WP4 — Development of Resour ce M anagement
Components

D4.1 Design of Resource M anagement Components

Design of Resource Management Components: Deliverable D4.1
by Giuseppe Lipari, Luca Abeni, Luca Marzario, and Luigi Palopoli

Draft 0.1 Edition
Published February 2003
Copyright © 2002 by Ocera

Table of Contents

Document presentation

1. Introduction 1
1.1, MOtIVALION ..ccoceiiieicecccceceeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e aaeaaeas 1

1.2, ODJECLIVES .oeeeiiiiieeiiiiiiiiieee e e ettt e e e e e eeeectr e e e e e e e e e eeeasbrseeaeaeeeeessnnssssssaeaaaeeeaans 1

1.3. Summary of Resource Management Components.............cccceeeeeeeecicnnriieeeeeeeennnn. 2

1.4. Organisation of the reportcccvvviiiiiiiiiiiie e e 3

2. Resource Reservation in Linux 4
2.1. Background on Resource Reservation..........ccccccoeeeeiiiiiiiieii e 4

2.2. The Constant Bandwidth Server............ccccccceviiiiiiiiiiiiiiieeee e 5

2.3. Implementing CBS in LiNUXcccoiiiiiiiiiiiiiiiiice et e e e e e eeenens 6
2.3.1. TasSK MOdEL......coiiiiiiiieiiiee ettt et e e 6

2.3.2. Structure of the implementationcccccceeeeeiiiiiiiiee e, 7

2.3.3. Reclaiming SPare r@SOUTCEc.cceeeuvrrrrreeeeeeeeereiirrrreeeeeessesenrssrrseeeeeeannns 8

2.3.4. Resource Reservation on Multi-processor platforms............cccccveeeeennnn. 9

D Tl 5 o) - ¥ AU UUPUPRRRNE 9

2.5. Mixed Hard/Soft configuration............ccccvveiiiiiiiiiiiiiiiiiieee e 10

3. Resource Management 11
3.1. Allocating RESOUTCESuuviiiiiiiiieiiiiiiieeeeeeeeeeeeiirree e e e e e e e esaarneeeeeeeeesessnnnnnns 11

3.2. Feedback Scheduling............cccciveiiieiiiiiiieiieie ettt ee e e ree e e 12

B T 1Y U1 o 1y USRS 13

4. Resource Management Components 15
4.1. Generic Scheduler Patch...........ccccooieiiiiiiieiiiiice e 15

4.2. Integration Patchcccoocoiiiiiiiiiic e 15

4.3. Resource Reservation Scheduling Module............cccceceuiiiiieiiiiiiiiniiiieeeciieee e 16

4.4. Quality of Service Mana@eT.............cooeeiiuriiireeeeeeeeiiiiirereeeeeeeeeeecirrreeeeeeeeeeeeannnes 16

A5, USEIr APL ...t e e et e e e e e e e e trba b e e e e e e e e e eenarraes 17
Bibliography 19

1414

List of Tables

1. Project Co-0Tdinatorccceiieeiiiiiiiiiiieeeeeeeeeeiireeeeeeeeeeeeectaereeeeeeeeeeestaarereeeseeeeeeennrsreees i
2. Participant LStccoiiiiiiiiiiiiiiiicece ettt e et e e e e e s e st aaee e e e e s ennnanns i

List of Figures

2-1. Example of task Structure........cccoooeiiiiiiiiiiic e 6

1)

Document presentation

Table 1. Project Co-ordinator

Organisation:

UPVLC

Responsible person:

Alfons Crespo

Address: |Camino Vera, 14. CP: 46022, Valencia, Spain
Phone: |+34 9877576
Fax: |+34 9877579
E-mail: |alfons@disca.upv.es

Table 2. Participant List

Role Id. Name Acronym Coun-
try
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore S. Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA CEA FR
CR 5 UNICONTROLS UcC CZ
CR 6 MNIS MNIS FR
CR 7 VISUAL TOOLS S.A. VT E

Chapter 1. Introduction

1.1. Motivation

The recent evolution of computer technology made personal computers powerful enough
to perform such time sensitive applications as multimedia streaming, video-conference
and so on. However, traditional real-time techniques are unsuitable to the design of this
family of applications.

Indeed, these applications are characterised by highly varying computational require-
ments that make it impossible to compute a worst case computational workload. For
example, a MPEG stream is composed by a sequence of encoded video frames, each one
with a different size and a different computational requirement. Since a MPEG player
is made for playing any kind of stream, it is impossible to know a-priori how much exe-
cution time the player will take to decode and display a frame.

Furthermore, personal computers are very different from dedicated computing plat-
forms, like the ones utilised in embedded critical real-time systems. A personal com-
puter may execute very different kinds of applications, from simple batch programs, to
interactive programs, to multimedia programs. Moreover, a personal computer is assem-
bled with very diverse hardware boards. All of this makes it impossible to perform an
a-priori analysis of a real-time program.

Another important point to take into account is the "criticality" of such applications.
Multimedia applications are considered "soft real-time": while a hard real-time task
must be guaranteed to meet all its deadlines, a soft real-time task has less strict tem-
poral requirements and some deadlines can be missed without compromising the func-
tionality of the application. However, it is important to "keep under control" how many
deadlines are missed, and "how late" a soft task is going to be. A typical example of
such QoS requirement is the deadline miss probability; another possible requirement is
a bound on the tardiness of a task (i.e. how much it is late in proportion to its period). In
this framework, standard real-time tasks are a special case for which the probability of
a deadline miss has to be 0 over any interval of time.

1.2. Objectives

The aim of the Resource management components is to assign the system resources
to tasks so that predictable Quality of Service (QoS) guarantees can be provided to
real-time tasks. The Resource Management components are especially useful for soft
real-time tasks, like for example multimedia applications. These applications are usu-
ally implemented as normal Linux processes. In fact, Linux offers a large number of
libraries, drivers and tools to support this kind of applications, like sound and video
drivers, a standard network protocol stack, etc. These services cannot be found in RT-
Linux and it is unfeasible to port them.

Therefore, in the OCERA Architecture, the Resource Management components are pro-
vided at the Linux layer as additional services of the Linux kernel. They can be used
both in the soft real-time configuration (if no hard real-time service is needed), or in the
mixed hard/soft configuration (when both hard real-time and soft real-time tasks coex-
ists in the system). The use of the QoS manager in the mixed configuration can be useful
for those applications composed of a hard real-time part and a soft real-time part:

» the critical (hard real-time) part can be executed as a set of threads in the RT-Linux
executive, and must be "trusted", because a fault in a thread can compromise the
functionality of the whole system,;

Chapter 1. Introduction

» less critical parts can be implemented as Linux processes, and can use memory pro-
tection, provided by the Linux kernel, and temporal protection, provided by the addi-
tional component for QoS management.

However, in the mixed hard-soft configuration, some kind of guarantee must be provided
at the hard real-time level to Linux activities. In fact, Linux is currently scheduled as
background activity in the RT-Linux executive, i.e. only when there is no active hard
real-time tasks. If Linux is scheduled in background, no QoS guarantee is possible at
the soft real-time level, because the amount of execution time allotted to Linux is not
distributed evenly and Linux can be delayed by real-time tasks for large time intervals.

As a consequence, if we want to provide QoS guarantees to soft real-time tasks in the
mixed hard-soft configuration, we have to reserve a fraction of the CPU bandwidth to
Linux, and to schedule it according to a reservation algorithm. This can be seen as a
hierarchical scheduling problem: at the hard real-time level, a scheduler selects which
tasks has to be executed next; if Linux is selected, its scheduler selects which process
has to be executed next.

This hierarchical scheduling problem will be addressed together with the University of
Valencia (UPVLC). In WP5, a resource reservation scheduler will be implemented as
RT-Linux scheduler. Moreover, SSSA will collaborate with UPVLC to devise a suitable
schedulability analysis of such hierarchical systems.

1.3. Summary of Resource Management
Components

In this section, we summarise the components that will be developed as part of Work-
package 4, "Resource Management Components". For each components we give a brief
description, who is responsible for the development of the components, and who is re-
sponsible for its validation. The same information can be found on the "OCERA Archi-
tecture and Component Definition" deliverable. Detailed information on each component
will be provided in 4, Resource Management Components.

Low level Linux components

¢ Generic Scheduler Patch

O It is a small patch for the Linux kernel that provides useful hooks to the Linux
scheduler. These hooks will then be used by our scheduling module for implement-
ing sophisticated real-time scheduling policies.

O Responsible: SSSA
O Validator: UPVLC

¢ Integration patch

O This patch will take into account the introduction of the "preemption patch" and
"high resolution timers" in the Linux kernel.

O Responsible: SSSA
O Validator: UPVLC

High level Linux components

* Resource Reservation Scheduling module

OCERA. IST 35102 2

Chapter 1. Introduction

O It will be a dynamically loadable module for the Linux kernel, that will provide a
resource reservation scheduler for soft real-time tasks running in user space.

O Responsible: SSSA
O Validator: UPVLC, CEA

* Quality of service Manager

O This component will provide a mechanism for identifying the temporal character-
istics of a task and to adjust its scheduling parameters so to maximise its quality of
service.

O Responsible: SSSA
O Validator: VT, UPVLC

Linux applications

e User API

O This component is a set of one or more libraries that will provide a convenient API
to the user to access the Resource Management services.

O Responsible: SSSA
O Validator: UPVLC

1.4. Organisation of the report

The report is organised as follows. 2, Resource Reservation in Linux describes the
scheduling technique (Resource Reservation) that we propose to adopt as a foundation
for the Resource Management component. In particular, after introducing the resource
reservation concepts in general, we present the Constant Bandwidth Server and its im-
plementation in the Linux kernel. The chapter is concluded by a short overview of some
extensions that we are currently investigating, and by a description of the user-level
support that will be provided.

3, Resource Management describes the dynamic QoS management techniques that will

be implemented over the reservation scheduler, and their implementation in the OCERA
framework. After a short introduction of the resource management problem, it will be
shown that some kind of adaptive management of system resources is needed, and a
theoretically sound solution (feedback scheduling) will be presented. Finally, a short
description of the implementation of a feedback scheduling mechanism based on the
OCERA CBS scheduler, and deeply integrated with the OCERA real-time library, will
be presented.

Finally, in 4, Resource Management Components we list the components that will be
developed: for each component we will present the basic structure of the implementa-
tion. Moreover, we will propose measurable objectives to be checked at the end of the
development phase to prove the effectiveness of our implementation. Finally, we shortly
describe the relationship with the other components of the OCERA project.

OCERA. IST 35102 3

Chapter 2. Resource Reservation in Linux

2.1. Background on Resource Reservation

Real-time applications are characterised by temporal constraints. A real-time task T’ is
usually modelled as a sequence of jobs Jid_, each one characterised by an arrival time,
a computation requirement and an absolute deadline by which it should complete. For
an hard real-time tasks, the deadlines are critical constraints and if missed the sys-
tem can have a catastrophic failure. A soft real-time tasks, instead, is characterised by
less critical requirements, and if some deadline is missed nothing catastrophic happens.
However, the QoS experienced by the task depends on the number of deadline misses.

Many scheduling algorithms have been proposed to service real-time tasks (fixed prior-
ity, earliest deadline first, etc.). For each scheduling algorithm, it is usually possible to
perform a schedulability analysis that given the periods and the worst case computa-
tion times of all tasks, checks if the task set is schedulable, i.e if all deadlines can be
respected.

However, such a schedulability analysis generally depends on the estimation of the
worst case execution time of each task, and it is not robust to variation in this parame-
ter. Indeed, if a task does not respect its estimated worst case execution time, deadline
misses can occur on other tasks in the system. According to an increasingly popular
terminology, this anomaly is referred to as a lack of temporal isolation between tasks.
Temporal isolation is not a primary concern in safety critical systems, for a deadline
miss is regarded as a sever design problem whatever the task that undergoes it. On
the contrary, in a desktop system, tasks are dynamically activated during the system
lifetime, and cannot be accounted for a priori (i.e., at design time). As a consequence, a
misbehaving real-time task can jeopardise the whole system schedulability, potentially
affecting all the other tasks. If this behaviour is malicious, this is a security failure: a
user can affect the QoS perceived by other users and, even worse, can starve all the sys-
tem’s tasks (denial of service). These arguments emphasise the importance of temporal
protection in soft real-time systems.

With the term Resource Reservation we indicate a class of scheduling algorithms that
allocate a resource to a set of competing tasks, ensuring the temporal protection property.
In this chapter, we first recall some basic information on the generalities of a reservation
mechanism. Then we propose an advanced reservation mechanism for the CPU.

Informally, we can give the following definition of temporal protection:

Temporal Protection This property holds if and only if the timing behaviour of a task
is decoupled from that of other tasks in the system.

Temporal protection is simply enforced by ensuring that each task will receive, in a given
period of time, at least an assigned fraction of the resource (bandwidth). Therefore, even
when a task requires more computation time than its reserved bandwidth allows, it is
slowed down without restricting the bandwidth allocated to other tasks. For the sake of
efficiency, scheduling algorithms adhering to this paradigm can also be endowed with
an additional feature that "reclaims" the unused computation bandwidth and allocates
it to the executing tasks according to some policy (i.e a fair rule, greedy rule, etc.).

Temporal isolation permits to provide different kind of guarantees to different tasks: for
example, it is possible to perform a hard guarantee on a critical task (i.e. it is possible to
guarantee that a hard real-time task does not miss any deadline), whereas it is possible
a probabilistic guarantee on soft tasks (i.e., given the distribution of computation times
and arrival times, we can compute the deadline miss probability distribution).

A way to provide temporal isolation is to guarantee that every task will be assigned the

resource only for the reserved amount of time in every time interval. If exec(T,, t, t,) is

Chapter 2. Resource Reservation in Linux

the amount of time executed by task T, in the interval (t , t,), temporal protection can be
ensured by enforcing that:

for all t,t,exec(T,t,t)/(t,-t)>F,

where F is a real number in [0,1] that represents the share of resource assigned to the
task.

However, this requirement (that leads to the Generalised Processor Sharing - GPS -
model used by proportional share schedulers) cannot be implemented in practise. In fact,
the previous equation must hold for all t , t,, and hence also for infinitesimal intervals.
This implies an infinite amount of context switches. A more realistic requirement is to
enforce that the previous equation holds only over well specified intervals, for example

between the arrival time and the deadline of a real-time task.

More formally, a reservation (@, P) guarantees that at least an amount @ of a resource
will be available to the reserved task every period P.

The period P is a measure of the granularity of the reservation. The smaller is P, the
more precise is the allocation of the resource, but the higher is the overhead (e.g. con-
text switches). On the other hand, the larger is P, the less the overhead, but a coarser
allocation of the resource.

In a first phase, we will consider a single computational resource (CPU) that must be
allocated among different real-time tasks. Moreover, we consider that all tasks are in-
dependent and preemptive. This is a very simple model, but it is useful to introduce the
concept of resource reservation, and it will be easier to implement in a complex operating
system like Linux.

In a second phase we will take into account more complex models, considering the possi-
ble interactions between tasks (client/server relationships, exclusive accesses to shared
resources, and so on). Our preliminary experience seems to suggest that ceiling and in-
heritance approaches can be successfully extended to reservation systems, and can help
to provide guarantees in realistic situations.

Moreover, the effects of hard and soft reservation behaviours on hierarchical guarantees
should be investigated.

Finally, a reclaiming mechanism will be added to the basic reservation algorithm, to
make the scheduler more effective when applied to tasks characterised by irregular ex-
ecution patterns. Again, we have some preliminary and informal results that seem to
indicate that a combination of hard reservation techniques and resource reclaiming can
give the best results.

2.2. The Constant Bandwidth Server

In the first phase of the workpackage we will implement the Constant Bandwidth Server
(CBS) [Abe98] algorithm in Linux. The CBS algorithm has been originally proposed for
servicing aperiodic tasks in a hard real-time environment. However, it can be used very
well as a basis for a resource reservation based system.

In this section, a brief overview of the CBS algorithm is given. A fully detailed descrip-
tion can be found in [Abe98]. A CBS S, is described by two parameters: the server maxi-
mum budget Q, and the server period P,. The server bandwidth U, = @, / P, is the fraction
of the CPU bandwidth reserved to S.. Dynamically, each server updates two variables
(g, d, where g, is the current budget and keeps track of the consumed bandwidth, and d,
is the server’s scheduling deadline. Initially, g, is set to the maximum budget @, and d,
is set to 0. A server is active if the corresponding server task has a pending instance.

The system consists of n servers and a global scheduler based on the Earliest Deadline
First (EDF) priority assignment. At each instant, the active server with the earliest

OCERA. IST 35102 5

Chapter 2. Resource Reservation in Linux

scheduling deadline d, is selected and the corresponding task is dispatched to execute.
It is worth noting that the scheduling deadline of a server can be dynamically changed.
In this case the EDF queue has to be reordered and a preemption may occur.

The CBS algorithm updates its variables as follows:

1. When job Ji,j of task T, arrives in the system at time ¢, the server checks if the
current pair (q,d) can be used. If t <=d - ¢ (P / @) then the server simply accepts
the task and continues to use the current pair (q,d). Otherwise, it computes q = Q
andd=t+P.

2. At each instant, the server with the earliest scheduling deadline d is selected to
execute (EDF rule over the servers).

3. If server Sexecutes for E units of time, theng =q - E.

4. Server S is allowed to execute until q is greater than 0. If ¢ becomes 0 and the task
has not yet finished executing, the scheduling deadline is postponed to d =d + P
and the EDF queue is reorder. As a consequence, the server may not be the earliest
deadline server and a preemption may occur.

It has been proved that algorithm CBS provides temporal protection.

2.3. Implementing CBS in Linux

2.3.1. Task Model

When implementing a scheduling algorithm in a complex operating system like Linux,
we have to account for many practical issues. In particular, the model of independent
periodic task as a sequence of jobs that only block at the end of each execution is not
very realistic. Many other kinds of blocking situations can occur in the system. A task
can be blocked:

» by a read operation (for example, reading from a disk)
» waiting for external data (for example, data coming from the network);

e by another task that is using an mutually exclusive resource (i.e. on a mutex
semaphore)

by all the forms of blocking IPC in general.

All of this blocking operations are not taken into account by the traditional real-time
task model, and must be carefully handled to avoid anomalies in the CBS guarantee.
In particular, if a task blocks without notifying the CBS scheduler, the algorithm can
become inconsistent.

To avoid problems due to tasks dynamically blocking and unblocking, we decided to
consider a job starting when a task unblocks, and finishing when the task blocks again.
Therefore, the first job of a task is activated explicitly by another task (for example, by
using a fork() syscall); the subsequent jobs are activated when the task unblocks.

int main(void)
{
<initialisation>
while(1) {
<body>;
<wait for next instance>;
}
}

OCERA. IST 35102 6

Chapter 2. Resource Reservation in Linux

Figure 2-1. Example of task structure

In Figure 2-1, the typical structure of a periodic task is shown. If the task is never
blocked during the execution of the operations in <body> then each job finishes at the
end of the while loop, when the task blocks waiting for the next instance. However, if
the task is blocked inside the body for whatever reason, then each while loop is actually
composed by more than one job.

Note that this approach permits to easily preserve the temporal protection between
tasks, even when a task is characterised by an irregular execution pattern (obviously, it
is impossible to achieve protection between two tasks when they are interacting). How-
ever, if no other special caution is taken it is quite difficult to guarantee the performance
of interacting tasks. In this case, some kind of ceiling or inheritance approach must be
adopted.

For example, the Bandwidth Inheritance Protocol (BWI) [BWI] permits to "inherit" the
server bandwidth when a task is blocked by another task on a shared resource. However,
such protocol is complex. We will evaluate its use in this project and implement it in the
second phase of the workpackage.

2.3.2. Structure of the implementation

The CBS scheduler has been implemented as a loadable module that, once inserted
into the kernel, enables a new scheduling policy, SCHED_CBS. This scheduling module
intercepts the scheduling events needed to correctly implement the CBS algorithm (in
particular, process creation / deletion, and blocking / unblocking).

To intercept these events, the module must be inserted in a patched kernel, which ex-
ports 6 hooks: the fork_hook, the cleanup_hook, the block_hook, the unblock_hook, the
setsched_hook, and the getsched_hook. For every hook, the patched kernel contains a
function pointer that is exported to be used by loadable modules. All the pointers are
initially set to NULL. When the CBS module is initialised, it sets these pointers to the
appropriate handlers, so that the kernel will invoke the proper handler when one of the
following specific condition happens:

the fork_hook is invoked when a new task is created,;

» the cleanup_hook is invoked when a task is destroyed, so that the CBS scheduler can
deallocate the resources associated to it;

» the block_hook is invoked when a task blocks, so that the CBS module understands
that the current job is finished,;

» the unblock_hook is invoked when a task wakes up, so that the CBS scheduler is
notified of a new job arrival,

» the setsched_hook and getsched_hook are invoked when the sched_setsched() or
sched_getsched() system calls are called. If the hook function returns a negative
value, the system call must fail; if it returns 0, the system call succeeds and returns
a success value; whereas if the function returns a positive value the original Linux
system call code is executed as a callback.

When the unblock_hook is invoked, we only need to set a timer to the time when the
budget becomes zero. This timing event is then handled internally by the module. All
the hooks but setsched_hook and getsched_hook receive the pointer to the task_struct
of the interested task as a parameter (setsched_hook and getsched_hook have the same
parameters of sched_setsched() and sched_getsched()). Finally, the kernel patch adds a
field to the task_struct structure, representing a pointer to void that can be used by the

OCERA. IST 35102 7

Chapter 2. Resource Reservation in Linux

CBS scheduler to point to the CBS private data for each task (current budget, server
parameters, deadline, and so on).

Such hooks, and the pointer to the task private data are added by the Generic Sched-
uler (gensched) patch, that we designed to be generic, simple, and minimally intrusive.
Although the gensched patch has been developed to implement the OCERA CBS sched-
uler, it can be easily used to implement also other different scheduling algorithms in
the Linux kernel (we believe that the interface exported by the gensched patch, based
on the scheduler activations concept, is generic enough to implement any scheduling
algorithm).

Based on the gensched patch, the CBS scheduler will be implemented as a loadable
module that can be inserted into the kernel at runtime, and most of the scheduler code
will be independent from the kernel version. Since the CBS module is based only on
the gensched patch, it will be very easy to port the OCERA CBS implementation to
new Linux versions, and to use it in combination with other kernel patches that provide
useful features for real-time applications. For example, the CBS module can be used in
combination with the high-res-timers patch, and with the kernel preemptability patch.

Note that in our implementation the scheduling algorithm does not depend on tasks’
periodicity: in fact, the scheduler directly intercepts tasks’ activations / deactivations.
Implementing a periodic behaviour is the tasks’ responsibility. For example, the stan-
dard setitimer() syscall or POSIX timers can be used for triggering periodic activations.

2.3.3. Reclaiming spare resource

When the sum of the reservation bandwidths in the system is less than 100%, or when
a task uses less than it has been reserved, there is some spare resource that can be
re-distributed among the demanding tasks. In this way, we provide each task at least
the amount of required bandwidth. However, in the average, a task will get more than
required because of the reclaiming mechanism.

Many reclamation mechanism have been proposed in the literature for resource reser-
vation algorithms. Two are based on the CBS algorithm. the CASH (Capacity Sharing)
algorithm has been proposed by Caccamo Sha and Buttazzo CASH and is very useful for
periodic real-time tasks, but it is difficult to be used in sporadic and aperiodic tasks.

The GRUB (Greedy reclamation of Unused Bandwidth) algorithm has been proposed by
Lipari and Baruah GRUB and does not assume any particular task model. Moreover,
it has the same complexity as CBS, and can be implemented with a small additional
overhead. For this reason, we selected GRUB as the algorithm to be implemented in
OCERA.

In this algorithm, a server S, is characterised by a period P, and by a bandwidth U.. A
server can be in three different states:

+ Active Contending, when the corresponding task is ready to execute;

» Active non contending, when the corresponding task has finished to execute but
its bandwidth cannot be reclaimed

« Inactive, when the corresponding task is not executing and we can reclaim the band-
width.

The GRUB algorithm follows the same basic rules of the CBS algorithm, with the fol-
lowing differences.

A server becomes Active contending when a new instance of the task arrives (i.e. the
task is activated for the first time after a fork() or the task is unblocked).

A server becomes Active non contending at time ¢ when the task is blocked and g <
(d - ¢) U.. Otherwise, the server directly becomes Inactive

OCERA. IST 35102 8

Chapter 2. Resource Reservation in Linux

If a server is Active non contending, it becomes Inactive at time¢=d-q / U..
If a server executes for ¢ units of time, then its budget is decreased as:
g=q-cU/ U,

where U is the sum of the bandwidths of all active (contending and not contending)
tasks.

It can be proved that Algorithm GRUB provides temporal isolation and timing guaran-
tees exactly like the CBS algorithm. In addition, in average over long interval of time
Algorithm GRUB distributes the spare bandwidths to all tasks in a fair manner.

Algorithm GRUB can be implemented with little effort. The difference with the CBS
is that we need one more timer for handling the transition between the Active non
contending and the Inactive states.

2.3.4. Resource Reservation on Multi-processor platforms

In the previous sections, we described the scheduling problem and the solutions that we
propose (the reservation approach in particular) referred to a single CPU system. The
presented scheduling algorithm can be extended to multi-processor (SMP, NUMA, and
distributed) systems.

We believe that such an extension to multi-processors is particularly important because
using multiple CPU is an easy way to satisfy the high computational demands of modern
multimedia applications. However, multiprocessor machines present a number of well
known scheduling anomalies when applied to real-time applications (there are some
famous examples in which increasing the computational power causes increases the
number of missed deadlines).

In our first multiprocessor implementation, we will consider SMP machines, because
SMP is the most common multiprocessor architecture, and is easily available for devel-
opment and testing. The simplest way to implement resource reservations on a SMP is to
statically associate processes to CPUs, so that algorithms and guarantees for developed
for a single CPU can be directly applied to each CPU. Such a static partitioning has the
advantage of the simplicity, but does not permit to fully utilise the whole computational
power of the SMP machine.

A more efficient approach would be to permit task migration between different CPUs.
However, in this case, sever analysis problems arise and a deeper study of the multi-
processor scheduling algorithm and schedulability analysis is needed. The goal of the
algorithm should be to achieve an utilisation equal to n U, , where n is the number of
processors, and U, , is the utilisation least upper bound for a single-CPU system. This
goal can be achieved only in some particular cases (and for particular task sets), and it
is still not clear which is the optimal bound in the generic case.

A first preliminary study on the use of reservation techniques in multiprocessor plat-
forms has been presented in MCBS. The authors present the M-CBS algorithm that is
based on a multi-processor version of EDF where tasks are allowed to migrate from one
processor to another. The utilisation bound can be expressed as:

Ulub =m- (m) 1) Umax’

where U is the maximum server bandwidth in the system.

We will further investigate such approach and try an experimental implementation in
the context of OCERA.

OCERA. IST 35102 9

Chapter 2. Resource Reservation in Linux

2.4. User Library

The functionalities provided by the CBS scheduler can be accessed by using an exten-
sion of the standard C library interface (a new policy SCHED_CBS is added to the
sched_setsched() interface). However, performing real-time activities requires a lot of
complex activities, and performing them explicitly in the user application can add an
excessive amount of complexity to the code. For this reason, we will implement an user-
level library providing a simple and effective interface for real-time applications.

This real-time library will permit, for example, to easily create periodic tasks removing
the need for an explicit management of signals and periodic timers. Moreover, if the ker-
nel provides high-resolution timers the real-time library will be able to automatically
take advantage of them. Another important functionality provided by the real-time li-
brary will be the possibility to read the system time from user space, without performing
system calls. This will require to read the CPU timestamp counter, or some similar kind
of register, and to calibrate the timing code before at program startup. The real-time
library will automatically perform this operation without adding complexity to the user
code.

2.5. Mixed Hard/Soft configuration

When OCERA is configured in the mixed hard/soft configuration, we need a way to give
QoS guarantees to user processes running under Linux. Linux is currently scheduled
as background activity in the RT-Linux executive, i.e. only when there is no active hard
real-time tasks. If Linux is scheduled in background, no QoS guarantee is possible at
the soft real-time level, because the amount of execution time allotted to Linux is not
distributed evenly and Linux can be delayed by real-time tasks for large time intervals.

A possible solution is to use resource reservation algorithm in the RT-Linux executive,
like the CBS algorithm. SSSA is collaborating with UPVLC for this purpose, and the
CBS will be provided as optional component of the RT-Linux scheduler in Workpackage
5 of the project.

However, we also need a way to analyse the schedule and being able to provide QoS guar-
antees at the Linux level. The analysis of such a hierarchical scheduler is still missing
from the real-time system literature. Some hierarchical system based entirely on fixed
priority schedulers has been analysed by Saewong et al. [Sae02]. Statically scheduled
hierarchical systems have also been addressed by Feng and Mok [Fen02]. However, no
methodology exists to derive the parameters of the scheduling depending on the applica-
tion characteristics. Also, it is not currently possible to analyse hierarchical schedulign
systems based on EDF. In the OCERA project we will explicitly address this topic.

SSSA is also involved in the FIRST IST project. One of the goal of the FIRST project is
to study the composition of schedulers, and the analysis of such hierarchical systems.
Therefore, the two projects, OCERA and FIRST, will collaborate to this end by exchang-
ing ideas and results.

Finally, it is important to note that the ARTIST network of excellence has considered
the study of resource reservation and of hierarchical schedulers an important issue for
future real-time systems research.

OCERA. IST 35102 10

Chapter 3. Resource Management

3.1. Allocating Resources

Real-time systems have traditionally been thought of as static systems, in which tasks’
parameters are known in advance, and scheduling can be performed based on this a-
priori knowledge. For example, when tasks’ minimum inter-arrival times and maximum
execution times are known a-priori, it is possible to perform an admission test in order
to guarantee that all the deadlines will be respected.

In recent years, a considerable amount of work has been done to apply real-time
techniques to new kinds of time-sensitive applications, which are inherently more
dynamic than classical real time applications. Examples are multimedia streaming
programs, video/audio players, software sound mixers, and embedded systems used in
data-intensive contexts, where relatively high volumes of sensor data are flowing and
must be processed and analysed in real time.

Due to their temporal constraints, these systems are great candidates for using real-
time techniques; however, they present new challenges due to the variability and unpre-
dictability of their processing times, and to the data-dependent processing requirements
that characterise them. When multiple real-time tasks of this type share the same CPU,
allocating resources to them becomes difficult, and the tasks can be properly served only
if the resource scheduler is able to cope with the high variance and unpredictability of
their requirements. To better understand the scheduling problem in these conditions,
two different situations should be considered:

1. The sum of the average amount of resources needed by all the tasks is bigger than
the amount of available resource

2. The sum of the average amount of resources needed by all the tasks is less than the
amount of available resources

In the first case, the system is said to be overloaded, and it is impossible for the scheduler
to serve the applications so that all their QoS constraints are respected. To enable the
scheduler to properly schedule all the system tasks, applications must implement some
kind of QoS adaptation. This mechanism can be an effective policy for reducing their
requirements and removing the overload condition [Abe01], otherwise the scheduler will
choose which tasks to privilege based on some user-defined importance [Abe99-3].

When the amount of available resources is sufficient for serving all the applications
so that they respect their QoS constraints, the scheduling problem becomes more in-
teresting, since a properly designed scheduler could provide a considerably better QoS
compared to a conventional scheduler. Since the tasks running in the system are char-
acterised by unpredictable behaviour, it is important to provide temporal protection (as
described in the previous chapter), so that each task is protected from the fluctuations
in the resource requirements of the other ones.

It is clear that we need some way of dynamically adapting the scheduling parameters
to the actual workload. We propose to do this, by using a feedback controller to monitor
and adapt the reservation to the observed requirements. In other words, we believe that
a combination of feedback scheduling techniques and resource reservations is a useful
technique for properly serving time-sensitive applications in a modern multimedia OS.
Some of the advantages of this combined use of feedback and reservation techniques
are:

» Better portability of real-time code: using a feedback reservation-based scheduler, the
performance of the application does not depend on the execution time estimation.

11

Chapter 3. Resource Management

Thus, the application can easily run on different machines and achieve a predictable
QoS level.

* A higher-level programming interface: the use of a feedback mechanism in a
reservation-based scheduler permits the implementation of high level task models
that separate the task parameters from the scheduling parameters

» Robustness to variations in execution times, either caused by DMA, caches, PCI bus
masters, and similar mechanisms, or by the interrupt handling overhead. Adaptive
schedulers can help to cope with the unpredictabilities caused by interference from
other tasks which affect cache hit rate, memory contention, pipeline effects, and so
on.

» Increased system efficiency: one of the biggest problems of reservation systems is that
resource reservations are often over-dimensioned, wasting system resources. Using
a feedback mechanism, each reservation can be automatically adapted to the appli-
cation’s real requirements, and an explicit reclaiming mechanism is not necessary
anymore. Note, however, that the degree of efficiency gained using a feedback sched-
uler depends on the “speed and accuracy of the adaptation”, or, to be more precise, on
the dynamics of the closed loop system.

Clearly, the efficiency requirement contrasts with the requirement of maximising the
QoS perceived by each single application. Using a feedback scheduler, it is possible to
specify the dynamic behaviour of the closed-loop system, enabling trade-offs between
efficiency and QoS. In other words, the problem of providing high system utilisation and
high QoS to applications can be decomposed into two simpler problems: 1) designing a
feedback controller that is stable and provides a specified closed-loop dynamics, defined
in terms of overshoot and response time, closed-loop poles, etc. and 2) choosing the closed
loop dynamic that provides the desired QoS/utilisation trade-off.

3.2. Feedback Scheduling

One of the biggest problems of CPU reservation systems is the selection of the frac-
tion (or bandwidth) of the CPU assigned to each task. In presence of wide variations
of the required computation time, one could either give the task too low or too high
a bandwidth. In the former case the system experiences unacceptable degradations in
the offered QoS, whereas in the latter case system resources are wasted. To cope with
this problem, many authors proposed the use of feedback control mechanism inside the
operating system. A first proposal of this kind for time sharing systems dates back to
1962 [Cor62]. More recently, feedback control techniques have been applied to real-time
scheduling and multimedia systems. However, little theoretical analysis of such mecha-
nisms has been provided. One of the main problems that hinders this type of analysis is
the lack of a realistic and analytically tractable model for “the plant”, i.e. for a real-time
scheduler. In [Abe01], this gap has been filled in for CPU reservation schedulers: the au-
thors proved that a CPU reservation scheduler for a task can realistically be modelled
as a switching and parametric dynamic system (the varying parameter being the com-
putation time of each activation of the task). The authors also addressed the problem of
developing a feedback scheduler based on resource reservations. They proposed to use
tools from control theory to design a feedback mechanism that imposes a closed-loop
dynamic of the system.

In this workpackage, we will provide an implementation of such techniques in Linux,
based on the Resource Reservation Scheduler described in Chapter 2, Resource Reser-
vation in Linux. The feedback mechanism will be implemented as a Linux module, called
gman, that can be an optional dynamically loaded (and hence activated in the system)
at any time.

OCERA. IST 35102 12

Chapter 3. Resource Management

A task (process) that wants to use the gman services, will have to send a "request" to the
module. The request can be accepted or refused. In case it is accepted, a CBS server is
created for the task and is inserted in the queue of CBS ready tasks. The initial budget
can be specified as an optional parameter of the request.

A user can also require a "Quality of Service monitoring” for a number of tasks, where
the sensitive data collected by the QoS manager can be traced on a log file (requires
system privileges).

There will be two classes of service: guaranteed service, and best-effort service. In the
guaranteed class, a task has to specify its temporal parameters as an initial contract.
This request can be accepted, if there are enough resources to guarantee a minimum
amount of service, or refused in case there is not enough bandwidth. The task can op-
tionally specify a "responsiveness parameter", which represents the level of responsive-
ness of the feedback controller. The use of feedback in this class is only optional, in that
a task can also be assigned a fixed reservation. In this case, the task QoS performance
will only depend on its own temporal behaviour.

In the best-effort service class, a task is always accepted unless the system is in perma-
nent overload situation. Clearly, it will recieve an acceptable service (i.e. enough band-
width) only when the system load is below a threshold.

3.3. Security

Since we decided to export the CBS scheduling facilities through the standard
sched_setscheduler() syscall, the CBS module must “intercept” setscheduler calls. In
our evaluation, this is the appropriate place for performing the checks in order to
avoid the security problems intrduced above. In particular, we want to avoid that an
unprivileged user allocates all the CPU time for his/her tasks, starving all the other
users’ tasks and even the root’s activities and the system’s daemons.

In our design, the scheduling module does not perform any admission test at all, and a
different security module can intercept the proper calls and implement the acceptance
policy. We believe that two alternative solutions are possible:

» The security module permits the creation of reservations only to a particular user
(for example a superuser, or a privileged user). A user level daemon having this user’s
rights will be responsible for the security tests and the schedulability tests.

e The security module implements the security policy (and the schedulability test) it-
self.

We decided to implement both solutions, and we will provide two different security mod-
ules, that intercept the setsched hook before the CBS module. When the setsched han-
dler provided by the security module is invoked, it enforces the security policy, returning
-1 if the security check fails, and invoking the setsched handler of the CBS module if
the security check is passed.

This approach for implementing security modules is similar to the one used by LSM
(Linux Security Modules), which uses hooks in the kernel for implementing security
policies.

As said above, we will develop two different security modules. The first one tries to move
the policy to user space (leaving only the mechanism in the kernel). In practise, every
time that a user tries to create a reservation, the security module checks if the user has
root privilege. If not, the sched_setscheduler() call fails. This is the same mechanism
regularly used by Linux to protect POSIX fixed priorities. A user level task, running
with root privileges, will be in charge of implementing the security policy, by receiving

OCERA. IST 35102 13

Chapter 3. Resource Management

users’ requests (through a Unix socket, or a named pipe), deciding if they are acceptable,
and eventually performing the proper system call.

The first solution has the advantage that the user level daemon can be controlled
through a configuration file (living in the /etc directory) to fine-tune the implemented
policy. On the other hand, it is probably less secure, because attacking an user level
daemon can be easier than breaking a policy implemented at kernel level. Hence, we
will develop a second module, which directly implements the security policy in kernel
space. This solution is obviously less flexible (the kernel module cannot parse a
configuration file), but we expect it to be more secure.

An example of very simple security policy is to allow a user to create a reservation if
only if the utilisation of all the non-root reservations is less than Bmax, with Bmax < 1.
Note that since we were going to implement an admission test for security reason, we
can also include the schedulability test in it.

OCERA. IST 35102 14

Chapter 4. Resource Management
Components

In this chapter, we shortly describe the components that will be developed as part of
Workpackage 4, "Resource Management". For each component, we describe the basic
structure of the implementation, measurable objectives to be checked at the end of the
implementation phase and relationship with other OCERA components.

4.1. Generic Scheduler Patch

Description

It is a small patch for the Linux kernel that provides useful hooks to the Linux scheduler.
Design

The patch will export the following 6 hooks to the Linux scheduler:

» the fork_hook is invoked when a new task is created;

« the cleanup_hook is invoked when a task is destroyed, so that the CBS scheduler
can deallocate the resources associated to it;

» the block_hook is invoked when a task blocks, so that the CBS module understands
that the current job is finished;

+ the unblock_hook is invoked when a task wakes up, so that the CBS scheduler is
notified of a new job arrival,

» the setsched_hook and getsched_hook are invoked when the sched_setsched() or
sched_getsched() system calls are called. If the hook function returns a negative value,
the system call must fail; if it returns 0, the system call succeeds and returns a success
value; whereas if the function returns a positive value the original Linux system call
code is executed as a callback.

Objectives

This patch has to be minimally invasive to limit the overhead and to minimise the de-
pendency of the particular Linux version. To evaluate the overhead of the proposed patch
we will measure duration of the system primitives with or without the patch.

Relationship with other components

The Resource Reservation Scheduling (described next) module requires this patch.

4.2. Integration Patch
Description

This patch will integrate the "preemption patch" for the Linux kernel with the RT-Linux
patch.

Design

The "preemption patch" will be analysed and compared with the RT-Linux patch. Once
again, the proposed modifications have to be minimal to make both patches work to-
gether.

Objectives

15

Chapter 4. Resource Management Components

This patch has to be minimally invasive. An evaluation of the work on this patch is on-
off: either the proposed modifications are correct, and the system works well, or they are
not correct and the system does not work!

Relationship with other components

The preemption patch improves the responsiveness of Linux application. Therefore its
use is optional for the Resource Reservation Scheduler.

4.3. Resource Reservation Scheduling Module
Description

It will be a dynamically loadable module for the Linux kernel that will provide a re-
source reservation scheduler for soft real-time tasks in user space. It will be based on
the Constant Bandwidth Server. This module is the core of Workpackage 4 and it will be
provided in different versions during the course of the project.

Design

A first version of this module will provide the basic resource reservation through the
CBS algorithm. A second version will provide reclamation of the unused bandwidth. A
third version will implement extensions for symmetric multiprocessors platforms (SMP).
In addition, we will investigate the possibility to extend such techniques to resources
different from the processor, as the network, the disk and the memory. Finally, We will
also investigate the possibility to provide inheritance mechanisms to deal with priority
inversion. All the versions of this module will be provided as a loadable module in the
Linux kernel, to exploit its modular nature. Every module will be based on the Generic
Scheduler Patch. In particular, it will install new functions for each one of the provided
hooks. The user will access the services of such module through the normal Linux API,
the sched_setsched() and sched_getsched() primitives. This access can be regulated by
some customisable access policy.

Objectives

This module will provide temporal isolation between Linux processes/threads. There-
fore, first we will evaluate to which degree two Linux activities can be temporally iso-
lated with these techniques. Experimental evaluation will be based mostly on multime-
dia applications that are of interest to the consortium.

In the second phase, we will evaluate the reclamation techniques that we will imple-
ment. In particular, we will make experiments to evaluate the reclamation abilities of
our implementation with respect to normal Linux.

In the final phase we will evaluate the SMP scheduler. In particular, we will measure
the maximum load achievable.

For all provided modules, we will also evaluate the overhead of the proposed schedulers,
by comparing the duration of the normal Linux primitives with the duration of the mod-
ified primitives.

Relationship with other components

This module depends on the Generic Scheduler patch. It provides services to the Quality
of Service Manager module.

Moreover, this module is useful also for the Fault Tolerant Workpackage (TBD: insert
number): some fault protection mechanisms need the temporal protection property and
will be based on the services provided by the resource reservation modules.

OCERA. IST 35102 16

Chapter 4. Resource Management Components

4.4. Quality of service Manager
Description

It will be a dynamically loadable module for the Linux kernel plus a process daemon that
will provide QoS management services. In particular, it will provide a mechanism for
identifying the temporal characteristics of a task and adjust its scheduling parameters
so to maximise its quality of service.

Design

As explained in 3, Resource Management, the algorithm will be based on a feedback
scheduling mechanism. The QoS module will accept requests from user processes for a
certain QoS level. The requirements will be expressed as "type" of the required service
(hard, soft or best effort), and with quantitative parameters (i.e. in the case of hard
requirements, the process must specify the worst case budget and the period of the
required reservation).

The QoS can decide to accept or reject such requests. Once accepted, the process will be
assigned a server with proper parameters. The process QoS will be constantly measured
and the server parameters adjusted in order to maximise the quality of the service ex-
perienced by the user. However, if the process does not respect the initial contract, the
QoS will be bounded within a certain limit.

This module will optionally provide a customisable access policies. In particular, it will
be possible to restrict the kind of requests that can be made only to authorised users:
for example, only trusted users can require a hard reservation.

The component will consist of dynamically loadable kernel module (QoS module) that
will measure the QoS and implement the control algorithm. In addition a daemon pro-
cess will accept the requests and send commands to the Scheduling module and to the
QoS module. The daemon process will also enforce the access policy and can be cus-
tomised through a configuration file.

Objectives

The objectives of this module are: to maximise the qos experienced by the user processes;
to maximise the resource utilisation; to protect the access to the qos services by means
of a customisable access policy. To evaluate its effectiveness we will provide theoreti-
cal proofs of the properties of the control algorithm. Moreover, we will experimentally
measure the effect of such policy on the quality of service experienced by the user with
respect to the behaviour under normal Linux. Finally, we will measure the overhead of
such techniques.

Relationship with other components

Of course, this module depends on the presence of the Resource Reservation scheduling
module.

4.5. User API

Description

This component is a set of one or more libraries that will provide a convenient API to
the user to access the Resource Management services.

Design

This API will be as similar as possible to the POSIX API provided by the RTLinux
executive: in this way, it will be possible to move a RTLinux thread from the hard real-
time level to the soft real-time level, and vice versa, with little effort. The library will
also be transparent to the underline Linux configuration.

Objectives

OCERA. IST 35102 17

Chapter 4. Resource Management Components

To provide transparent and easy access to the Resource Management services. We will
measure the effectiveness of our approach by measuring the amount of code to be
changed to port a RT-Linux thread to execute under Linux (ideally it should be 0 lines
of code).

Relationship with other components

To work effectively, this library depends on the presence of the other Resource Reserva-
tion modules.

OCERA. IST 35102 18

Bibliography

[Abe98] Luca Abeni and Giorgio Buttazzo, Integrating Multimedia Applications in Hard
Real-Time Systems, December 1998, IEEE Real-Time Systems Symposium.

[BWI] Gerardo Lamastra, Giuseppe Lipari, and Luca Abeni, A Bandwidth Inheritance
Algorithm for Real-Time Task Synchronization in Open Systems, December 2001,
IEEE Real-Time Systems Symposium.

[Abe01] Luca Abeni and Giorgio Buttazzo, Hierarchical QoS Management for Time Sen-
sitive Applications, May 2001, Proceedings of the IEEE Real-Time Technology and
Applications Symposium (RTAS 2001).

[GRUB] Giuseppe Lipari and Sanjoy Baruah, Greedy reclaimation of unused bandwidth
in bandwidth sharing servers , June 2000, IEEE Proceedings of the 12th Euromicro
Conference on Real-Time Systems.

[CASH] Marco Caccamo, Giorgio Buttazzo, and Lui Sha, Capacity Sharing for Overrun
Control , Dec. 2000, Proceedings of the IEEE Real-Time Systems Symposium .

[Abe99-3] Luca Abeni and Giorgio Buttazzo, Adaptive Bandwidth Reservation for Multi-
media Computing, Dec 1999, Proceedings of the IEEE Real Time Computing Sys-
tems and Applications.

[Cor62] F. J. Corbato, M. Merwin-Dagget, and R.C. Daley, An Experimental Time-sharing
System, May 1962, Proceedings of the AFIPS Joint Computer Conference.

[Abe01] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole, Analysis of
a Reservation-Based Feedback Scheduler, Dec 2002, Proc. of the Real-Time Systems
Symposium.

[MCBS] Sanjoy Baruah, Joel Goossens, and Giuseppe Lipari, Implementing constant-
bandwidth servers upon multiprocessor platforms , Sept. 2002, Proceedings of the
IEEE International Real-Time and Embedded Technology and Applications Sym-
posium.

[Sae02] Saowanee Saewong, Ragunathan Rajkumar, John P. Lehoczky, and Mark H.
Klein, Analysis of Hierarchical Fixed-Priority Scheduling , June 2002, Proceedings
of the 14th IEEE Euromicro Conference on Real-Time Systems .

[Fen02] Xiang Feng and Al Mok, Proceedings of the $23"\mathrm{rd}}$ IEEE Real-
Time Systems Symposium , Dec. 2002, .

19

	
	Design of Resource Management Components
	Table of Contents
	List of Tables
	List of Figures
	Document presentation
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Objectives
	1.3. Summary of Resource Management Components
	1.4. Organisation of the report
	Chapter 2. Resource Reservation in Linux
	2.1. Background on Resource Reservation
	2.2. The Constant Bandwidth Server
	2.3. Implementing CBS in Linux
	2.3.1. Task Model
	2.3.2. Structure of the implementation
	2.3.3. Reclaiming spare resource
	2.3.4. Resource Reservation on Multiprocessor platforms

	2.4. User Library
	2.5. Mixed Hard/Soft configuration
	Chapter 3. Resource Management
	3.1. Allocating Resources
	3.2. Feedback Scheduling
	3.3. Security
	Chapter 4. Resource Management Components
	4.1. Generic Scheduler Patch
	4.2. Integration Patch
	4.3. Resource Reservation Scheduling Module
	4.4. Quality of service Manager
	4.5. User API
	Bibliography

