
WP4 – Resource Management
Components

Deliverable D4.2_rep
Resource Management Components V1

WP4 – Resource Management Components : Deliverable 4.2_rep – Resource management
components V1
by Giuseppe Lipari, Luigi Palopoli, and Luca Marzario

Published April 2003
Copyright © 2003 by OCERA Consortium

Table of Contents
Chapter 1. Introduction ..1

1.1 Summary of components...1
1.2 Reference software platform..1

Chapter 2. Generic Scheduler Patch...2
2.1.Summary..2
2.2 Description...2
2.3 API / Compatibility..2
2.4 Implementation issues...2
2.5 Tests and validation...3

2.5.1 Validation criteria..3
2.5.2 Test...3

Chapter 3. Integration Patch...4
3.1.Summary..4
3.2 Description...4

Preemption patch ...4
Compatibility..5
Preemption Patch modifications...6
RTLinux code modifications..6

3.3 API / Compatibility..7
3.4 Tests and validation...7

3.4.1 Validation criteria..7
3.5 Installation instructions..7

Chapter 4. Resource Reservation Scheduling module...9
4.1.Summary..9
4.2 Description...9

Common definitions and assumptions..9
Basic CBS Algorithm..10
Reclamation..11
Energy saving (voltage scheduling)..11

4.3 API / Compatibility..11
PROC interface...12

4.4 Implementation issues...13
4.5 Tests ..13
4.6 Examples...14
4.7 Installation instructions..14

Patching the kernel..14
Compiling the qres module...15
Installing the qres module...16

Chapter 5. Quality of Service Manager..17
5.1.Summary..17
5.2 Description...17
5.3 API / Compatibility..18
5.4 Implementation issues...19
5.5 Tests and validation...19
5.6 Examples ..19
5.7 Installation instructions..20

Compiling the qmgr module...20

OCERA IST 35102 iii

Installing the qmgr module...20
Chapter 6. User API ..21

6.1.Summary..21
6.2 Description...21

LinuxThreads..21
6.3 API / Compatibility..22
6.4 Implementation issues...22
6.5 Tests and validation...22
6.6 Examples ..23
6.7 Installation instructions..23

OCERA IST 35102 iv

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 15/04/03 First release

OCERA IST 35102 v

Chapter 1. Introduction

1.1 Summary of components

The components described in this deliverable were designed to support quality of service
scheduling and management in the Linux kernel. They provide a framework for
developing real-time applications with non-critical timing constraints on the Linux
kernel.

A general description of the components, their structure, their objectives and the
expected results can be found in Deliverable D4.1 (“Design of Resource Management
Components”). In the first phase of the project, the following components have been
developed and they are part of the first OCERA main release:

•

Generic Scheduler Patch. (gensched) It is a small patch for the Linux kernel that
provides “hooks” for modules implementing generic scheduling policies. In our
particular applications, it is used to implement the resource reservation scheduling
module.

•

Integration patch. (pcomp) This component addresses important compatibility
issues between Linux and RTLinux.

•

Resource Reservation Scheduling module (qres) It is a dynamically loadable
module for the Linux kernel. It provides a resource reservation scheduler for real-time
tasks running in user-space.

•

Quality of Service Manager (qmgr) It is a dynamically loadable module that
provides a mechanism for identifying the temporal characteristics of a task and
adjusts its scheduling parameters according to a feedback controller.

•

User API. (qlib) A library for supporting periodic threads in Linux, compatible with
the RTLinux API.

These components are released for the first time (version 1.0) as part of the main
OCERA release 1.0. In the next phase of the project we will improve all the components,
by both performing extensive tests” and by adding new functionalities.

In the remainder of the deliverable, for component we will dedicate a chapter to describe
its structure, how it was implemented and compatibility issues. We will also report the
result of the tests and some performance measures related to the component, where
applicable.

1.2 Reference software platform

As described in Deliverable D8.1 (Integration Plan), we decided to develop our
components using Linux 2.4.18 and RTLinux 3.2-pre1.

OCERA IST 35102 1

Chapter 2. Generic Scheduler Patch

2.1.Summary

•

Name: gensched

•

Description: generic scheduler patch.

•

Author: Luca Abeni (luca@sssup.it)

•

Reviewer

•

Layer: Low level Linux components

•

Version: 1.0

•

Status: released (beta)

•

Dependencies: none

•

Release date: April 2003 (MS 2)

2.2 Description

The patch will export the following 6 hooks to the Linux scheduler:

•

the fork_hook is invoked when a new task is created;

•

the cleanup_hook is invoked when a task is destroyed;

•

the block_hook is invoked when a task blocks;

•

the unblock_hook is invoked when a task wakes up;

•

the setsched_hook and getsched_hook are invoked when the sched_setsched() or
sched_getsched() system calls are called. If the hook function returns a negative
value, the system call must fail; if it returns 0, the system call succeeds and returns a
success value; whereas if the function returns a positive value the original Linux
system call code is executed as a callback.

2.3 API / Compatibility

No new API is exported.

2.4 Implementation issues

The patch has been designed to be minimally invasive. Therefore, it only modifies a few
points in the Linux scheduler, so as to maintain high level of compatibility and re-
usability. We expect a small effort in porting the gensched patch to new versions of the
Linux kernel.

OCERA IST 35102 2

However, there is an evident drawback, since it is difficult to implement complex
scheduling policies by only using the gensched patch hooks. In particular, it is
impossible to distinguish between the different blocking situations that a process may
undergo. Indeed, the block_hook invoked by the Linux scheduler does not provide any
information on the reason for the blocking. Therefore, we are not currently able to
understand why the process has been blocked. We plan to improve this behaviour in a
future version of the patch.

2.5 Tests and validation

2.5.1 Validation criteria
This patch has to be minimally invasive in order to limit the overhead and to minimize
any dependency of the particular Linux version.

2.5.2 Test
All the basic scripts of the LTP package have been run, and all tests have been
successfully passed.

OCERA IST 35102 3

Chapter 3. Integration Patch

3.1.Summary

•

Name pcomp

•

Description Compatibility between the preemption patch and the RTLinux patch

•

Author: Carlo Andrea Orrico (orrico@ocera.sourceforge.net)

•

Reviewer

•

Layer: Low Level Linux component

•

Version 1.0

•

Status: released (alpha)

•

Dependencies: it requires Linux 2.4.18 and RTLinux 3.2-pre1

•

Release date April 2003 (MS2)

3.2 Description

The aim of this component is to make two different patches to the Linux kernel, the
Preemption Patch [PRK] and the RTLinux patch, work together. The RTLinux patch is
necessary to make RTLinux work. The Preemption Patch, based upon Robert Love's
Preemptible Kernel work, reduces the latency of Linux by allowing preemption to occur
inside Linux. By using the Preemption Patch and the Low Latency Patch [LLP], the
latency of many Linux operations is significantly reduced. Therefore, both patches are
very important for soft real-time scheduling at the Linux user level. In the mixed
OCERA configuration, both hard real-time with RTLinux and soft real-time with Linux
are required at the same time. Therefore, we need to apply all three patches.

However, while the Low Latency Patch does not interfere with the RTLinux patch, both
the Preemption Patch and the RTLinux patch modify the interrupt handling code. If the
two patches are applied at the same time, Linux crashes.

Thus this component is yet another patch that combines the two patches, RTLinux patch
and Preemption Patch, while retaining -to a reasonable extent- the advantages of both.

A summary of the patch description is offered next.

Preemption patch
The basic idea behind the preemption patches is to create opportunities for the scheduler
to be run more often and minimize the time between the occurrence of an event and the
running of the schedule() kernel function.

The preemption patch modifies the spin-lock macros and the interrupt return code so that
if it is safe to preempt the current process and a rescheduling request is pending, the
scheduler is called.

OCERA IST 35102 4

Originally, the Linux kernel code assumed that upon entry to the kernel, from a trap or
from an interrupt, the current process would not be changed until the kernel decides that
it is safe to reschedule. This was a simplifying assumption that allowed the kernel to
modify its data structures without requiring the use of mutual exclusion primitives (such
as spin-locks). Over time, the amount of code that modified kernel data structures
without protecting them has been reduced, to the point where preemption patches assume
that if the code being executed is not an interrupt handler and no spin-locks are being
held, then it is safe to context switch away from the current thread context.

The preemption patches add a field to the task structure (the structure that maintains
state for each thread) named preempt_count. The preempt_count field is modified by
the macros preempt_disable(), preempt_enable() and preempt_enable_no_resched().

The preempt_disable() macro increments the preempt_count variable, while the
preempt_enable() macros decrement it. The preempt_enable() macro checks for a
reschedule request by testing the value of need_resched and if it is true and the
preempt_count variable is zero, calls the function preempt_schedule(). This function

•

notifies the occurrence of a preemption schedule by adding a large value
(0x4000000) to the preempt_count variable,

•

calls the kernel schedule() function,

•

subtracts the value from preempt_count.

The scheduler has been modified to check preempt_count for this active flag, thus
reducing the quantity of code executed by the preemption routine.

The macro spin_lock() was modified to first call preempt_disable(), then actually
manipulate the spin-lock variable. The macro spin_unlock() was modified to manipulate
the lock variable and then call preempt_enable(), and the macro spin_trylock() was
modified to first call preempt_disable() and then call preempt_enable() if the lock was
not acquired.

In addition to checking for preemption opportunities when releasing a spin-lock, the
preemption patches also modify the interrupt return path code. This is assembly language
code in the architecture specific directory of the kernel source (e.g. arch/arm or arch/
mips) that makes the same test done by preempt_enable() and calls the
preempt_schedule() routine if conditions are right.

The effect of the preemption patch modifications is to reduce the amount of time
between when an wakeup occurs and sets the need_resched flag and when the scheduler
may be run. Each time a spin-lock is released or an interrupt routine returns, there is an
opportunity to reschedule.

Compatibility
Our patch contains a set of variations of the preemption patch by Robert Love that makes
it suitable for RTLinux. Namely, we identified three different compatibility problems.
The first problem is related to the mechanism used to access preempt_count. The
second is related to the enable/disable interrupt functions. The last one is related to the
interrupt handler. Finally, we modified RTLinux code in order to take advantage of the
introduction of preempt_count. A more detailed description of the three variations is
reported below.

OCERA IST 35102 5

Preemption Patch modifications
The preempt_count, introduced by the preemption patch, is modified by the three
macros described above (see linux/include/linux/spinlock.h), by the irq controller related
code (e.g. see linux/include/asm-i386/hw_irq.h) and by the interrupt return path code (e.
g. see linux/arch/i386/kernel/entry.S).

Each time an IRQ is issued this counter is incremented to prevent preemption when
running an interrupt handler. The counter is referred through the GET_CURRENT
macro that relies on the value of the ESP processor register to get the address of the task
structure of the current running Linux thread (e.g. see linux/include/asm-i386/hw_irq.h).

The first issue is that RTLinux real time tasks can modify the content of ESP, so when a
real time task is running and an IRQ is issued the GET_CURRENT macro returns a
wrong value and we can end up writing in some random location in memory.

Therefore, we have modified the GET_CURRENT code so when a real time task is
running it always returns the correct value. To this and, we rely upon the
get_linux_current function, which is a function defined in the RTLinux module
rtl_sched.c (see rtlinux/schedulers/rtl_sched.c).

We use this function through a pointer defined only when the rtl_sched module is
inserted. Therefore, in absence of real time modules, the call is perfomed on the old
GET_CURRENT macro (see include/asm-i386/hw_irq.h).

Another problem was in the use of the interrupt disabling functions. Generally RTLinux
does not allow Linux to make cli or sti hardware instructions except in a few places. One
of this is inside the interrupt controller related code (see arch/i386/kernel/i8259.c),
where RTLinux patch redefines the spin_lock_irqsave and the spin_unlock_irqrestore
macros and allows Linux to disable/enable hardware interrupts.

Now those macros also calls spin_lock/unlock macros that, as stated above, can disable/
enable preemption and check if the scheduler has to be called. We have to inhibit calls to
the scheduler while interrupts are disabled interrupts, since they could introduce long
latencies for interrupts handling and real- time tasks execution. Therefore, we modified
spin_lock_irqsave and spin_unlock_irqrestore and make them call _raw_spin_lock
and _raw_spin_unlock macros that avoid preemptions and calls to the scheduler.

Finally the preemption patch modifies the interrupt return path code, where it puts a
couple of cli, sti hardware instruction. We replaced them with two calls to software
emulating functions pointed by the two fields of the irq_control structure (see linux/
arch/i386/kernel/rtlinux.c) that is dynamically patched by the RTLinux module. Before
the insertion of RTLinux modules those calls are hardware calls, after the insertion
became soft ones (see 'patch_kernel' function in rtlinux/main/i386/arch.h).

RTLinux code modifications
Modifications to the RTLinux code are very simple. Inside RTLinux code we cannot call
the Linux scheduler safely nor can we access to the preempt_count variable in the
current task structure simply relying on the value of ESP.

When RTLinux code is running we simply do not want any preemption. We have
modified the rtl_spin_lock and rtl_spin_unlock macros so they call _raw_spin_lock
and _raw_spin_unlock, two other macros defined by the preemption patch that make no

OCERA IST 35102 6

calls to the scheduler and do not alter the preempt_count value. (see rtlinux/include/
rtl_sync.h) For the same reason, we replaced all the calls to the spin_lock/unlock
macros in the RTLinux code with the rtl_spin_lock/unlock ones.

The preempt_count variable in the current task structure is always incremented when
an IRQ is issued but when the RTLinux module is inserted we can have a different return
path from interrupt so the value of the counter should be adjusted properly, in particular
we have to decrement that counter when returning from interrupt without passing
through the standard Linux return path code. Moreover, when altering the counter, we
have to refer the correct value of current; once again we rely on the get_linux_current
function.

We also modified the interrupt handling code so, when RTLinux returns the control to
Linux, pending interrupts can be served as soon as possible without waiting for another
interrupt or a calls to the soft sti. (All code for interrupt handling in RTLinux is in
rtlinux/main/rtl_core.c)

Finally, when pending interrupts are served, preemptions should be first disabled and
then re-enabled. This happens every time Linux calls a soft sti (see rtl_soft_sti in rtlinux/
main/rtl_core.c).

3.3 API / Compatibility

This component does not provide any API.

3.4 Tests and validation

3.4.1 Validation criteria
The validation criteria, as reported in deliverable D4.1, is an on/off, meaning that either
the patch is correct and Linux does not crash, or it is not, and Linux crashes. In order to
verify compliance with these criteria, we ran both the LTP [LTP] testing suite and the rt-
Linux tests at the same time. We also ran some benchmarks (taken from LMBench
[LMBench]) that stress the system to compute some performance index. During the test,
Linux has never crashed and all tests have been successfully passed.

3.5 Installation instructions

1) Download an updated kernel version from the ocera distribution. It should be a Linux
2.4.18 with 'BigPhysArea' and 'LowLatency' patches already applied. The RTLinux
version should be a 3.2pre1. Suppose you put these kernels in ocera/kernel/

2) Apply the RTLinux patch found in RTLinux /patches directory:

 cd ocera/kernel/linux

 patch -p1 < ../rtlinux/patches/kernel_patch-2.4.18-rtl3.2-pre1

3) Patch Linux kernel with patch-linux-rtl3.2-preemption

 patch -p1 < ../../components/qos/pcomp/patch-linux-rtl3.2-preemption

OCERA IST 35102 7

4) Patch RT-Linux with patch-rtlinux-rtl3.2-preemption

 cd ../rtlinux

 patch -p1 < ../../components/qos/patch-rtlinux-rtl3.2-preemption

This version of RTLinux preemptable kernel is tested to work with RTLinux 3.2pre1 and
with Linux kernel 2.4.18. It has been tested with 'Preemption', 'Bigphysarea' and
'LowLatency' patches enabled but on '386' uniprocessor only with no 'Symmetric multi-
processing support' and no 'Local APIC support on uniprocessors'.

OCERA IST 35102 8

Chapter 4. Resource Reservation
Scheduling module

4.1.Summary

•

Name: qres

•

Description: It is a dynamically loadable module for the Linux kernel, that
provides a resource reservation scheduler for soft real-time tasks in user space.

•

Authors: Luca Abeni (luca@sssup.it), Luca Marzario (lukesky@gandalf.sssup.it),
Claudio Scordino (scordino@gandalf.sssup.it)

•

Reviewer

•

Layer High Level Linux Component

•

Version 1.0

•

Status Beta

•

Dependencies Depends on the Generic Scheduler Patch (gen_sched: see Chapter 2).
It may use the High Resolution Timer Patch. It may use the Preemption Compatibility
Patch (pcomp: see Chapter 4)

•

Release date: Aprile 2003 (MS2)

4.2 Description

This component implements a resource reservation scheduler. The algorithm is based on
the Constant Bandwidth Server (CBS) algorithm [Abe98]. However, we modified and
extended the original algorithm to take into account several practical issues. In our
implementation, a server can handle more than one task; an automatic reclamation
mechanism [Lip00] can be optionally activated; bandwidths can be tightly bounded
through a self suspension mechanism. All these features are currently available on a
single software module and they can be enabled/disabled through conditional
compilation (see Section 4.7 for more details on how to compile and install the
component). In the next version (second phase of this workpackage), we will provide
different custom modules available separately.

The complete algorithm is described in the following.

Common definitions and assumptions

A CBS S i is described by: the server budget Q i and the server period P i . The
server bandwidth U i=Qi /Pi is the fraction of the CPU bandwidth reserved to S i .
To avoid inconsistencies and overload situations, the following condition must hold at
all times:

OCERA IST 35102 9

 ∑
i

n

U i≤1

Therefore, a variation in the parameters (like for example the budget) is allowed only at
replenishment time, and only if the above condition is respected.

Dynamically, each server updates two variables qi , d i . Variable qi is the current

budget and keeps track of the consumed bandwidth. Variable d i is the server's
scheduling deadline. A server is active if any of its tasks has a pending instance and the
current budget is greater than 0. If there a is pending instance and the current budget is 0,
the server is suspended until the current budget is recharged. If at time t there is no
pending task's instance and the current budget is greater than 0, the server is still active if
td i – qi Pi /Qi , otherwise it is inactive.

The system consists of n servers and a global scheduler based on the Earliest Deadline
First (EDF) priority assignment. At each instant, the active server with the earliest
scheduling deadline is selected and the corresponding task is dispatched to execute.

A task corresponds to a Linux thread. A task instance (or job) is activated (or arrives)
just after it has been created with a fork() or with a pthread_create(), and when it is
unblocked. A task instance finishes when the thread is blocked. In this version of the
scheduler we do not distinguish between different blocking situations; every time a
thread is blocked, the scheduler interprets it as the finishing of the job.

Basic CBS Algorithm
The algorithm's rules are the following.

1. Initially, qi=0 , d i=0 and the server is inactive.

2. When a task is activated at time t, if the server is inactive, then qi=Qi and
d i=tP i , and the server becomes active. If the server is already active, then
qi and d i remain unchanged.

3. At any time t, the global scheduling algorithm selects the active server with the
earliest deadline d i . When the server is selected, it executes the first task in its
ready queue (which may be order according to any policy).

4. If some of its tasks is executing for x units of time, the server's current budget qi is
decremented by the same amount x.

5. The global scheduler can preempt the server for executing another server: in this
case, the current budget qi is no longer decremented.

6. If qi=0 and some of the server tasks has not yet finished, then the server is
suspended until time d i ; at time d i , qi is recharged to Q i , d i is set

to d i=d iP i and the server can execute again.

7. When, at time t, the last task has finished executing and there is no other pending task
in the server, the server yields to another server. Moreover, if td i−qi P i /Qi ,
the server becomes inactive; otherwise it remains active, and it will become inactive

OCERA IST 35102 10

at time d i – qiQi /Pi , unless another task is activated before.

Reclamation
An optional reclamation mechanism has been implemented. We choose Algorithm
GRUB [Lip00], which does a greedy reclamation of the unused bandwidth, i.e. it gives
all free bandwidth to the currently executing task. For this reason GRUB is not a fair
algorithm. However, it can be implemented with little additional overhead, and it can
also be used as a voltage scheduling algorithm, allowing energy saving.

The GRUB algorithm keeps track of a global variable U actt  called Total Bandwidth,
which is the sum of the bandwidth of all active servers at time t. Therefore, when a
server becomes active (rule 2) its bandwidth is added to U actt ; when a server

becomes inactive (rule 7), its bandwidth is decremented from U actt  . Finally, rule 4
is modified to take into account the reclamation:

4'. If If some of its tasks is executing for x units of time, the server's current budget
qi is decremented by xU act .

A proof of the correctness of the GRUB algorithm can be found in [Lip00].

Energy saving (voltage scheduling)
The same algorithm can be used as a voltage scheduling algorithm. Suppose that the
processor supports two different voltages, which results in two different processor
speeds, the nominal speed snom and the low speed slow , and suppose that the
processor normally works at speed snom . We define a minimum bandwidth and two
thresholds:

U low=
slow
snom

 U th1U th2U low

Then, we add two additional rules:

8. if U act is below the first threshold U th1 , the speed of the processor is set to
slow ;

9. if U act is greater than the second threshold U th2 , the speed of the processor is

set to snom .

These additional rules are currently under implementation and test on a version of Linux
that runs on a Intel PXA250 processor. Therefore, this feature it is only available as an
alpha release.

4.3 API / Compatibility

The provided module does not introduce any new primitive. However, it modifies an
existing primitive, the sched_setscheduler() standard Linux primitive, by allowing a
new kind of scheduler to be selected by the user.

The standard interface of the sched_setscheduler primitive is the following:

OCERA IST 35102 11

int sched_setscheduler(pit_t pid, int policy,
const struct sched_param *p);

where pid is the id of the process for which the new scheduling strategy can be set;
policy can be one of SCHED_FIFO, SCHED_RR, or SCHED_OTHER; p is a pointer
to a structure sched_parms that contains the scheduling parameters. The CBS module
provides a new scheduling policy, called SCHED_CBS.

Thanks to the use the gensched patch (see Chapter 2.), sched_parm has an additional
field sched_p, of type (void *), which can point to a dedicated structure that holds our
scheduling parameters for the CBS. The size of this structure must be put into another
field of sched_parms, called sched_size.

The CBS dedicated structure is listed below:

struct cbs_param {
 unsigned long int signature;
 int period;
 int max_budget;
};

To set the CBS scheduler for a certain process, it is necessary to write the following
lines of code:

struct sched_param sp;
struct cbs_param cs;

sp.sched_size = sizeof(struct cbs_param);
sp.sched_p = &cs;
cs.signature = CBS_SIGNATURE;
cs.max_budget = Q;
cs.period = T;

res = sched_setscheduler(getpid(), SCHED_CBS, &sp);

Notice that only the superuser can call the sched_setscheduler() primitive.

PROC interface
Also, an interface through the standard /proc file system is available. Currently, the
interface is only meant for debugging purposes. It is possible to analyse the status of the
scheduler by reading all important scheduling parameters for each task. The CBS module
can optionally provide the following file in the standard Linux virtual file system:

/proc/cbs/scheduler

which can be read as a normal text file and contains one line for each task served by a
CBS, in which all sensitive informations are listed. We are evaluating the overhead of
using such interface to see if it would be possible to send basic commands to the
scheduler through such interface.

OCERA IST 35102 12

4.4 Implementation issues

The qres module uses the generic scheduler patch to provide its services. In particular,
when the module is loaded (see function init_module in src/init.c), the hook function
pointers defined in the generic scheduler patch are assigned particular functions
provided by the qres module. All the rules presented in Section 4.2 are implemented in
such functions.

The CBS implements the EDF ready queue internally. Every task descriptor has a pointer
to a structure (called cbs_struct, in file src/include/cbs.h) where the CBS puts its own
task's related data. Among these data is the current budget, the period, the absolute
deadline, and so on.

If the MULTI option is defined (see Section 4.7), each CBS can handle more than one
task. How these tasks are scheduled by Linux is up to the standard Linux scheduler.

4.5 Tests

The qres module is currently distributed together with a test program that can be used to
verify the correct behavior of the module trough a graphical trace of the scheduling
process.

The test program is made up of two executable file: Schedtest and Filter.

The Schedtest program run a time consuming CBS task with a specified budget and
period. The syntax is:

 schedtest Q T seconds > tracefile

where Q is the budget of the server (in micro-sec), T is the period of the server (in micro-
sec), seconds is the execution time of the test and tracefile is the name of the file for
saving the trace. You can run more than one Schedtest program at the same time with
different budget and period to see the scheduling execution of CBS tasks.

Filter extracts some information from the output of Schedtest, the tracefile, and creates a
graphic trace file that can be visualized using the program xfig. The syntax is:

filter tracefile_1 ... tracefile_n > trace.fig

where tracefile_1 ... tracefile_n are the file previous created by the Schedtest program.

For example, to view the scheduling trace of two CBS tasks, the first with a budget of
20000 and a period of 60000 micro-sec, the second with a budget of 40000 micro-sec
and a period of 600000 micro-sec, for 30 seconds, just type:

./schedtest 200000 600000 30 > trace1 & ./schedtest
400000 600000 30 > trace2

This command runs two tests and creates two output files, called trace1 and trace2.

To create a grafic trace file, type:

./filter trace1 trace2 > trace.fig

OCERA IST 35102 13

This command creates a file called c.fig, that can be viewed using the xfig program.

4.6 Examples

The qres module is currently distributed together with two examples that can be used as
utilities.

Wrapper is a program that can be used to schedule a task with CBS scheduler. The
syntax is the following:

wrapper Q T COMMAND

where Q is the budget of the server (in micro-sec), T is the period of the server (in micro-
sec), and COMMAND is the name of the command to start (with its absolute path). For
example, to run the program top with a budget of 20000 and a period of 60000 micro-
sec, just type

./wrapper 20000 60000 /usr/bin/top

Cbser is a program that transforms a task running on the Linux system in a CBS task; its
syntax is the following:

cbser Q T PID

where Q is the budget of the server (in micro-sec), T is the period of the server (in micro-
sec), and PID is the Process ID of the task (to know the pid of the task is possible to use
the command top). For example, if the program find is running with the PID 2001, and
you want to run it with a budget of 20000 and a period of 60000 micro-sec, just type:

./cbser 20000 60000 2001

4.7 Installation instructions

CBS is a loadable Kernel Module that can be inserted on a Linux platform to distribute
the CPU time to the system tasks. Before using this feature, the following steps are
needed:

•

Patching the Linux kernel with the 'Generic Scheduler Patch'

•

Compiling the qres module

•

Installing the qres module

Patching the kernel
Locate the directory of the kernel on your Linux system (usually /usr/src/linux). Be sure
that the release of the kernel used on your system is 2.4.18 (to verify the kernel release
run the command 'uname -r'). If there isn't any kernel directory on the system, or if the
kernel release is wrong, download the kernel from http://www.kernel.org, and extract the
content of the file on a directory of your choice. Copy the 'Generic Scheduler Patch' on
the kernel directory, and type

OCERA IST 35102 14

patch -p1 < generic_scheduler.patch

Now the kernel is patched. To continue, it's necessary to compile and install the patched
kernel. Compile the kernel using the following commands:

•

 make dep

•

 make bzImage

•

 make modules

•

 make modules_install

Restart your system.

Compiling the qres module
If the kernel directory isn't '/usr/src/linux', set the environment variable KERNEL_DIR
typing the command 'export KERNEL_DIR=your_kernel_directory'. Go in the directory
containing the CBS code (usually qres/src). This directory should contain a file called
Makefile. There are many options that can be set during the compilation. The easiest
way to compile the module is to type 'make'. This will create a module with the basic
features. However, it's possible to specify the following options (which should be
appended to the 'make' command):

DEBUG =1 The module prints some warnings during the execution. To read the
warnings printed, type 'dmesg'

MULTI=1 Gives a bandwidth of 10% to all Linux tasks. In this way these tasks can
execute during the execution of the tasks scheduled by CBS scheduler. In
addition this option lets you assign an amount of bandwidth to a set of
tasks.

HRT=1 Use this option if you patched the kernel with 'High Resolution Timers'
patch. This gives to the system a good precision (below 10msec).

PRECISE_ALLOC=1 Any task scheduled by CBS scheduler executes exactly as
specified by its bandwidth (even if there is only one CBS task on the
system). This is a possible solution to solve some problems that the CBS
algorithm encounters when used to schedule very long jobs.

LOG=... During debugging often happens that the kernel is unable to correctly log
all the warning messages printed by the module. This option specifies the
directory of the logger to be used, and is usually set when the option
DEBUG is set too.

GRUB=1 The module uses the algorithm GRUB instead of CBS (GRUB is capable
of reclaiming the unused bandwidth).

GRUB_DEBUG=1 Works like the option 'DEBUG', and should be used when
the option 'GRUB' is set.

GRUB_EXTRA_BANDWIDTH=1 When a task blocks, its remaining budget is given
to next running task.

OCERA IST 35102 15

GRUB_PWR=1 Adds the feature of power saving to the GRUB scheduler, and must be
used only when the option 'GRUB' is set. By now, it is possible to use
this feature only on Intel PXA250 processors (see the option 'PXA250').

ARM=1 Enables a cross compiling for ARM processors. It requires the 'arm-linux'
utilities (i.e. Arm-linux-gcc).

PXA250=1 Enables a cross compiling for Intel PXA250 processor.

PROC=1 Enables the /proc FileSystem support for CBS scheduler.

QMGR=1 Support the qmgr module. You must enable this modules if you want to
use the qos manager module.

Installing the qres module
To install the module in the system, type 'make load' (equivalent to insmod). To
remove the module from the system, type 'make unload' (equivalent to rmmod).

OCERA IST 35102 16

Chapter 5. Quality of Service Manager

5.1.Summary

•

Name qmgr

•

Description: it is a dynamically loadable module for the Linux kernel that provides
QoS management services.

•

Author : Luca Marzario (lukesky@gandalf.sssup.it)

•

Reviewer:

•

Layer: Linux High Level.

•

Version 1.0

•

Status alpha

•

Dependencies: the module depends on the generic scheduler patch and on the qres
component. It takes advantage of the High Resolution Patch and of the Preemption
Patch [PRK].

•

Release date (milestone) April 2003.

5.2 Description

The use of computer based solutions for time-sensitive applications is increasingly
popular. Important examples include multimedia streaming, video-conference, CD/DVD
burning and so forth. Such applications are certainly time-sensitive but classical hard
real-time techniques prove unsuitable to support them.

Soft real-time scheduling solutions are commonly regarded as a better solution since
they provide temporal isolation, thus allowing for individual task timing guarantees.
Moreover, they approximate a fluid allocation of resources, which is certainly a
desirable feature to have, for instance, in multimedia applications. However, the problem
of finding a correct allocation of bandwidth to the different tasks is still to be considered
as a tough problem.

This problem is addressed in this software components and it essentially amounts to
finding an appropriate allocation of resources to competing activities. To this regard, a
static policy, in our evaluation, confronts unfavorably to a dynamic one. The main
argument to support this point of view is that there is often a structure in the dynamic
variations of resource requirements for tasks. For instance a typical movie alternates
“''fast scenes'' (which induce a heavy computation workload) to ''slow'' dialogues
between the characters (which on the contrary require a light computation). To take
advantage of this structure, we propose a dynamic adjustment of the bandwidth, in which
a software module complementary to the scheduler collects QoS measures for the
executing tasks and varies the assigned bandwidth accordingly.

The design of this module is largely based on concepts borrowed from control theory.

OCERA IST 35102 17

The application of control theory to scheduling problem has been explored in the recent
years. In our context, the design of a feedback controller is greatly aided by the
availability of a a dynamic model for CPU reservations [Abe02] combining accuracy
with analytically tractability. This result has opened up an interesting research field on
appropriate design of a feedback controller. A first result of this kind is shown in [Pal03]
and is the theoretical foundation for the algorithms used in the package. However, the
exploration of different alternatives is under way.

5.3 API / Compatibility

As in the qres scheduler component, the only way of setting the parameters for the
feedback scheduler is through the sched_setscheduler() standard API. The qmgr
module defines a new data structure:

struct qmgr_param {
 unsigned long int signature;
 unsigned long int cbs_period;
 unsigned long long int qmgr_period;
 unsigned long int qmgr_max_budget;
 unsigned int delta;
 unsigned long int h;
 unsigned long int H;
 unsigned long int ei;
 unsigned long int Ei;
 unsigned long int e;
 unsigned long int E;
};

The parameters have the following meaning:

•

signature identifies the structure and must be assigned the value
QMGR_SIGNATURE.

•

cbs_period is the same as the CBS parameter (see Section 4.2).

•

qmgr_period is the period of the task. It may be different from the period of the CBS
server. Usually, the period of the task is a multiple of the period of the server.

•

qmgr_max_budget is the maximum possible budget that can be assigned to the
server. The CBS inizial max_budget is inizialized with this value.

•

delta is the maximum estimated variation of the execution time between two
consecutive instances, and it is expressed in microseconds.

•

H and h are the maximum and minimum values, respectively, of each task's instance
computation time, expressed in microseconds.

•

Ei and ei are the maximum and minimum values, respectively, of the desired
scheduling error.

•

E and e are the maximum and minimum value, respectively, of the guaranteed
scheduling error.

OCERA IST 35102 18

To specify that a task has to be served by a CBS server with a feedback scheduler, we
have to invoke the sched_setscheduler in the following way:

struct qmgr_param parms;
struct sched_parms sp;

parms.signature = QMGR_SIGNATURE;
parms.max_budget = ...;
// set all parameters...

sp.sched_size = sizeof(struct qmgr_param);
sp.sched_p = &parms;

sched_setscheduler(getpid(), SCHED_QMGR, &sp);

5.4 Implementation issues

The qmgr module requires the presence of the qres module, as it completely relies on it
for task scheduling. When the qmgr module is loaded, it substitutes all the generic
scheduler hook with its own functions. When the sched_setscheduler() is called, it
checks if the signature is equal to QMGR_SIGNATURE. If it is not, it invokes the
original hook (i.e. the qres function). Otherwise, it simply sets the parameters to the
internal data structures, and then invokes the original qres hook, passing the correct data
structure.

When a task is blocked, the qmgr hook is called: it computes the new bandwidth to
assign to the CBS task and updates the corresponding max_budget field.

When a task forks, the new task by default is not handled by the qmgr module to not
compromise the execution of the parent.

When a task ends, the relative qmgr_struct is freed.

5.5 Tests and validation

A test suite has been devised and evaluated, but its application on the module is under
way upon the release of this document.

5.6 Examples

The qmgr module is currently distributed together with one examples that can be used as
utilities.

Wrapper_qmgr is a program that can be used to schedule a task with the Qos Manager.
The syntax is

wrapper_qmgr Qmax Tcbs Tqmgr h H ei Ei e E COMMAND

where Qmax is the maximum budget that can be assigned to the CBS server (in
microsec), Tcbs is the period of the CBS server (in microsec), Tqmgr is the period of the
task, h, H, ei ,Ei, e E are the execution time's profile of the task (see Section 5.3), and

OCERA IST 35102 19

COMMAND is the name of the command to start (with its absoulte path). For example,
for a task with a period of 32000 microsec (i.e. an mpegplayer):

./wrapper 10000 20000 32000 5000 90000 15000 0 20000
12000 /usr/bin/mpegplayer

5.7 Installation instructions

The qmgr module is based on the CBS module, so if you want to install this module, the
following steps are needed:

•

Installing the qres module (see Section 4.7)

•

Compiling the qmgr module

•

Installing the qmgr module

Compiling the qmgr module
If the kernel directory isn't '/usr/src/linux', set the environment variable KERNEL_DIR
typing the command 'export KERNEL_DIR=your_kernel_directory'. Go in the directory
containing the qmgr code (usually qmgr/src) and type 'make'. This will create a module
called qmgr.o.

Installing the qmgr module
To install the module in the system, type 'make load' (it's equivalent to the command
'insmod'). To remove the module from the system, type 'make unload' (it's equivalent to
the command 'rmmod').

OCERA IST 35102 20

Chapter 6. User API

6.1.Summary

•

Name qlib

•

Description A library for compatibility between RTLinux and Linux

•

Authors: Emiliano Giovannetti (giovannetti@gandalf.sssup.it), Giuseppe Lipari
(lipari@sssup.it)

•

Reviewer

•

Layer Linux user space

•

Version 1.0

•

Status alpha

•

Dependencies depends on the High Resolution timer.

•

Release date (milestone) April 2003, (MS2)

6.2 Description

This component is a library of functions for threads in user space that tries to replicate,
as much as it is possible the RTLinux API. The objective of this component is to let an
user to test a real-time application in user space.

The motivation is that Linux user space is a much more controlled environment, where
each application has its own memory space and faulty application cannot harm the
functionality of the entire system. Also, in user space it is possible to specify access
permissions for each user, so that a common user cannot access critical services and
compromise the functionality of the system.

LinuxThreads
The proposed library is built upon the LinuxThreads implementation of the POSIX
threads. The LinuxThreads implementation is known to be non-compatible with the
standard POSIX for signal handling. According to the POSIX standard, “asynchronous”
signal are addressed to the whole process (i. e. the collection of all threads), which then
delivers the signal to one particular thread. The thread that actually receives the signal
can be any of the threads that do not currently block the signal.

In LinuxThreads, each thread is actually a kernel process with its own PID, so external
signals are always directed to one particular thread. This is significantly different from
the standard.

Our library should not be based on any particular implementation of the POSIX threads.
However, we have to develop it on top on Linux, which currently supports only the
LinuxThreads. There are proposal that will probably change such implementation in the
future [Coo02]. This is also driven by the need for a faster and more responsible API.

OCERA IST 35102 21

The first release of this component is however based on the LinuxThreads
implementation. In the next release we will try to provide a library that is more adherent
to the standard.

6.3 API / Compatibility

The library currently supports a few functions for periodic thread support and for
suspension / activation of a thread.

struct timeval timeval_from_ns (long long t);

This function transforms a time value from nanoseconds (expressed as long long)
into a timeval structure.

long long timeval_to_ns (const struct timeval *ts);

This function transforms a time value from a timeval structure into nanoseconds
(expressed as long long)

int start_rt (void);

This function must be called before entering into “real-time mode”. It installs
some handler and initialise library's internal data structures.

int pthread_wait_np (void);

This function suspends the thread until it is awaken by calling either
pthread_make_periodic_np() or pthread_wakeup_np(), or by a timer expiration. If
the thread is periodic, it will be activated at the next period.

int pthread_suspend_np(pthread_t pth);

This function suspends the thread specified by the parameter until it is explicitely
activated by a pthread_wakeup_np(). If the suspended thread is periodic, it will
not be activated at the next period.

int pthread_make_periodic_np(pthread_t pth);

This function makes a thread specified by pth periodic with period ..., The period
is expressed in ... The thread can have an initial offset specified by ..., The thread
will be activated ath the following time instants, ... , unless is has been suspended
by a pthread_suspend_np().

6.4 Implementation issues

To work properly, the library needs the High Resolution Times patch installed. ...
describe the HRT.

6.5 Tests and validation

A complete set of test for this module is currently under development. As a preliminary

OCERA IST 35102 22

test, we have compiled and run, with little modification, two of the examples distributed
with RTLinux. The results obtained are quite encouraging, as the same output was given
by running the examples on RTLinux and on Linux with our library. However, a more
formal test suite is currently under development.

6.6 Examples

Not available yet.

6.7 Installation instructions

See the REAME file.

OCERA IST 35102 23

Bibliography
Abe02: Luca Abeni, Luigi Palopoli, Giuseppe Lipari, Jonathan Walpole, Analysis

of a Reservation-Based Feedback Scheduler, 2002

Abe98: Luca Abeni and Giorgio Buttazzo, Integrating Multimedia Applications in
Hard Real-Time Systems, 1998

Coo02: Jerry Cooperstein, Linux Multithreading Advances, 2002, http://www.
onlamp.com/lpt/a/2839

Lip00: Giuseppe Lipari and Sanjoy Baruah, Greedy Reclamation of Unused
Bandwidth in Constant Bandwidth Servers, 2000

LLP: Ingo Molnar, Low Latency Patch, , http://www.zip.com.au/~akpm/linux/
schedlat.html

LMBench: Larry McVoy and Carl Staelin, LMBench, Tools for Performance
Analysis, , http://www.bitmover.com/lmbench/

LTP: various, Linux Test Project, , http://ltp.sourceforge.net

Pal03: Luigi Palopoli, Luca Abeni, Giuseppe Lipari, On the applications of hybrid
control to CPU Reservations, 2003

PRK: Robert Love, Preemption Patch, , http://www.tech9.net/rml/linux/

OCERA IST 35102 24

