its deadlines, so an important term is the worst case, not
the average case.

There are two main steps related to real-time scheduling problem:

• Off-line feasibility analysis. Before the execution of the system, designers must know
if timing requirements will be met with a feasibility test of the system. If not, task
parameters have to be re-evaluated.

• On-line scheduling algorithm. Once the task set is feasible, the system can execute,
and the scheduling algorithm decides what task to execute.

2.2. Scheduling algorithms
A scheduler provides a policy for ordering the execution of tasks on the processor, accord-
ing to some criteria. Schedulers produce a schedule for a given set of processes. There
are several classifications of schedulers. Here are the most important:

• Optimal or non-optimal. An optimal scheduler can schedule a task set if the task set
is schedulable by some scheduler.

• Preemptive or non-preemptive. A preemptive schedul er can decide to suspend a task
(before finishing its execution) and restart it later, generally, because a higher priority
task becomes ready. Non-preemptive schedulers do not suspend tasks in this way.
Once a task has started, it can not be suspended involuntarily.

• Static or dynamic. Static schedulers calculate the execution order of tasks before run-
time. It requires knowledge of task characteristics but produces little run-time over-
head. However, it can not deal with aperiodic or non-predicted events. Some references
about this kind of schedulers can be found in [Locke92]. Dynamic schedulers, on the
contrary, make decisions during the run-time of the system. This allows to design a
more flexible system, but it means some overhead.

Priority-driven schedulers are dynamic schedulers which decide what task to execute
depending on the importance of the task, called priority. This kind of schedulers can
be also fixed or dynamic, depending on whether the task priority can vary during run-
time. Because Priority-driven schedulers have been widely used in real-time systems,
they will be described in more detail.

Figure 2-1, Schedulers classification shows a classification for real-time schedulers.

2

Chapter 2. A Survey of Real-Time Scheduling

Figure 2-1. Schedulers classification

According to [Sprunt89], the quality of a scheduling algorithm is measured wether it
meets the objectives below:

• It guarantees hard deadlines.

• It achieves a high degree of processor utilization.

• It provides fast average response times for soft tasks.

• It ensures scheduling stability for transient overloads.

2.2.1. Priority-driven algorithms

2.2.1.1. Fixed-priority scheduling
The most important scheduling algorithms in this category are Rate Monotonic (RM)
[Liu73] and Deadline Monotonic (DM) [Leung82]. The former assigns the higher prior-
ity to the task with the shortest period, assumming that periods are equal to deadlines.
The latter assigns the highest priority to the task with the shortest deadline. Both al-
gorithms are optimal. Fixed-priority scheduling has been widely studied and the most
important real-time operating systems have a fixed-priority scheduler..

2.2.1.1.1. Schedulability analysis

The first test was provided by Lui and Layland [Liu73]. It is based on the processor
utilization of the task set. The total utilization of the set is the sum of the utilizations
of all tasks in the set, which is obtained as the quotient of execution time by the period.
This utilization is compared with the utilization bound (that depends on the number of
tasks). Thus, if the utilization of the set is less or equal to the utilization bound, the
task set is schedulable. This schedulability constraint is a sufficient, but not a necessary
condition. That is, there are task sets that can be scheduled using a rate monotonic
priority algorithm, but which break the utilization bound.

A sufficient and necessary condition was developed by Lehoczky [Lehoczky89] and Aud-
sley [Audsley93] . This test is based on the worst case response time of every task. If,
in the worst case, a task finish its execution before its deadline, the task will be schedu-

OCERA. IST 35102 3

Chapter 2. A Survey of Real-Time Scheduling

lable. The worst case response time of a task occurs in the first activation. Moreover,
this test is valid for any priority assignation, and it informs not only whether the set is
feasible or not, but the task or tasks that miss its deadline.

2.2.1.2. Dynamic-priority scheduling
Within this cathegory, Earliest Deadline First (EDF) [Liu73] and Least Laxity First
(LLF) [Mok78] are the most important. Both are optimal, t if any algorithm can find a
schedule where all tasks meet their deadline then EDF can meet the deadlines.

In EDF, the highest priority task is the task with the nearest absolute deadline. The
absolute deadline is the point in time in which it arrives the deadline of the current
activation of the task.

LLF assigns priorities depending on the laxity, being the task with the lower laxity, the
highest priority task. The term laxity refers to the interval between the current time
and the deadline, minus the execution time that remains to execute.

Dynamic-priority algorithms have interesting properties when compared to
fixed-priority. They achieve high processor utilization, and they can adapt to dynamic
environments, where task parameters are unknown. On the contrary, real-time
systems community is reluctant to use dynamic-priority algorithms mainly because of
the unstability in case of overloads. It is also not possible to known what task miss its
deadline if the system is not feasible.

2.2.1.2.1. Schedulability analysis

In [Liu73] it is proved that EDF can guarantee schedulability of tasks when the proces-
sor utilization is less than 100%. In this case, deadlines have to be equal than periods,
but Dertouzos also proved that EDF is optimal when deadlines are less than periods.

Other schedulability test was presented in [Leung80]. The idea is to check if at any
instant t the amount of computation time that has been requested by all activations
(with deadline less than or equal to t) is less than or equal to t . This condition must be
checked throughout the hyperperiod P , that is, the point in which the execution order
is repeated. It is calculated as the LCM of task periods.

An improvement of this test is presented by Baruah et al in [Baruah90] and later by
Ripoll et al in [Ripoll96]. These test reduce the interval in which the condition is evalu-
ated.

Other feasibility test is based on the Initial Critical Interval [Ripoll96], that is the first
interval in which the processor is not idle. If no dealines are missed in this interval, then
the task set is feasible.

2.2.1.3. Resource sharing
In a priority scheduled system, when several tasks can access shared resources, one of
the problems is the priority inversion. This occurs when a higher priority task is blocked,
not only by the task that has the requested resource, but by other medium priority tasks.
There are several protocols that try to reduce the priority inversion problem.

The first of these protocols is the Priority Inheritance Protocol (PIP) [Sha90]. When a
task wants a resource that is locked, the task that owns (has locked) the resource in-
herits the priority (RM scheduling policy) of the task that wants it. This protocol gives
an upper bound of the number of blocks. However, this bound is high and can lead to
pessimistic worst case calculation. It also does not avoid deadlock or chained blocking.
This protocol was included in the realtime POSIX standard.

The Priority Ceiling Protocol (PCP) [Sha90] assigns a priority to each resource, this
priority is called the priority ceiling. When a task is request a resource, the requesting

OCERA. IST 35102 4

Chapter 2. A Survey of Real-Time Scheduling

task inherits the ceiling of the resource. This policy avoids both deadlocks and chained
blocking, and it ensures that a task can be blocked only once. This protocol can only be
used with fixed priority scheduling policies.

The dynamic version of PCP is the Dynamic Priority Ceiling Protocol (DPCP) [Chen90].
This algorithm was developed to be used with dynamic priority scheduler like the EDF.
With this protocol, the priority ceiling of the resources change dynamically, depending on
the priority of the active tasks that can access a resource. The main drawback of DPCP
is the high cost of re-evaluating ceilings every time a task gets active and suspended.

The Stack Resource Protocol (SRP) [Baker91] reduces the implementation cost of DPCP,
and it has the same advantages. It can be used both with fixed and dynamic priority
schedulers. The main idea of the SRP is to consider that resource ceilings are static,
that is, its value do not change during run-time. However, tasks priorities can change.
A task is allowed to start its execution only when all the resources that will require can
be granted. The blocking factor and the schedulability analysis is the same than that of
the PCP algorithm.

Another interesting protocol is the Ceiling Semaphore Protocol (CSP, also called Inmedi-
ate Priority Ceiling Protocol, IPCP) [Klein90]. When a task successfully locks a resource,
it inherits immediately the ceiling of the resource, in contrast to the ordinary PCP which
only raises process priorities when a process actually blocks a higher priority process.
CSP can only be used with fixed-priority schedulers. This protocol included in the re-
altime extensions of the POSIX standard as Priority Protect Protocol and in Ada95 as
Ceiling Locking.

2.2.1.4. Aperiodic scheduling
Since not all the tasks of a realtime system are periodic, nor have strong deadlines to
meet, the system scheduler has to provide some non-realtime scheduling facilities for
these type of tasks. Although aperiodic tasks do not have deadline to meet, they benefit
from being server as soon as possible. The common approach is to add a special task,
called aperiodic server, to the system that is the responsible to execute the aperiodic
requests. It may happen that when the server is ready there are no process to handle.
On the contrary, if a lot of events arrive at the same time, the server could not deal with
these great number of arrivals. To overcome these problems three main algorithms are
proposed, all of them based on the bandwidth preservation.

Priority exchange [Sprunt88]

When no aperiodic requests exists, periodic tasks can execute changing its priority
with the priority of the server, that is a high priorty task. Although the server’s
priority decreases, the reserved time for aperiodic tasks is maintained. The main
drawback is the unpredictability when deadlines are missed.

Deferrable server [Lehoczky87]

When the server is active but with no requests, it does not execute but it defers its
assigned computation time at its initial priority. When an aperiodic event arrives,
the server can execute. The server capacity is replenished at the start of its period.
It provides its computation time at a fixed level, but the priority exchange algorithm
allows for more aperiodic tasks to be serviced.

Sporadic server [Sprunt89]

This server combines the advantages of the previous algorithms, by varying the
points at which the computation time of the server is replenished, rather than at
the start of each server period. Therefore, the sporadic server increases the number
of aperiodic requests that can be serviced. The Sporadic Server was implemented in
RTLinux by [Shi01] and it is defined in the POSIX 1003.1 standard.

OCERA. IST 35102 5

Chapter 2. A Survey of Real-Time Scheduling

The dynamic versions of the previous three algorithms were developed by Ghazalie and
Baker [Ghazalie95] and Spuri and Buttazzo [Spuri96].

Other methods consist of using the available slack of the system to execute aperiodic
tasks. This way, in every aperiodic arrival it is calculated the available slack (without
jeopardizing periodic tasks schedulability). In the static method [Ramos93], a table with
the instants in which aperiodic events can execute is obtained off-line. The main dis-
advantage is the size of the table. In the dynamic version [Davis93], slack instants are
obtained on-line, so this may cause a considerable overload. The slack stealing methods
for dynamic-priority algorithms were proposed by Chetto and Chetto [Chetto89] with
Earliest Deadline Last algorithm (EDL), and Ripoll et al [Ripoll96].

OCERA. IST 35102 6

Chapter 3. Resource Reservation

3.1. Reservation Guarantees
The problem of integrating flexible Quality of Service (QoS) guarantees in real-time sys-
tems has been widely studied in the last years, resulting in some interesting proposals.
Probably, the most important theoretical result that emerged in this work is the idea
that in order to provide a predictable QoS to different applications running on the same
system, the OS kernel must provide temporal isolation between different applications
or tasks. Temporal isolation (also known as temporal protection), requires that the tem-
poral behaviour of a task is not influenced by the temporal behaviour of other tasks in
the system.

In other words, if a task requires “too many” resources, it is slowed down so that it
does not jeopardize the other tasks’ guarantees. This property is very important, since
it permits to provide different kind of guarantees to different tasks: for example, it is
possible to perform a hard guarantee on a critical task, while other tasks are provided a
probabilistic guarantee, or no guarantee at all.

A way to provide temporal isolation is to guarantee that every task will execute only
for a reserved amount of time in every time interval. If exec(Ti, t1, t2) is the amount
of time executed by task Ti in the interval (t1, t2), temporal protection can be ensured
by enforcing that exec(Ti, t1, t2) / (t2 - t1) = Fi for every time interval (t1, t2). However,
this requirement (that lead to the Generalized Processor Sharing - GPS - model used
by the proportional share schedulers) can over-constrain the system: a more realistic
requirement would be to enforce that the ratio exec(Ti, t1, t2) / (t2 - t1) is constant
only over well specified intervals, for example between deadlines in a real-time task.
This is the essence of the reservation guarantee. More formally, a reservation (Q, P, D)
guarantees that an amount Q of a resource will be available to the reserved task every
period P, within a relative deadline D from the beginning of the period.

If P = D, the reservation simplifies to a (Q, P) model, and the guarantee becomes: A task
Ti attached to a reservation (Q, P) is guaranteed to execute for Q execution time units
every P .

Some authors tend to distinguish between hard reservation guarantees and soft reserva-
tion guarantees: following this definition, a soft reservation guarantee ensures that the
attached task will execute for at least Q time units every P, whereas a hard reservation
guarantees that it will execute for exactly Q time units every P.

3.2. Reservation Based Scheduling
Based on classical real-time scheduling (EDF or RM priority assignment), it is possible
to implement a reservation guarantee by simply enabling a task to execute as a real-time
task (scheduled, for example, by EDF or RM) for the reserved time Q, and then blocking
it (or scheduling it in background as a non real-time task) until the next reservation
period. In this way, a task is reshaped so that it behaves like a periodic real-time task
with parameters (Q, P) and can be properly scheduled by a classical real-time scheduler.
A similar technique is used in computer networks by the traffic shapers, such as the
leaky bucket or the token bucket.

More formally,

• a reservation is characterized by two or more parameters (Q, P), or (Q, P, D), where Q
is the reserved time per period, P is the reservation period, and D is the reservation
relative deadline

• a budget, or capacity is also associated to each reservation

7

Chapter 3. Resource Reservation

• at the beginning of each reservation period (every P time units), the budget is
recharged to Q

• if present, the parameter D is used to compute the priority with which the reserved
task is scheduled

• a real-time scheduling algorithm is used to select a task with budget greather than 0
for execution. When the reserved task executes, the budget is decreased accordingly

• when the budget arrives to 0, the reservation is said to be depleted, and an appropriate
action should be taken (see below).

As previously said, when a reservation is depleted the reserved task can be blocked, or
it can be “downgraded” to be a non real-time task. By blocking the task, it is possible
to implement a hard reservation guarantee. If, on the other hand, a depleted task is
downgraded to non real-time, then a soft reservation guarantee can be implemented.

Figure 3-1. Scheduling Example
The previous figure illustrates an example of reservation-based scheduler based on

RM. Two tasks are attached to two reservations (2, 6, 6) and (3, 8, 8), and for the sake
of simplicity both the two tasks are assumed to be always backlogged. According to RM,
the first task is scheduled first; since after two time units its budget arrives to 0, the task
the at time 2 the first reservation is depleted, and the task is blocked (hard reservation).
Hence, the second task can executed until time 5, when its reservation is depleted. At
time 6, the budget of the first task is replenished, and the first task can execute until
time 8, and so on...

Note that the reservation parameters (Q, P) are different from the task parameters (for
example, from the (C, P) parameters of a periodic task), and this separation can be useful
to control the tasks’ QoS.

3.3. State of the Art
Resource Reservations have been probably proposed for the first time by Mercer and
Tokuda[Mer93-2] in Real-Time Mach to implement temporal protection in the context
of a real-time multimedia system [Mer94, Mer93]. A more rigorous formalization of the
reservation approach has been elaborated by Rajkumar and friends resulting in the
Resource Kernel (RK) approach [Raj98].

Because of their goal of providing temporal protection to integrate real-time and non
real-time activities, resource reservations have been initially implemented in “hybrid”
systems that offer support to both time sensitive and general purpose applications, such
as Real-Time Mach[Tok90], but also Rialto[Jon95, Jon97], Nemesis with its Atropos
scheduler[Les96]. Moreover, the RK approach is fairly portable and has been success-

OCERA. IST 35102 8

Chapter 3. Resource Reservation

fully applied to Linux[Oik98, Oik99, Raj00]. In addition, reservation scheduling has
been proven to be effective also in serving control tasks[Pal00, Pal], hence we believe
that reservation techniques can be successfully applied to embedded systems (as already
suggested by RED Linux[Wan99]).

Although CPU reservation were initially implemented using a fixed priority (Rate Mono-
tonic or Deadline Monotonic) scheduler, they have successively been adapted to dynamic
priorities, to obtain better CPU utilization and easy reclaiming of the unused CPU
time. Examples are the already cited Atropos scheduler, the Constant Bandwidth Server
(CBS) [Abe98], and some algorithms like GRUB[Lip00] that implement reclaiming of
unused CPU time. The problem of coping with reserve underruns or overruns is con-
ceptually similar to CPU reclaiming, and has been extensively studied at the Real-Time
Systems Laboratory of University of Illinois at Urbana Champaign[Gar98].

One of the biggest problems with the reservation approach is to correctly reserve the
proper amount of resources to achieve the specified QoS. If enough a-priori information
are provided, it is possible to perform a probabilistic guarantee[Abe99, Abe01], other-
wise some kind of on-line estimation must be used for implementing a feedback scheme
and dynamically adapt the reservation parameters[Abe99-2]. To do this, it is necessary
to do some performance monitoring, that can be either based on the knowledge of the
application structure (for example, a pipeline) or of the task model (for example, the
real-time task model[Abe99-2]).

Adaptive systems have been mainly developed for serving multimedia applications, but
we believe that they can also be applied in embedded systems used in data-intensive
contexts, where relatively high volumes of sensor data are flowing and must be processed
and analysed in real time.

OCERA. IST 35102 9

Chapter 4. Fault-tolerance analysis

4.1. Introduction
Over the last decade, the software industry has been confronted to a major revolution
in uses and habits with, firstly the use of COTS instead of ad hoc proprietary solutions,
then the use of open source operating systems and components.

In this context however, developers of real-time systems and, above all, safety-critical
systems have long been reluctant to follow these tracks. Even the introduction of soft-
ware was still questionable a few years ago in critical domains such as nuclear energy.
In these domains indeed, the dynamic behavior of systems must be perfectly controlled
at anytime, so their development is strictly controlled with specific design and coding
rules. Even the use of multi-tasking programming was prohibited in safety-critical ap-
plications. Proprietary hardware and software solutions were developed within compa-
nies. Even less demanding applications used specific solutions.

Things have changed and more and more software is embedded in systems (avionics,
automobile, transportation, industrial control, etc...). If traditional safety critical appli-
cations still use proprietary solutions, they appears to be to costly for more competitive
industry. On an other hand, open source software can be tested and debugged by a very
large community which can increase the confidence we can place into the system. There
is thus an increasing demand for open source fault-tolerant components

In this chapter we remind the main issues related to dependability of real-time sys-
tems. We then focus on fault-tolerance and existing associated mechanisms. Finally we
analyze basic requirements necessary in order to implement fault-tolerance in a system.

4.2. Dependability: a few definitions
Quite early high development costs of safety critical applications have been a major
concern and industry has been eager to find more generic solutions. While international
working groups were created such as IFIP WG10.4 named Dependable Computing and
Fault Tolerance, the European Community encouraged research activities in the domain
of formal methods, real-time systems development, and dependability issues.

Large projects such as SEDOS for formal methods and verification and validation issues,
REAKT for the development of Knowledge-based real-time systems, Delta-4, PDCS,
PDCS-2 for distributed fault-tolerant systems were initiated and brought to the com-
munity innovative solutions. If few of these results are available in the open source
world, generic patterns have been clearly analyzed and described, they are today well
known solutions that could be implemented as open source components. However, as we
will see it, dependability is more a design issue than a component issue. It is thus im-
portant to have a deep understanding of what dependability means and clearly identify
the various aspects involved.

In this section we thus introduce a few basic definitions extracted from [Laprie92].

4.2.1. dependability
J-C Laprie defines dependability as : "that property of a computer system such that
reliance can justifiably be placed on the service it delivers. The service delivered by a
system is its behavior as it is perceived by its user(s); a user is another system (physical,
human) which interacts with the former"

He groups notions related to dependability into three classes : the attributes of depend-
ability, the impairments to dependability and the means for dependability.

10

Chapter 4. Fault-tolerance analysis

4.2.2. Attributes of dependability
Several properties may be expected from a dependable system, this leads to the notion
of "attributes" of dependability. Depending on applications some of them take more or
less importance. We will consider in the following five attributes :

• reliability

• availability

• safety

• security

• maintainability

defined as follows.

availability

The property readiness of usage is insured

reliability

The property continuity of service delivery is insured

safety

The property non-occurrence of catastrophic consequences is insured

security

Security regroups attributes related to integrity, confidentiality and availability and
their associated properties not detailed here.

maintainability

The property aptitude to undergo repairs + evolutions is insured

4.2.3. Impairments to dependability
Impairments to dependability are faults, errors, failures. They are undesired but not in
principle unexpected.

failures

A system failure occurs when the delivered service deviates from fulfilling the sys-
tem function(what the system is intended for).

OCERA. IST 35102 11

Chapter 4. Fault-tolerance analysis

errors

Part of the system state which is liable to lead to subsequent failure: an error af-
fecting the service is an indication that a failure occurs or has occurred.

faults

The adjudged cause or hypothesized cause of an error is a fault.

4.2.4. Means for dependability
Dependability property can be insured by an appropriate use of a combination of the
following classes of methods

• fault prevention

• fault tolerance

• fault removal

• fault forecasting

fault prevention

How to prevent fault occurrence or introduction

fault tolerance

How to provide a service capable of fulfilling the system function in spite of faults

fault removal

How to reduce the presence (number, seriousness) of faults

fault removal

How to estimate the present number, the future incidence, and the consequences of
faults. related both to value failures and timing failures.

4.3. Fault-tolerance issues
Fault-tolerance can be achieved by the combined use of error processing and fault-
treatment [Anderson] [Avizienis].

OCERA. IST 35102 12

Chapter 4. Fault-tolerance analysis

4.3.1. Error processing
Error processing can be carried out by :

• error detection

• error diagnosis

• error recovery

error detection

error detection enables an erroneous state to be identified as such

error diagnosis

error diagnosis enables assessment of the damages caused by the detected error, or
by errors propagated before detection.

error diagnosis

error diagnosis enables assessment of the damages caused by the detected error, or
by errors propagated before detection.

error recovery

error recovery corrects or masks the effect of errors.

backward recovery

Backward recovery is used where the erroneous state transformation consists of
bringing the system back to a state already occupied prior to error occurrence; this
involves the establishment of recovery points, which are points in time during the
execution of a process for which the then current state may subsequently need to be
restored;

forward recovery

Forward recovery is used where the erroneous state transformation consists of find-
ing a new state, from which the system can operate (frequently in degraded mode)

compensation

Compensation is used where the erroneous state contains enough redundancy to
enable its transformation into error-free state.

The association into a component of its functional processing capability together with
error detection mechanisms leads to the notion of a self-checking component, either in

OCERA. IST 35102 13

Chapter 4. Fault-tolerance analysis

hardware or in software. One important benefits of the self-checking component ap-
proach is the ability to give a clear definition of error confinement areas.

When error compensation is performed in a system made up of self-checking components
partitioned into classes executing the same tasks, then state transformation simply con-
sists of switching within a class from a failed component to a non failed one.

On the other hand, compensation may be applied systematically, even in the absence
of errors, so providing fault masking (e.g. majority vote). However, this can at the
same time correspond to a redundancy decrease whose extent is not known. So, prac-
tical implementations of masking generally involve error detection, which may then be
performed after the state transformation.

As opposed to fault masking, implementing error processing via error recovery after
error detection has taken place, is generally referred to as error detection and recovery

4.3.2. Fault treatment
Fault treatment consists of several steps: fault-diagnosis, fault-passivation and when
necessary reconfiguration;

4.3.2.1. Fault diagnosis

The first step of fault treatment is fault diagnosis, which consists of determining the
causes of errors, in terms of both location and nature.

4.3.2.2. Fault passivation

Then comes the actions aimed at fulfilling the main purpose of fault-treatment: prevent-
ing the faults from being activated again, thus aimed at making them passive, i.e. fault
passivation. This is carried out by preventing the components identified as being faulty
from being invoked in further executions.

4.3.2.3. Reconfiguration

If the system is no longer capable of delivering the same service as before, then a re-
configuration may take place, which consists of modifying the system structure in order
that the non-failed components enable the delivery of an acceptable service, although de-
graded; a reconfiguration may involve some tasks to be given up, or re-assigning tasks
among non failed components.

If it is estimated that error processing could directly remove the fault, or if its likelihood
of recurring is low enough, then fault passivation need not be undertaken. As long as
fault passivation is not undertaken, the fault is regarded as a soft fault; undertaking it
implies that the fault is considered as hard or solid.

4.3.3. Remarks
The preceding definitions apply to physical faults as well as to design faults. The classes
of faults that can actually be tolerated depend on the fault hypothesis that is being
considered in the design process, and thus relies on the independence of redundancies
with respect to the process of fault creation and activation.

Example of tolerance of physical faults:

A widely used method of achieving fault-tolerance is to perform multiple computations
through multiple channels. When tolerance of physical faults is foreseen, the channels
may be identical, based on the assumption that hardware components fail indepen-
dently. Such an approach is not suitable for providing tolerance to design faults where
channels have to provide identical services through separate designs and implementa-
tions through design diversity.

OCERA. IST 35102 14

Chapter 4. Fault-tolerance analysis

An important aspect of the coordination of the activity of multiple components is that of
preventing error propagation from affecting the operation of non failed components.

This aspect becomes particularly important when a given component needs to commu-
nicate some information to other components that is private to that component.

Typical examples of such single-source information are local sensor date, the value of
a local clock, the local view of the status of other components, etc.. The consequence of
this need to communicate single source information from one component to other compo-
nents is that non-failed components must reach an agreement as to how the information
they obtain should be employed in a mutually consistent way.

Specific attention has been devoted to this problem in the field of distributed systems
(atomic broadcast, clock-synchronization, or membership protocols).

It is important to realize, however, that the inevitable presence of structural redundancy
in any fault-tolerant system implies distribution at one level or another, and that the
agreement problem therefore remains in existence.

Fault-tolerance is also a recursive concept. It is essential that the mechanisms aimed at
implementing fault-tolerance be protected against the faults which can affect them. Ex-
amples are voter replications, self-checking checkers, stable memory recovery programs
and data.

4.3.4. Real-time and fault-tolerance
Even if it has not been evocated explicitly in the preceding sections, time management
and timeliness are tow major challenging issues for fault-tolerant systems.

Real-time systems are often used for control applications with hard deadlines imposed
by the environment. Therefore the computing system has to meet real-time require-
ments. Timeliness is thus a major property to be verified by the system. Results or
actions must occur in time, if not, it is considered as a faulty behavior.

The strict observance of these deadlines complicates the solutions of many problems
that are well understood if no time constraints have to be considered.

Besides, as we have seen it a fault-tolerant system is inherently a distributed system. A
first objective is thus to maintain temporal consistency between tasks. The implementa-
tion of recovery techniques based on redundancy impose synchronization. This supposes
the existence of a consistent temporal framework.

While the timeliness requirement is a service attribute at the user/system interface,
distribution and fault-tolerance are implementation characteristics.

So it seems natural to design a real-time system on a temporal basis. This offers two
main advantages: a clear specification of temporal features of tasks, and a suitable
framework for implementing fault-tolerance mechanisms. It is the Time Triggered ap-
proach promoted by [Kopetz] (see also [David & al98]).

A time triggered architecture observes the state of the environment periodically and
initiates system activities at recurring predetermined points of the globally synchro-
nized time. It is the kind of approach generally used for safety critical systems where
determinism and predictability are required1.

The other class of approaches is called event-triggered . It is the most commonly used
for non safety-critical systems. However it is not well adapted to ensure synchronization
of activities.

In an event-triggered architecture, a system activity is initiated as an immediate con-
sequence of the occurrence of a significant event in the environment or the computer
system. There is no explicit temporal model of execution, events are handled accord-
ing to priorities. In such systems real-time constraints were generally analyzed off line

OCERA. IST 35102 15

Chapter 4. Fault-tolerance analysis

with RMA techniques and priorities were then computed. More recently a large number
of dynamic scheduling algorithms have been made available [Chetto90], there is thus
a hope that in the near future programmers will be able to directly specify their time
constraints at the task programming level.

4.4. Existing mechanisms study
We will start this analysis by the study of two famous academic realization of fault-
tolerant architectures implemented within the European Delta-4 project (Definition
and Design of an open Dependable Distributed system Architecture) and the MARS
project that has been developed at the Vienna University of Technology within the PDCS
project.

The first one Delta-4 illustrates most of basic features of fault-tolerance in a distributed
system. It’s most important characteristics is that it supports transparent redundancy
features. The second one, the MARS project is a Time-Triggered approach that pilots all
synchronization issues of the system, it gives a very good illustration of the constraints
imposed by real-time requirements especially in the case of safety-critical systems.

4.4.1. Examples of fault-tolerant architecture

4.4.1.1. Delta-4 experience

The Delta-4 project started in March 1986 and terminated in January 1992. DELTA4
architecture [Powell] was an open architecture that could employ off-the-shelf hardware
to provide fault-tolerance. Fault-tolerance was achieved by the replication of code and
data on different computational nodes interconnected by a local area network. Off-the-
shelf hardware is assumed to be either fail-silent or fail-uncontrolled. In order to face
the risk of saturation of channel in case a fail-uncontrolled node connected to multiple
channels would fail; the Delta-4 architecture follows a hybrid approach were each node
is split into two subsystems:

• An off-the-shelf computation component called a host that may be fail-uncontrolled

• A communication component called network attachment controller (NAC) that is as-
sumed to be fail-silent.

The NACs of each station are interconnected by a standard LAN, they are the only
specialized hardware components in Delta-4. Other Delat4 functionalities are handled
by system software on top of either the hosts local operating systems or the NACs real-
time kernels.

The system software can be split into three main components:

• A host resident infrastructure for supporting distributed applications;

• A computation and communication administration system (running partly on the
hosts and partly on the NACS)

• A multi-point communication protocol stack (executing on the NACs).

An Application Support Environment (Deltase) was developed in order to facilitate the
use of heterogeneous languages. A runtime environment made transparent the under-
lying Operating System.

The administration system carries out three basic tasks:

OCERA. IST 35102 16

Chapter 4. Fault-tolerance analysis

• Configuration management, which provides support for planning and integration of
redundancy and distribution;

• Performance management which includes system status monitoring by event count-
ing and polling;

• Fault management, including automatic fault treatment and support for maintenance
interventions.

The multipoint communication protocol stack provides two major features:

• The provision of multi-point associations for connection-oriented communication be-
tween groups of communication end-points;

• The ability to coordinate communication to and from replicated communication end-
points.

The core of the Delta-4 group communication mechanisms is the atomic multicast pro-
tocol(a two phase accept protocol). It ensures unanimity (frames are either delivered to
all addressed gates on non faulty nodes or to none) and the that frames are delivered to
all addressed gates in a consistent order. Messages are never lost and they are delivered
in bounded time. Remote crashes can be reliably detected by time-outs on response to
protocol frames.

The heart of Delta-4 fault-tolerant mechanisms is the inter-replica protocol. It coordi-
nates communication to and from endpoints that are replicated on different nodes such
that replication is hidden from the sources and the destination of the messages. This
involves the transparent delivery of messages to all endpoint replicas but also arbitra-
tion between send events across the set of endpoint replicas such that destination only
receive a single message.

Fault-tolerance

Capsules, the runtime representations of Deltase objects are the units of replication for
achieving fault-tolerance. They may be replicated independently so that fault-tolerance
can be specified service by service.

Error processing

Three complementary techniques have been investigated :

• Active replication

• Passive replication

• Semi-active replication

Fault treatment

Policies have been defined to properly handle fault diagnosis, fault passivation and sys-
tem reconfiguration. This latter entails the allocation and initialization of new replicas
to replace failed ones and thereby restore the level of redundancy so that further faults
can be tolerated.

This work had been followed by the GUARDS project that investigated Real-time de-
pendable systems and ended in 1999 [Powell].

OCERA. IST 35102 17

Chapter 4. Fault-tolerance analysis

4.4.1.2. The MARS experience

An other well known implementation of fault-tolerant mechanisms concerns the MARS
project that has been developed at the Vienna University of Technology. MARS system
supported deterministic timing behavior.

The time-triggered approach has been applied to the MARS architecture a project de-
veloped at the Technical University of Vienna. MARS was a fault-tolerant distributed
real-time system build of a number of autonomous, fail-silent processing nodes which
were interconnected by a redundant real-time network. In MARS all active and pas-
sive components were replicated in order to prevent a single failure from crashing the
system. Moreover processing activities are replicated at the node level.

Timeliness

Synchronization followed strict time trigger policy. Every relevant action of the system
was scheduled before operation. The actions to schedule included:

• The point in time when a node is allowed to send a message (as a consequence MARS
used a TDMA protocol for communication).

• The start times and deadlines for all processes

• The point in time when sensors values are read and actuator values are written

• The actions for recovery and reintegration of failed nodes (these actions must be
included into the schedule in order to prevent a properly detected fault from affecting
the correct timing behavior of the system.

In order to insure timeliness , the system designer had to carefully investigate the tim-
ing behavior of all parts of the system. Time bounds for all processing and communica-
tion activities had to be known.

• The maximum execution time of each process, considering the architecture and speed
of the processor, pipelining, caching, and memory wait states

• The maximum time of communication

• The operating system overhead

• The overhead of hardware activities which influence the timing behavior of the node

Fault-tolerance

The fault-tolerance of MARS was based on a two layered mechanism. The bottom layer
(node layer) was responsible for error detection and error confinement. The task of fail-
silent nodes was two detect internal errors and to prevent propagation of the errors by
stopping to produce data. This way, the top layer didn’t had to care about erroneous
data, but had to provide enough redundancy to tolerate crash failures of parts of the
system. The major functions of the top layer were handling of redundant data and re-
configuration of the system in case of node failure.

A micro-kernel was developed and implemented on each node. Its functionality was re-
duced to a minimum, the execution of context switches, and maintenance of the global
time base. Context switches were performed using tables created by the pre-runtime
scheduler. Management of the global time-base was done by the clock interrupt handler.

4.4.2. Fault-tolerant basic mechanisms
Well known mechanisms are being used to implement fault-tolerance in distributed
systems. However, very few existing operating systems handle transparently

OCERA. IST 35102 18

Chapter 4. Fault-tolerance analysis

fault-tolerance. Most of time specialized company provide proprietary solutions based
on specific hardware and associated middleware. We cite in this section some of the
most common techniques used.

The implementation of fault-tolerant distributed applications largely depends on the
computing environment available. The ideal case is when the underlying operating sys-
tem provides fully transparent error processing protocols such as in Delta-4 and in
MARS.

When the operating system doesn’t provide such facilities, the application programmer
is forced to integrate in the functional part of the application statements to initialize,
invoke appropriate non-functional mechanisms for error processing. This can be done
using library calls to pre-defined mechanisms embedded in a specific environment such
as in Isis [[Birman]].

Other approaches, used by systems like Avalon/C++ [[Detlefs]] and Arjuna [[Arjuna]],
consists of using properties of object-oriented languages, such as inheritance, to make
objects recoverable. The object model seems appropriate for introducing fault-tolerance
into applications, but there are significant problems with such an approach for imple-
menting various replication techniques in distributed applications. Promising solutions
rely on the use of reflection. system-based fault-tolerance.

4.4.2.1. System-based fault-tolerance

In this approach, the underlying runtime system may offer a set of transparent error
processing protocols, for instance based on replication as in Delta-4 [[Powell93]]. Delta-
4 provides several replication strategies : passive, semi-active and active replication.

Passive replication is a technique in which only one of the replicas (the primary replica)
processes, the input messages and provides output messages (in the absence of faults),
the other replicas (the standby replicas) do not process input messages and do not pro-
duce output messages; their internal states are however regularly updated by means of
checkpoints from the primary replica.

Semi-active replication can be viewed as a hybrid of both active and passive replication;
only one of the replicas (the leader replica) processes the input messages and provides
output messages (in the absence of faults), the other replicas (the follower replicas) do
not produce output messages; their internal state is updated either by direct processing
of input messages or, where appropriate, by means of modifications or mini-checkpoints
form the leader replica.

Active replication is a technique in which all replicas process all input messages concur-
rently so that their internal states are closely synchronized (in the absence of faults),
outputs can be taken from any replica; several inter-replica protocols are available to
synchronize replicas.

These techniques however required specific hardware and advanced specialized proto-
cols to insure the expected properties from the system.

4.4.2.2. Libraries of fault tolerant mechanisms

This approach is based on the use of pre-defined library functions and basic primitives. A
good example is Isis [[Birman]]. This generic software construct enables the computation
to be organised using groups of processes (tasks) according to various objectives: parallel
computation, partitioned passive replication, the updated states of the primary copy
(coordinator) must be sent to the standby copies (cohorts). When a coordinator fails a
new coordinator is elected and loaded with the current state of the computation A new
member can be inserted in the group of replicas and its state initialized using a state
transfer primitive. All this must be taken into account when programming the replicas.
Different check-pointing strategies are left open to the application programmer.

OCERA. IST 35102 19

Chapter 4. Fault-tolerance analysis

In this approach, error processing and application programming are done at the same
level using specific programming constructs. This means that specific function calls
(state transfer, synchronization, sending results, voting) must be introduced into the
application programs at appropriate points, for instance for sending updates (passive
replication), token management (semi-active replication), or decision routines (active
replication). The advantage of this approach is that application programmer can tailor
and optimize his own fault-tolerant mechanisms. The main drawback is that functional
and non functional programming are mixed.

4.4.2.3. Adaptive Fault Tolerance and graceful degradation

More recent work attempts to provide more flexibility to systems than traditional stat-
ically predefined systems such as MARS. Adaptive Fault Tolerance is one of them. De-
pending on the dynamic situation more or less levels of redundancy may be necessary
over a system and the repartition of these resources between critical and less critical
tasks may change. The idea is to relax constraints on less critical tasks in demanding
situations. This leads to the use of dynamic real-time scheduling algorithms that must
not only meet timing but also fault tolerance requirements. This can be very efficient
when combined with a reflexive real-time OS were reflexive information encompasses
importance, deadline, precedence constraints, fault-tolerance requirements. Such an ap-
proach has been experimented at U Mass at Amherst[Gonzalez & al.]. Several strategies
of fault tolerance techniques considered as alternatives have been used Triple Modular
Redundancy (TMR), Primary /Backup (PB), and Primary /Exception (PE). When a task
arrive in the system, the scheduler uses information about the task has an alternative
list, then the scheduler attempts to build a feasible schedule using the first fault tolerant
alternative on the list. If no guarantee can be provided using the alternative, the next
alternative is selected and the scheduler makes an other attempt. These experiments
have been done with the Spring system. They take benefit of the deep experience in the
laboratory in Scheduling and Real-time systems [Ramamritham 94].

Other techniques are used to provide graceful degradation, where alternatives do not
concern alternative fault-tolerance mechanisms associated to tasks, but alternative
tasks behaviors that can be triggered when faults are detected or when the system is
overcharged. Such an approach has been tested by [Delacroix & al] , her approach uses
an EDF like algorithm. Tasks are described by time constraints, importance and a
set of possible modes. Four modes are defined for each task: nominal mode, deferred
mode, revocation mode and temporal fault mode. A specific module above the scheduler
detects surcharge situations and possibly stop tasks depending on their importance
and decides for other tasks if they must be maintained in their normal mode or in a
degraded one. The ROSE project at Carnegie Mellon has also the goal of implementing
gracefully degraded modes [Nace & al.].

Those two classes of approaches have in common a declarative way of describing con-
straints attached to tasks. They both need a reflexive approach (knowledge on the state
of the system and on importance of tasks as well as strategies for relaxing constraints)
and above all they require advanced scheduling techniques.

4.4.2.4. Object oriented approaches and inheritance of fault-tolerance
mechanisms

In this paper we mostly spoke about real-time systems developed as a set of classical
tasks. But it is important to notice that object-oriented approaches to real-time have
made important progress during the last decade and design tools are now supporting
implementation of active objects (animated by one or more threads) . The object concept
is very interesting for fault-tolerance since it represents a unit of encapsulation to which
generic methods can be added to support fault-tolerance mechanisms as for example
transaction mechanisms within active object models. It is also possible to design specific

OCERA. IST 35102 20

Chapter 4. Fault-tolerance analysis

software components such as a captor that transparently handled data acquisition and
provide high level service to the user application

Moreover the inheritance mechanisms of objects permit the implementation of such ser-
vices in a very flexible way. European projects such as WOODDES or EAST are good
examples of recent advances in object-oriented real-time programming. An other reason
to have a look at it is that CORBA developments are object-oriented.

4.5. Conclusion
As a conclusion we can say that while fault-tolerance basic mechanisms are well known,
there is no generic of the shelf component that can be used. Replication for example
usually relies on specific hardware components associated to particular protocols.

While traditional safety-critical fault-tolerant systems were build upon a static anal-
ysis of temporal constraints. More recent approaches try to introduce more flexibility
through the use of dynamic scheduling approaches taking into account importance cri-
teria and multi-mode functioning.

This make obvious the deep imbrication of fault-tolerance and scheduling and communi-
cation issues, there thus be a necessity to provide not only seperate services but a global
framework with well defined roles for each component.

Design issues constitutes also a very important step to build dependable systems.
Adapted design environments can help specifying the systems characteristics and
evaluating its feasibility or the adequate dimensioning for the system hardware.

We signaled also the growing importance of object oriented development in the real-
time community. UML state charts offer a way of specifying active objects behaviors
and are thus a good design support to introduce constraints over tasks (actually threads
associated to objects.

Notes
1. Other approaches based on synchronous languages have been proposed for the de-

velopment of safety critical systems (SIGNAL, LUSTRE, ESTEREL).

OCERA. IST 35102 21

Chapter 5. Survey on real-time
communications

5.1. ISO/OSI communication model
The communication model was standardised by ISO (International Organization for
Standardization) as ISO/OSI communication model (IS 7498) in 1984. Problems linked
with communications have been divided into standard seven layers. Each layer solves
a given group of basic problems interfaced via services with other layers. Each layer is
defined by protocol and service. The protocol specifies rules and conventions of dialog
among hosts on given layer. The services cover specification of interface between neigh-
bour layers in one host.

Figure 5-1. ISO/OSI communication reference model

5.1.1. Physical layer
Physical layer specifies electrical, mechanical and logical interface between devices. The
communication media are:

• wire

• optical link

• wireless - different frequence bands

The voltage coding, modulation and connectors are specified by physical layer.

5.1.2. Data link layer
Data link layer controls media access (MAC-Media Access Control), data transfer, error
detection and packet retransmission. The constructed data link packet is composed of
header, data (payload) and trailer.

22

Chapter 5. Survey on real-time communications

5.1.3. Network layer
Network layer defines roots in multiple networks, collects function to interconnect differ-
ent characteristics of different subnetworks. The higher layer are independent of root-
ing.

5.1.4. Transport layer
Transport layer is between the three upper layers (oriented to data processing) and
the three lower layers (oriented to communication). The long messages are divided into
packets on the sender side and they are collected on the receiver side.

5.1.5. Session layer
Session layer ensures data exchange between applications e.g. synchronization. A ses-
sion exists all the time, when the application allocates resources. When some data are
prepared to be send, the transport layer is contacted and communication link is opened.

5.1.6. Presentation layer
Presentation layer is responsible for data representation (coding),
compression-decompression and protection. Data representation can be different at
different devices e.g. location of most significant bit in byte. Data protection means its
encryptions, integrity etc.

5.1.7. Application layer
Application layer specifies data format between application program and network.

5.1.8. Reduction of ISO/OSI model for control applications
Most of the fieldbuses use only 1st,2nd and 7th layer for shorter time response. In many
control applications there is not required for example to interconnect different subnet-
works.

Figure 5-2. ISO/OSI model for fieldbus systems

OCERA. IST 35102 23

Chapter 5. Survey on real-time communications

5.2. Network Topology
The topology characterizes the connection between the nodes. The basic topology struc-
tures depicted in Figure 5-3, Examples of the network topologies are:

• peer-to-peer

• bus

• star

• ring

• free topology

The network topology influences important network parameters as:

• connectivity

• diameter

• reconfigurability

• reliability

Figure 5-3. Examples of the network topologies

5.2.1. Peer-to-peer
Two devices are connected together and data are exchanged only between those two de-
vices. It is the simplest communication topology sometimes called point-to-point topol-
ogy.

5.2.2. Bus
All devices are connected to one line (multipoint connection). The extensibility is very
simple and the cost of this topology is smaller than the cost of other ones. The crucial
problem here is the access to the media, (description different access methods is given
further). This topology is mainly used in fieldbus systems.

OCERA. IST 35102 24

Chapter 5. Survey on real-time communications

5.2.3. Star
All devices are connected to the central unit, the type of connection is peer-to-peer. The
problems are extensibility, higher cost and the situation, when the central unit fails.

5.2.4. Ring
The devices are connected in the ring in point-to-point manner. The data are usually
regenerated in the device and send to the next device. The flow control is simple, but
the extensibility is difficult. Another problem is the fault of one device, which collapses
whole network.

5.2.5. Free topology
Free connections among devices are possible, as a consequence the extensibility is very
simple. The reliability can be improved by adding another devices in the network.

5.3. Communication delay
For real-Time applications the response time is a crucial problem. Therefore, it is needed
to analyse whole system in order to know, where the delays arise. This chapter focuses
on the communication delays (other delays are given by the operating system and the
application tasks). The communication delay depends on topology of the network too.
We focus on the delay model of typical topologies used in automation - the peer-to-peer
topology and the bus topology.

5.3.1. Peer-to-peer
The complex communication process is shown in Figure 5-4, Communication delay on
peer-to-peer topology. The transmission delay is calculated as time difference between
the beginning of transmission of the first bit and the end of transmission of the last bit
of the packet. The propagation delay depends on parameters such as the type of physical
medium, the distance between the source and the destination, and baudrate. After the
entire packet has completed reception at the destination, the number of bit errors that
occurred during communication are allocated. This result is generally dependent on a
bit-error probability which reflects the quality of the link, and the packet length. De-
pending on error allocation (how many errors occurred), the error correction procedure
is executed.

Figure 5-4. Communication delay on peer-to-peer topology

OCERA. IST 35102 25

Chapter 5. Survey on real-time communications

5.3.2. Bus
In the bus topology the collision delay is added, because the media is shared by all de-
vices on the bus, and only one of them can transmit at a given time. This delay has the
most importance to the total communication delay. Up to the MAC method it is resolved,
which device wins the media for its transmission. If the media access is deterministic,
the calculation of the collision delay is relatively easy. But the analysis tends to be in-
feasible when the media access is non- deterministic (e.g. CSMA/CD).

Figure 5-5. Communication delay on bus topology

5.4. Media Access Control (MAC)
The media access control on the bus topology is important as the communication media
is shared by devices, and only one of them can transmit at a given time. Figure 5-6,
MAC methods divides this problem into various cathegories. The first division is up to
the synchronicity of the media access. The synchronous access means, that the time is
divided into slots and each of devices have predefined slot, when it can transmit to the
media. No time division is made by asynchronous access. This control method can be fur-
ther divided into random and deterministic access methods. The random access method
is typical for even-driven application, where the event activates the transmitter. Two
main methods belong to the random access, the carrier sense with collision detection
(e.g. CSMA/CD) and the carrier sense with collision resolution (e.g. CSMA/DCR - deter-
ministic resolution by priority). The deterministic access method can be divided in the
centralized and decentralized control methods. The typical centralized control method
is Master-Slave communication, which is used in many fieldbus systems. The decentral-
ized control method is represented by token passing, where one token circulates in a
logical ring and when the device gets the token, then it makes its own transmission and
passes the token to the next device in the ring.

OCERA. IST 35102 26

Chapter 5. Survey on real-time communications

Figure 5-6. MAC methods

5.5. Buses in RT applications
The busses used in automation are discussed in this chapter. The main points of view
are the topology and the media access control (MAC). This brief overview is concerned
to the following busses: Profibus, CAN (CANopen), Fieldbus Foundation, LON Time-
Triggered-Protocol (TTP), Train Communication Network (TCN) , Ethernet - Modbus
TCP, Ethernet - RTI and Ethernet - RTNet.

5.5.1. Profibus (Process Field Bus)
PROFIBUS is a consistent, open, digital communication system with a wide range of
applications, particularly in the fields of factory and process automation. PROFIBUS
communication is anchored in the international standards IEC 61158 and IEC 61784.
Profibus is a bus (line) from the topology point of view. The devices are divided into two
groups: Masters and Slaves see Figure 5-7, Mixed MAC in Profibus. The Masters pass
the token in a logical ring. The Master, which owns the token, can communicate with
its Slaves. The Master requests step by step the Slaves (output data), which has been
configured by this Master, and Slaves give response (input data) to the Master. It can be
seen, that this MAC mechanism between Masters belongs to the decentralized control
and between Master and Slaves to the centralized control on the other hand (according
to Figure 5-7, Mixed MAC in Profibus).

OCERA. IST 35102 27

Chapter 5. Survey on real-time communications

Figure 5-7. Mixed MAC in Profibus

Profibus specifies layer 1,2 and 7 according to the ISO/OSI model described above. Some
profiles are available for special application (process control, motion control, safety ap-
plication etc.).

5.5.2. CAN (Controller Area Network)
The CAN protocol is an international standard defined in the ISO 11898. The devices are
connected parallel to the wire, it is bus topology. CAN is based on the so- called broadcast
communication mechanism. This broadcast communication is achieved by using a mes-
sage oriented transmission protocol. Thus not defining stations and station addresses, it
only defines message. The CAN protocol is producer/consumer oriented (see Figure 5-8,
Message filtering in CAN). Station 2 produces message and filtering on the consumer
site allowing accept (station 1 and 4) or discard message (station 3). These messages are
identified by a message identifier. Such a message identifier has to be unique within the
whole network and it defines not only the content but also the priority of the message.

Figure 5-8. Message filtering in CAN

OCERA. IST 35102 28

Chapter 5. Survey on real-time communications

The MAC is made by priority corresponding to the message identifier. The identifier with
the lowest binary number has the highest priority. The example of the bus arbitration
is given in Figure 5-9, Media access control in CAN. The node 1 and 2 have higher
identifier (smaller priority, i.e. the identifier starts with more logical ones) than node 3
(the identifier starts with more logical zeros), therefore the node 3 wins arbitration and
can send data.

Figure 5-9. Media access control in CAN

Figure 5-10, Wired AND in CAN MAC is illustrative representation of the hardware
implementation of CAN arbitration. If the transistor is open, the dominant state at the
bus is set. In accordance with the "wired and" mechanism, by which the dominant state
overwrites the recessive state.

Figure 5-10. Wired AND in CAN MAC

CAN specifies the 1st and the 2nd layer according to the ISO/OSI model described above.
The time analysis of CAN is given in [1]. In RT applications there are many systems,
using CAN. Those fieldbus systems usually implement their own 7th layer. As the ex-
ample of this fieldbus systems we can mention: CANopen, DeviceNet, SDS and TTCAN
(Time-Triggered CAN).

5.5.3. TTCAN (Time Triggered CAN)
TTCAN is based on a time triggered and periodic communication which is timed by a
master’s reference message. The time is divided into windows (slots). The windows can
be used for periodic messages (called an exclusive time window) and other windows for
sporadic message (called an arbitrating time window). Prior to the communication it is

OCERA. IST 35102 29

Chapter 5. Survey on real-time communications

decided off-line which message must be send at which exclusive window. Any message
that is sent has the CAN data format and is a standard CAN message.

5.5.4. Fieldbus Foundation
Fieldbsus Foundation (FF) is based on IEC 1158-2, process oriented and intrinsically
safe physical layer. The topology is bus, which transfer data as well as power. Only three
types of devices are connected to the bus, the Basic Devices, Link Master and Bridges,
which is used for interconnection of individual devices. The Link Master has a list of
transition times for all data buffers in all devices that need to be cyclically transmitted.
When it is time for device to send a buffer, the LAS issues a Compel Data (CD) message
to the device. Upon receipt of the CD message, the device broadcasts or publishes the
data in the buffer to all device on the bus. Any device that is configured to receive the
data is called a subscriber.

Figure 5-11. Communication scheduling

This model is called publisher/subscriber. All of the devices on the fieldbus are given
a chance to send unscheduled messages between transmission of scheduled messages.
In the other words the communication time is divided into two section. The first is for
scheduled (deterministic) data - cyclic communication and the second is for unscheduled
- acyclic data.

5.5.5. LON
LonWorks is one of the most important fieldbus standards in building automation. It was
developed by Echelon® and in addition to many others, LonWorks uses wide variety of
physical layers including power lines. Free topology is used in LON network. LonTalk,
which is a communication protocol of LonWorks, uses non-deterministic media access
method (MAC) called predictive p-persistent CSMA (Carrier Sense Multiple Access).
Despite of non-deterministic MAC method LonWorks is used in soft real-time applica-
tions with moderate traffic. The advantage of the protocol is that it keeps the collision
ratio independent of the channel utilisation and it uses technique for partial predication
of the channel backlog. Like CSMA, Predictive p-persistent CSMA senses the medium
before transmitting. A node attempting to transmit monitors the state of the channel
(see Figure 5-12, Communication scheduling), and when it detects no transmission dur-
ing β

1
period, it asserts the channel is idle. Then it generates the random delay ∆

T
before

transmission. If the channel is idle when the delay ∆
T

expires, the node transmits; oth-
erwise, Link layer receives an incoming packet and the algorithm repeats. Predictive
p-persistent CSMA generates the delay ∆

T
as an integer number of discrete time slots of

OCERA. IST 35102 30

Chapter 5. Survey on real-time communications

width β
2
. The delay ∆

T
is generated from the randomising window (0..W_Base), which

changes with respect to actual and predicated traffic on the channel. In other words
W_Base is defined as product of BL (an integer estimate of the current channel backlog)
and a basic window size. If there is no traffic on the channel or if the traffic is very low,
then BL is equal to 1. With growing utilisation of the channel the BL grows and the ran-
domising window (0..W_Base) enlarges. β

1
and β

2
are time constants given by Physical

layer parameters and respect propagation delay defined by the media length, detection
and turn-round delay within MAC sublayer. In Figure 5-12, Communication scheduling
∆

T_
Mean is given as W_Base/2 because variable ∆

T
is uniformly distributed.

Figure 5-12. Communication scheduling

The MAC algorithm predictability is based on backlog estimation. Each node maintains
an estimate of the current channel backlog BL, which is incremented as a result of the
packet transmission/reception and decremented periodically every packet cycle. Each
packet of MAC sublayer contains a variable representing prediction of the traffic arising
as a result of processing this packet (the variable represents the number of messages
that the packet shall generate upon reception). By adjusting the size of the randomis-
ing window as a function of the predicated load, the algorithm keeps the collision ratio
constant and independent of the load.

5.5.6. Time-Triggered-Protocol (TTP/C)
TTP/C is a time-triggered communication protocol for safety-critical distributed real-
time control systems. Its intended application domains are automotive control systems,
aircraft control systems, industrial and power plants, or air-traffic control. This system
is fault- tolerant, each node is connected to the bus with two replicated channels (Chan-
nel 0 and Channel 1). The bus, star or multi-star topology can be used. Access to the
transmission medium is controlled by a static TDMA scheme (Time Division Multiple
Access). Each node get predefined time to send messages, called slot. The scheduling
scheme is made offline, all needed information about distributed system is known be-
fore start-up. All TDMA rounds are time identical. However, the length and contents of
the messages (the application data) may differ.

OCERA. IST 35102 31

Chapter 5. Survey on real-time communications

Figure 5-13. Media access control in TTP/C

Figure 5-12, Communication scheduling, shows that the slot can be used by different
nodes in different TDMA rounds. In this figure a cluster cycle consists of four TDMA
rounds. The last slot is shared by the multiplexed nodes 3,4 and 5, with node 3 sending
in the TDMA round 0 and 2, node 4 sending in TDMA round 1 and node 5 in TDMA
round 3.

Figure 5-14. TDMA rounds in TTP

5.5.7. TCN (Train Communication Network)
Train Communication Network IEC 61375-1 is designed for train applications. The MAC
control is made by TDMA and the basic period is divided into two phase, the periodic
phase and sporadic phase. The periodic phase is controlled by the Master. Slaves cannot
send spontaneously, even during the sporadic phase. Polled slave responses by broadcast
frame.

5.5.8. Ethernet
Standard Ethernet networks use CSMA/CD (Carrier Sense Multiple Access / Collision
Detection). This standard enables devices to detect a collision. After detecting a colli-
sion, the device waits a random delay time form a given interval and then it attempts
to re-transmit the message. If the device detects a new collision again, the interval is
doubled, new random delay is generated and the device tries to re-transmit the message.
This is known as exponential back off. After 10 attempts the interval is no more dou-
bled, and after the 16th attempt the message is rejected. More and more resources are
investigated to exploit Ethernet in automation in the last years. Therefore, Ethernet

OCERA. IST 35102 32

Chapter 5. Survey on real-time communications

technology infiltrates into automation area, where the fieldbuses are dominant today.
Further are described communication protocols based on Ethernet: Modbus TCP and
RTI.

5.5.9. Modbus TCP
The Modbus TCP was one of the first fieldbuses, taking advantage of Ethernet. The
simplicity of standard Modbus allows the packing the Modbus frame into standard TCP
segment. Then the data are sent through IP and Ethernet layer. A receiver decomposes
the original data from the TCP packet. The advantage is very simple implementation,
but on the other hand this protocol does not guarantee the delivery time due to its non-
deterministic behaviour.

5.5.10. RTI (Real-Time Innovations)
The RTI uses standard IP stack for communication. It is based on the
Publisher-Subscriber scheme. For time critical task, the NDDS (Network Data
Delivery Service) is used. The NDDS is network middleware for distributed real-time
applications that requires the fast and deterministic delivery of control and streaming
data. NDDS uses UDP/IP and provides an API with publisher-subscriber and
client-server services that eliminate socket programming. The publisher-subscriber
model is extended to give subscribers flow control, application-transparent
fault-tolerance, and determinism on a per subscription basis. The number of messages
send to the network is limited, so the network throughput is guaranteed and NDDS is
able to guarantee the probability of delivering the message before a given deadline.
For non real-time applications the TCP protocol is used (see Figure 5-15, RTI
communication model).

Figure 5-15. RTI communication model

5.5.11. RTNet
The RTNet uses some changes in IP and UDP stack for better real-time behaviour. The
disadvantage is that the implementation is made only for RTLinux ver. 2.3 and RTAI
ver. 1.3.

OCERA. IST 35102 33

Chapter 5. Survey on real-time communications

5.6. Concluding remarks
In general we can say that time-triggered systems are more robust and testable than
event-triggered systems, but they require more planning and are less flexible (for more
details see TTP-A Protocol for Fault-Tolerant Real Time Systems). Communication sys-
tems based on priority access to the media are probably a good candidate for reliable RT
applications based on RT OS. In order to ensure a response time of distributed applica-
tions it is needed to verify them by suitable verification tools (unfortunately a classical
verification approach by timed automata does not support preemption).

On the other hand CSMA/CD methods are non-deterministic and it is difficult to im-
plement priority access to the media in this case. As a consequence can be used as best
effort approach and they are not suited for hard real-time applications.

For further detailed information about fieldbus systems see reference list at
http://ourworld.cs.com/rahulsebos/.

OCERA. IST 35102 34

Bibliography

Scheduling
[Audsley93] N. Audsley, A. Burns, K. Tindell, M. Richardson, and A. Wellings, Software

Engineering Journal, 5, 284-292, Applying a new scheduling theory to static priority
preemptive scheduling.

[Baruah90] S. Baruah, A. Mok, and L. Rosier, 1990, IEEE Real-Time Systems Sympo-
sium, 182-190, Preemptively scheduling hard real-time sporadic tasks on one pro-
cessor.

[Chen90] M. Chen and K. Lin, 1990, The Journal of real-time systems, 325-346, Dynamic
Priority Ceilings: A concurrency control protocol for Real-Time Systems.

[Chetto89] H. Chetto and M. Chetto, 1998, IEEE Transactions on Software Engineering,
15, 1261-1269, Some results of the Earliest Deadline Scheduling Algorithm.

[Davis93] R. Davis, K. Tindell, and A. Burns, 1993, IEEE Real-Time Systems Sympo-
sium, 222-231, Scheduling slack time in fixed priority preemptive systems.

[Ghazalie95] T. Ghazalie and T.P. Baker, 1995, The Journal of real-time systems, 31-67,
Aperiodic servers in a deadline scheduling environment.

[Lehoczky89] J. Lehoczky, L. Sha, and Y. Ding, 1989, IEEE Real-Time Systems Sym-
posium, 166-171, The rate monotonic scheduling algorithm: Exact characterization
and average case behaviour.

[Lehoczky87] J.P. Lehoczky, L. Sha, and K. Strossnider, 1987, IEEE Real-Time Systems
Symposium, 261-270, Enhanced aperiodic responsiveness in hard real-time envi-
ronments.

[Mok78] A. Mok and M. Dertouzos, 1978, 7th Texas Conference on Computing Systems,
Multiprocessor scheduling in a hard real-time environment.

[Sha90] L. Sha, R. Rajkumar, and J.P. Lehoczky, 1990, IEEE Trans. on Computers, 39,
1175-1185, Priority Inheritance Protocols: An Approach to Real-Time Synchronisa-
tion.

[Baker91] T.P. Baker, 1991, The Journal of Real-Time Systems, 3, 67-100, Stack-Based
Scheduling of Realtime Processes.

[Klein90] M.H. Klein and T. Ralya, Technical Report, CMU/SEI-90-TR-19, Carnegie Mel-
lon University, Software Engineering Institute, 1990, An analysis of input/output
paradigms for real-time systems.

[Leung82] J. Leung and J. Whitehead, 1982, Performance Evaluation, On the complexity
of fixed-priority schedulings of periodic, real-time tasks.

[Leung80] J. Leung and R. Merrill, 1980, Information Processing Letters, 115-118, 18,
A note on the preemptive scheduling of periodic, Real-Time tasks.

[Liu73] C.L. Liu and J.W Layland, 1973, Journal of the ACM, Scheduling algorithms for
multiprogramming in a hard real-time environment.

[Locke92] C.D. Locke, 1992, Journal of Real-Time Systems, 4, 37-53, Software architec-
ture for hard real-time applications: cyclic executives vs. priority executives.

35

Bibliography

[Ramos93] S. Ramos and J.P. Lehoczky, 1993, IEEE Real-Time Systems Symposium,
160-171, On-Line scheduling of hard deadline aperiodic tasks in fixed-priority sys-
tems.

[Ripoll96] I. Ripoll, A. Crespo, and A. Mok, 1996, Journal of Real-Time Systems, 11,
19-40, Improvement in feasibility testing for real-time tasks.

[Ripoll96] I. Ripoll, A. Crespo, and A. Garcia-Fornes, 1995, IEEE Transactions on Soft-
ware Engineering, 23, 388-400, An optimal algorithm for scheduling soft aperiodic
tasks in dynamic-priority preemptive systems.

[Spuri96] M. Spuri and G. Buttazzo, 1996, Journal of Real-Time Systems, March, 179-
210, Scheduling Aperiodic Tasks in Dynamic Priority Systems.

[Sprunt88] B. Sprunt, L. Sha, and J.P. Lehoczky, 1988, IEEE Real-Time Systems Sym-
posium, 251-258, Exploiting unused periodic time for aperiodic service using the
extended priority exchange algorithm.

[Sprunt89] B. Sprunt, L. Sha, and J.P. Lehoczky, 1989, Journal of Real-Time Systems,
27-60, Aperiodic task scheduling for hard real-time systems.

[Shi01] W. Shi, 2001, Technical Report, Dep. of Computer Science, FSU, Implementation
and Performance of POSIX Sporadic Server Scheduling in RTLinux.

Resource Reservation
[Tok90] Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi Rao, Real-Time Mach: Towards

a Predictable Real-Time System, October 1990, USENIX Mach Workshop.

[Mer93] Clifford W. Mercer, Ragunathan Rajkumar, and Hideyuki Tokuda, Applying
Hard Real-Time Technology to Multimedia Systems, December 1993.

[Mer93-2] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda, Processor Capacity
Reserves for Multimedia Operating Systems, 1993, May 1993.

[Mer94] Clifford W. Mercer, Ragunathan Rajkumar„ and Jim Zelenka, Temporal Protec-
tion in Real-Time Operating Systems, May, 1994, IEEE Workshop on Real-Time
Operating Systems and Software.

[Jon95] Michael B. Jones, Paul J. Leach, Richard P. Draves, and Joseph S. Barrera,
Modular Real-Time Resource Management in the Rialto Operating System, May
1995, Fifth Workshop on Hot Topics in Operating Systems (HotOS-V) .

[Jon97] Michael B. Jones, Daniela Rosu, and Marcel-Catalin Rosu, CPU Reservations
and Time Constraints: Efficient, Predictable Scheduling of Independent Activities,
October 1997, ACM Symposium on Operating Systems Principles.

[Raj98] Ragunathan Rajkumar, Kanaka Juvva, Anastasio Molano, and Shui Oikawa, Re-
source Kernels: A Resource-Centric Approach to Real-Time Systems, January 1998,
SPIE/ACM Conference on Multimedia Computing and Networking.

[Les96] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham,
David Evers, Robin Fairbairns, and Eoin Hyden, The Design and Implementation
of an Operating System to Support Distributed Multimedia Applications,
September 1996, IEEE Journal on Selected Areas In Communications.

[Abe98] Luca Abeni and Giorgio Buttazzo, Integrating Multimedia Applications in Hard
Real-Time Systems, December 1998, IEEE Real-Time Systems Symposium.

OCERA. IST 35102 36

Bibliography

[Gar98] M. K. Gardner, J. W.S. Liu, Performance of Algorithms for Scheduling Real-Time
Systems with Overrun and Overload, June 1999, Eleventh Euromicro Conference
on Real-Time Systems.

[Abe99] Luca Abeni, Giorgio Buttazzo, QoS Guarantee Using Probabilistic Dealines,
June 1999, IEEE Euromicro Conference on Real-Time Systems.

[Abe99-2] Luca Abeni and Giorgio Buttazzo, Adaptive Bandwidth Reservation for Multi-
media Computing, December 1999, IEEE Real-Time Computing Systems and Ap-
plications (RTCSA).

[Oik98] Shui Oikawa and Ragunathan (Raj) Rajkumar, Linux/RK: A Portable Resource
Kernel in Linux, December 1998, IEEE Real-Time Systems Symposium Work-In-
Progress.

[Oik99] Shui Oikawa and Ragunathan (Raj) Rajkumar, Portable RK: A Portable Resource
Kernel for Guaranteed and Enforced Timing Behavior, June 1999, IEEE Real-Time
Technology and Applications Symposium.

[Wan99] Yu-Chung Wang and Kwei-Jay Lin, Implementing a General Real-Time
Scheduling Framework in the RED-Linux Real-Time Kernel, December 1999,
Real-Time Systems Symposium.

[Raj00] Ragunathan (Raj) Rajkumar, Luca Abeni, Dionisio De Niz, Sourav Ghosh, Aki-
hiko Miyoshi, and Saowanee Saewong, Recent Developments with Linux/RK, De-
cember 2000, Second Real-Time Linux Workshop.

[Lip00] G. Lipari and S.K. Baruah, Greedy reclaimation of unused bandwidth in constant
bandwidth servers, June 2000, Euromicro Conference on Real-Time Systems.

[Pal00] Luigi Palopoli, Luca Abeni, Fabio Conticelli, Marco Di Natale, and Giorgio But-
tazzo, Real-Time control system analysis: an integrated approach, December 2000,
Real-Time Systems Symposium.

[Abe01] Luca Abeni and Giorgio Buttazzo, Stochastic Analysis of a Reservation Based
System, April 2001, 9th International Workshop on Parallel and Distributed Real-
Time Systems.

[Pal] Luigi Palopoli, Luca Abeni, Gabriele Bolognini, Benedetto Allotta, and Fabio Con-
ticelli, Novel scheduling policies in real-time multithread control system design, to
be issued, Control Engineering Practice.

Fault-tolerance
T. Anderson and P.A. Lee, Fault Tolerance - Principles and Practice. , Prentice Hall,

1981.

A. Avizienis and J.P.J. Kelly, Fault Tolerance by design diversity: Concepts and Experi-
ments , pp 67-80, IEEE Computer Magazine , 17, (8), 1984.

K. P., Birman, Replication and fault-tolerance in the ISIS system , pp 79-86, ACM
Operating Systems Review , 21, (5), 1984.

H., Chetto, M., Silly, and T., Bouchentouf, Dynamic scheduling of real-time tasks under
precedence constraints , pp 184-194, Real-Time Systems , 2, (3) , 1990.

D., David, J., Delcoigne, E., Leret, A., Ourghanlian, P., Hilsenkopf, and P., Paris, Safety
Properties Ensured by the OASIS Model for Safety Critical Real-Time Systems ,

OCERA. IST 35102 37

Bibliography

pp 47-59, Computer Safety, Reliability and Security : Proc. 17th International
Conference, SAFECOMP’98 , 1998.

D. L., Detlefs, M. P., Herlihy, and J. M., Wing, Inheritance of synchronization and
recovery properties in Avalon/C++ , pp 57-69, Computer , Dec. 1988.

J-C. Laprie, Dependability: basic concepts and Terminology , pp 265, Edited by J-C.
Laprie, Springer-Verlag, 1992.

J-C. Laprie, Dependability - Its attributes, impairments, and means, pp 3-24 in , Pre-
dictably Dependable Computing Systems , Edited by B. Randell, Springer-Verlag,
1995.

J-C. Fabre, V. Nicomette, T. Perennou, R. Stroud, and Z. Wu, Implementing Fault-
Tolerant Applications Using Reflective Object-Oriented Programming , pp 190 - 208
in , Predictably Dependable Computing Systems , Edited by B. Randell, Springer-
Verlag, 1995.

W. Nace and P. Koopman, Graceful Degradation in Dis-
tributed Embedded Systems , pp 55-67 , Dr.Dobb’s
Embedded Systems, inaugural feature for embedded system webzine,
http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001a.htm
, 2001.

O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramamritham, Adaptive Fault
Tolerance and Graceful Degradation Under Dynamic Hard Real-time Scheduling
, pp 55-67 , Proceedings of the 18th IEEE Real-time Systems Symposium, San
Francisco , Dec. 97.

D. Powell, Distributed Fault Tolerance - Lessons Learnt from Delta-4 , pp 16, Research
Report 93192 , LAAS-CNRS, Toulouse,, 1995.

D. Powell, A Generic Fault-Tolerant Architecture for Real-Time Dependable Systems ,
pp 260 , Edited by D. Powell, Kluwer Academic Publishers, Boston, 2001.

H. Kopetz, The Time Triggered Approach to Real-Time System Design , pp 54-66 in
, Predictably Dependable Computing Systems , Edited by B. Randell, Springer-
Verlag, 1995.

J., Reisinger, A., Steininger, and G. Leber, The PDCS Implementation of MARS Hard-
ware and Software , pp 209-224 in , Predictably Dependable Computing Systems ,
Edited by B. Randell, Springer-Verlag, 1995.

K. Ramamritham and J. Stankovic, Scheduling Algorithms and Operating Systems Sup-
port for Real-Time Systems , pp 55-67 , Proceedings of the IEEE , Jan. 94.

S. K. Shrivastava, G. N. Dixon, and G. D. Parrington, An overview of the Arjuna Dis-
tributed Programming System , pp 66-73 , IEEE Software , 8, (1), Jan. 91.

Communications
K. Tindell, A. Burns, and A.J. Wellings, Calculating Controller Area Network (CAN) Mes-

sage Response Time, Control Eng. Practice, Vol. 3, No. 8, pp. 1163-1169, Elsevier,
1995.

Profibus specification EN 50170 Volume 2, Profibus International, Germany, 1998.

CAN Specification 2.0 Part B, CAN in Automation, Germany, .

OCERA. IST 35102 38

Bibliography

Lontalk Protocol Specification ver. 3.0, Echelon Corporation, USA, 1994.

Time-Triggered Protocol TTP/C, High-Level Specification Document ver 1.0.0,
TTA-Group, Austria, 2002.

H. Kopetz and G Grünsteidel, TTP-A Protocol for Fault-Tolerant Real Time Systems,
IEEE, 1994.

Train Communication Network (TCN), norm IEC 61375-1, IEC, Switzerland, 1999.

Open Modbus/TCP specification rel. 1.0, Schneider Electric, 1999 .

NDDS Getting Started Guide,ver. 3.0, Real-Time Innovations, Inc., USA, 2002.

T. Führer, Time Triggered Communication on CAN, technical report, Robert Bosch
GmbH, .

N. Navet and Ye-Q. Song, Validation of in-vehicle real-time applications, Computers in
Industry, Elsevier,, 2000.

E. Tovar, Supporting Real-Time Communications with Standard Factory-Floor
Networks, doctor thesis, 1999.

K.W. Tindel, H. Hanson, and A.J. Wellings, Analysing Real-Time Communications: Con-
troller Area Network (CAN), pp. 259-263, IEEE Real-Time System Symposia, 1994.

OCERA. IST 35102 39

