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Chapter 1. Introduction
The objective of this work-package is to design and implement the basic scheduling
components to build real-time systems.

This work-package is divided in two phases. The first phase is focused on implementing
scheduling algorithms and providing new facilities to control timing violations.

Although Linux and RTLinux are systems that provide an API close to the POSIX stan-
dard, both still lack some important facilities needed in real-time systems. For example,
RTLinux do not implement the basic UNIX signals mechanism, or the POSIX timers fa-
cility. An important effort will be done to overcome these basic requirements, and some
of the OCERA components that are going to be developed are not of new research in-
terest but are key features needed to provide a powerful and usable RTOS. Without
this basic infrastructure, it will be not possible to develop new functionalities. Since the
main objective of the OCERA project is to provide flexible and portable components, it is
mandatory to design the new components taking as starting point a POSIX compatible
RTOS.

Each component is described in a separate chapter. The information of each component
is organised as follows:

Description

A detailed description of the component, and a rationale about its role and interest
in a real-time operating system.

Some components implement well known facilities which are available in most
RTOS but not in RTLinux or Linux. These cases do not need special justification
nor description and these sections may be shorter.

Layer

As described in the "OCERA Architecture and Component Definition" document,
both Linux and RTLinux can be logically divided in three sub-layers: Low-level,
High-level and Application.

This section will present a description of the layer/s where the component is located.

API / Compatibility

The new API provided by the component if applicable. Also the compatibility with
the standards.

Dependencies

Most components are not stand-alone code, but depend on some specific environ-
ment. For example, the version of the compiler, RTLinux, Linux, other components,
hardware, etc.

Status

Each component is in a different development stage, some components are almost
finished (that is the code has been released) while others are being designed.

Implementation issues

Key aspects of the internal design of the component will be presented in this sec-
tion.

Tests

All the code produced in the OCERA project must be intensively tested and vali-
dated. All the functionality must be validated both reviewing the code by external
developers (other partner); and also by building a complete test suite.
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Chapter 1. Introduction

Validation criteria

A description of the expected results we try to achieve with the component. It also
will be commented in this section the overhead introduced by the new code, if any.

OCERA. IST 35102 2



Chapter 2. POSIX Signals

2.1. Description
Signals are an important part of multitasking in the UNIX/POSIX environment. Signals
are used for many purposes, including:

• Exception handling.

• Task notification of asynchronous event occurrence (timer expiration,...)

• Emulation of multitasking.

• Interprocess communication.

A POSIX signal is the software equivalent of an interrupt or exception occurrence. When
a task receives a signal, it means that something has happened which requires the task’s
attention.

POSIX define two types of signals: basic signals and real-time signals extensions. This
component provides only the basic signal mechanisms. The real-time POSIX signals
extension is far more complex (they are closer to message queues than to interrupts)
and require complex data structures.

POSIX signals were designed to be used in weight-processes systems, where each pro-
cess has its own signal handlers, signal mask and status. But in RTLinux, as well
as most embedded RTOS, the programming model is based on lightweight processes
(threads). The standard is not as clear and unambiguous as it should be. We had to
extend the semantics of the signals API to thread.

RTLinux-3.1 code already had partial signal support, some systems signals are sup-
ported but user signals and the facility to define signal handlers are not supported. We
completed the signal support to be fully UNIX compatible.

2.2. Layer
Signals are part of the core RTLinux executive, therefore they are located at the Low-
Level RTLinux layer.

2.3. API / Compatibility
The following synopsis presents the list of supported signal functions facilities:

rtl_sigaddset(sigset_t *set, sig);
rtl_sigdelset(sigset_t *set, sig);
rtl_sigismember(sigset_t *set, sig);
rtl_sigemptyset(sigset_t *set);

int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);
int sigprocmask(int how, const rtl_sigset_t *set, rtl_sigset_t *oset);
int pthread_sigmask(int how, const rtl_sigset_t *set, rtl_sigset_t *oset);
int sigsuspend(const rtl_sigset_t *sigmask);
int sigpending(rtl_sigset_t *set);
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2.4. Dependencies
RTLinux-3.1. Also tested on RTLinux 3.2-pre1.

2.5. Status
Released. All tests passed. This component is being considered to be included in the next
release of RTLinux.

2.6. Implementation issues
POSIX standard do not provide a clear description of how signals should be handled in
a multi-threading environment. We tried our best to provide an implementation as close
as possible to the standard. Two main issues have to be considered when implementing
POSIX.1 signals:

� Signal generation and delivery: A signal is said to be "generated" for (or sent to) a
thread when the event that causes the signal occurs. Examples of such events include
timer expiration, and invocations of the pthread_kill() function. In RTLinux, sig-
nals are generated immediately by setting the corresponding bit of the thread’s pend-
ing mask. A signal is said to be "delivered" when the appropriate action for the thread
and signal is taken. A thread executes the signal handler when it is the highest prior-
ity active thread.

Sending a non-blocked user signal implies to change the state of the thread to ready.
When a thread sends a signal via pthread_kill() to another thread with higher
priority, the scheduler is called immediately, and a context switch is done to run signal
handler in the context of the high priority thread. After returning from the signal
handler the thread will continue its execution at the point it was interrupted.

Our implementation differs from the POSIX standard in which the default handler
doesn’t kill the thread, but is just a null handler as SIG_IGN .

Signals are delivered sequentially, that is, when a thread is executing a signal handler
no other signal is delivered until the signal handler function exits. Finally, signal
handlers functions are executed always with interrupts enabled.

� When and where execute the signals handlers: In a conventional OS, the kernel
is executed in its own processor mode and memory space. While the kernel is running,
all the processes are stopped and the state of all the processes are stored in the PCB
(Process Control Block). RTLinux does not work like a conventional OS but like a set
of library functions. Concurrency is implemented as coroutines. There is no "context
switch" from user code to kernel code it is just a function call.

With this OS structure, there are two possible ways to implement the signal deliv-
ery: The first one is by manipulating thread’s stack (at the scheduler code before
rtl_switch_to() is called) in the thread code. And the second way is to call the
signal handler explicitly from the scheduler function after rtl_switch_to() . Both
approaches has been tested, and the second one has been selected because it is more
elegant, cleaner, secure, architecture independent and faster.

Note: during the POSIX.1 signals implementation, the following RTLinux bugs were
found (and solved):
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1. Stack overflow when sending RTL_SIGNAL_SUSPEND signal.

2. Infinite loop after calling pthread_mutex_unlock() (due to setting thread’s struc-
ture aborts field to zero in do_signal() ).

2.7. Tests
A total of twenty different tests have been implemented to check the functionalities.
Among other issues the following features have been tested:

• POSIX.1 Signals API: Sending a signal to threads, programing actions for signal,
signal handler execution, waiting for a signal, blocking signals, etc.

• Execution of signal handlers despite of being suspended, waking up thread from a
signal handlers (calling the scheduler from signal handlers).

• Signal handler preemption by higher priority threads.

• Finishing signal handler executions on non-periodic threads after being preempted.

• Programming various actions from different threads, to the same signal.

• Executing RTLinux scheduler API from signal handlers.

• Real-time requeriments in signal generation and delivery.

• The behavior of some functions (nanosleep() , sem_wait() ,...) after being inter-
rumped by a signal.

2.8. Validation criteria
Increases RTLinux POSIX compatibility, since signals are required in all POSIX/UNIX
systems. Reduces the cost of porting applications to RTLinux.

POSIX functionality relies strongly on the signals. For example, the POSIX timers can
not be implemented on a system with no signal support.

The overhead of the implementation is minimal. One of the previous tests showed that
two threads sending each other signals can send (and handle) 209 signals per millisec-
ond (in a PIII 500MHZ with APIC).

OCERA. IST 35102 5



Chapter 3. POSIX Timers

3.1. Descritpion
POSIX timers provides mechanisms to notify a thread when the time (measured by a
particular clock) has reached a specified value, or when a specified amount of time has
passed.

Although RTLinux has good and accurate timing facilities, it do not provides general
timer functionality. RTLinux defines only one timer for each thread, which is used to
implement the periodic behaviour of the thread.

This component implements the POSIX real-time extensions.

3.2. Layer
An efficient implementation of the timers has to be done at the lowest kernel level,
therefore this component is located at the Low-Level RTLinux layer. It deeply depends
on the scheduler and signal code.

3.3. API / Compatibility
This component provides all the functionalities described by the POSIX standard, but
the one related to real-time signals, because the signals component does not provide it.

int timer_create(clockid_t clockid, struct sigevent
*restrict evp, timer_t *restrict timer_id);

int timer_delete(timer_t *timer_id);

int timer_settime(timer_t timer_id, int flags,
const struct itimerspec *new_setting,
struct itimerspec *old_setting);

int timer_gettime(timer_t timer_id, struct itimerspec *expires);

int timer_getoverrun(timer_t timer_id);

Timers implementation supports both CLOCK_MONOTONICand CLOCK_real-time .

3.4. Dependencies
RTLinux-3.1 and POSIX signals component.

3.5. Status
Released. All tests passed. This component is being considered to be included in the
following release of RTLinux.

3.6. Implementation issues
In RTLinux timer_t type is implemented as a pointer to the timer_struct . When a
timer is created, the memory required to store the timer_struct is dynamically allo-
cated. For this reason, timer_create() can only be called while in Linux space, that
is, all timers must be created in the init_module() . For the same reason, timers can
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only be deleted in cleaun_module() . This implementation follows the general style of
RTLinux used in mutex, semaphores, threads, etc; all data is preallocated before the
threads are started.

Timers are stored in a linked list sorted by thread owner priority, which speeds-up the
code that finds the next timer to expire.

Note: during the implementation two bugs were found in the RTLinux code, on func-
tions usleep() and timespec_add_ns() .

3.7. Tests
We have used several tests sets to validate the component.

� Self built test suite: Among other things these programs checks:

• Timers resolution for both absolute and relative specs.

• Timers emulation of multitasking.

• POSIX timers API.

• Timers effects over RTLinux scheduler API functions
(pthread_make_periodic_np() , pthread_wait_np() ).

� POSIX Test Suite: Recently the Open POSIX Test Suite released a test suite with
timers coverage. We have used these tests slightly modified to run on RTLinux.
These tests are divided into four directories. Each one corresponding with the
functionality to test (timer_create() ,timer_delete() , timer_settime() ,
timer_gettime() ).

� High Res Timers: slightly modified to run on RTLinux.

3.8. Validation criteria
All tests have been passed (internal tests and independent external ones).

As in the case of signals component, increases RTLinux POSIX compatibility and re-
duces the cost of porting applications to Rtlinux.

Allows to implement watchdog timers.

The timers overhead is negligible when no timer is armed. When several timers are
armed, the overhead introduced is O(n) where n is the number of armed timers. Due
to the flexibility and changing scenarios (priority inheritance, scheduler operational
modes, different scheduling policies, etc.) it is not possible to use advanced data struc-
tures to achieve better worst case overhead. It is possible to use some heuristics to im-
prove the response time in some cases, but the worst case remains the same.
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4.1. Description
Barriers, are defined in the advanced real-time POSIX (IEEE Std 1003.1-2001), as part
of the advanced real-time threads extensions. A barrier is a simple and efficient syn-
chronisation utility. A barrier ensures that all processes in a group are ready before any
of them proceed.

4.2. Layer
It is a high-level RTLinux component, since it do not modifies the existing RTLinux
kernel, but adds functionalities to it.

4.3. API / Compatibility
The API is defined by the POSIX standard. Here is a list of the functions that are going
to be implemented.

int pthread_barrierattr_destroy(pthread_barrierattr_t * attr );
int pthread_barrierattr_init(pthread_barrierattr_t * attr );
int pthread_barrier_init(pthread_barrier_t * barrier, const pthread_barrierattr_t *attr,

unsigned int count );
int pthread_barrier_destroy( pthread_barrier_t * barrier );
int pthread_barrier_wait( pthread_barrier_t * barrier );
int pthread_barrierattr_getpshared( const pthread_barrierattr_t * attr int * pshared );
int pthread_barrier_wait( pthread_barrier_t * barrier );

4.4. Dependencies
It has no dependencies on other Ocera components.

4.5. Implementation issues
Basically, the implementation will consist of two files (pthread_barrier.c and
pthread_barrier.h ) that implements the functions of the API. This component must
not be implemented by means of a mutex, since this is an inefficient method.

4.6. Status
This component is still being developed.

4.7. Tests
In order to test the correct behaviour of Posix Barriers, some tests will be provided
with the component. Some debugging code will be inserted to validate the component.
A barrier can be used to force periodic threads to execute its first activation at the first
time. In real-time scheduling theory this is called the critical instant, that is, when all
threads want to execute its first activation at the first time. Therefore, barriers will
be very useful to implement this synchronisation. The test, in this case, will consist
of one barrier. All threads block on the barrier before making periodic. When the last

8



Chapter 4. POSIX barriers

thread arrives to the barrier, then all threads are allowed to continue execution. The
chronogram generated must prove how all threads stop before making periodic and are
active at the same time.

It also can be implemented some tests to use barriers with client-server systems. For
example, as a simple test one thread can write on a fifo whenever other thread wants.
This can be implemented by means of a barrier. When the client enters the barrier, then
the other thread can follow its execution that consists of a rt_fifo writing operation. The
results can be observed in the console.

4.8. Validation criteria
The proposed implementation will relay on special processor instructions to achieve low
overhead, instead of using mutexes to synchronise processes.

OCERA. IST 35102 9
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5.1. Description
As realtime applications become more complex, the availability of event tracing mecha-
nisms becomes more important in order to perform run-time monitoring. Recently, IEEE
has introduced tracing to the facilities defined by the POSIX standard. The result is
called the POSIX Trace standard.

Tracing can be defined as the combination of two activities: the generation of tracing in-
formation by a running process, and the collection of this information in order to be anal-
ysed. The tracing facility plays an important role in the OCERA architecture. Besides
its primary use as a debugging tool, the tracing component jointly with the application-
defined scheduler component are the key tools to build fault-tolerance mechanisms.

5.2. Layer
Low-level RTLinux. It is distributed as a patch.

5.3. API / Compatibility
The ptrace component supports all the Trace and the Trace Event Filter options defined
in the standard, subject to some minor changes and limitations. Overall, this allows the
programmer of a realtime application in RTLinux to perform filtered on-line tracing of
events at run time. Since RTLinux concurrency is limited to lightweight processes, this
implementation can not support the Trace Inheritance option. Also, the Trace Log option
has not been implemented due to the lack of permanent storage subsystem.

The following is the full list of the functions corresponding to the TCP which are sup-
ported (this particular subset of the trace functions is represented as (TC) in Figure
5-1):

int posix_trace_attr_destroy(trace_attr_t *);
int posix_trace_attr_getclockres(const trace_attr_t *, struct timespec *);
int posix_trace_attr_getcreatetime(const trace_attr_t *, struct timespec *);
int posix_trace_attr_getgenversion(const trace_attr_t *, char *);
int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict, size_t *restrict);
int posix_trace_attr_getmaxsystemeventsize(const trace_attr_t *restrict, size_t *restrict);
int posix_trace_attr_getmaxusereventsize(const trace_attr_t *restrict, size_t, size_t *restrict);
int posix_trace_attr_getname(const trace_attr_t *, char *);
int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict, int *restrict);
int posix_trace_attr_getstreamsize(const trace_attr_t *restrict, size_t *restrict);
int posix_trace_attr_init(trace_attr_t *);
int posix_trace_attr_setmaxdatasize(trace_attr_t *, size_t);
int posix_trace_attr_setname(trace_attr_t *, const char *);
int posix_trace_attr_setstreamsize(trace_attr_t *, size_t);
int posix_trace_attr_setstreamfullpolicy(trace_attr_t *, int);
int posix_trace_clear(trace_id_t);
int posix_trace_create(pid_t, const trace_attr_t *restrict, trace_id_t *restrict);
int posix_trace_eventid_equal(trace_id_t, trace_event_id_t, trace_event_id_t);
int posix_trace_eventid_get_name(trace_id_t, trace_event_id_t, char *);
int posix_trace_eventset_add(trace_event_id_t, trace_event_set_t *);
int posix_trace_eventset_del(trace_event_id_t, trace_event_set_t *);
int posix_trace_eventset_empty(trace_event_set_t *);
int posix_trace_eventset_fill(trace_event_set_t *, int);
int posix_trace_eventset_ismember(trace_event_id_t, const trace_event_set_t *restrict, int *restrict);
int posix_trace_eventtypelist_getnext_id(trace_id_t, trace_event_id_t *restrict, int *restrict);
int posix_trace_eventtypelist_rewind(trace_id_t);
int posix_trace_get_attr(trace_id_t, trace_attr_t *);
int posix_trace_get_filter(trace_id_t, trace_event_set_t *);
int posix_trace_get_status(trace_id_t, struct posix_trace_status_info *);
int posix_trace_set_filter(trace_id_t, const trace_event_set_t *, int);
int posix_trace_shutdown(trace_id_t);
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int posix_trace_start(trace_id_t);
int posix_trace_stop(trace_id_t);
int posix_trace_trid_eventid_open(trace_id_t, const char *restrict, trace_event_id_t *restrict);

The target or traced process (TP) is always composed by a set of real-time tasks executed
by the RT-Linux scheduler and, optionally, some Linux user processes. The RTL-PTtrace
system provides both levels with the two functions which the standard defines to this
role. These functions are:

int posix_trace_eventid_open(const char *restrict, trace_event_id_t *restrict);
void posix_trace_event(trace_event_id_t, const void *restrict, size_t);

The full list of functions available for the (TAP) (see Figure 5-1) at either of the applica-
tion levels is:

int posix_trace_attr_getclockres(const trace_attr_t *, struct timespec *);
int posix_trace_attr_getcreatetime(const trace_attr_t *, struct timespec *);
int posix_trace_attr_getgenversion(const trace_attr_t *, char *);
int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict, size_t *restrict);
int posix_trace_attr_getmaxsystemeventsize(const trace_attr_t *restrict, size_t *restrict);
int posix_trace_attr_getmaxusereventsize(const trace_attr_t *restrict, size_t, size_t *restrict);
int posix_trace_attr_getname(const trace_attr_t *, char *);
int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict, int *restrict);
int posix_trace_attr_getstreamsize(const trace_attr_t *restrict, size_t *restrict);
int posix_trace_eventid_equal(trace_id_t, trace_event_id_t, trace_event_id_t);
int posix_trace_eventid_get_name(trace_id_t, trace_event_id_t, char *);
int posix_trace_eventtypelist_getnext_id(trace_id_t, trace_event_id_t *restrict, int *restrict);
int posix_trace_eventtypelist_rewind(trace_id_t);
int posix_trace_get_attr(trace_id_t, trace_attr_t *);
int posix_trace_get_status(trace_id_t, struct posix_trace_status_info *);
int posix_trace_getnext_event(trace_id_t, struct posix_trace_event_info *restrict ,

void *restrict, size_t, size_t *restrict, int *restrict);
int posix_trace_timedgetnext_event(trace_id_t, struct posix_trace_event_info *restrict,

void *restrict, size_t, size_t *restrict, int *restrict,
const struct timespec *restrict);

int posix_trace_trygetnext_event(trace_id_t, struct posix_trace_event_info *restrict,
void *restrict, size_t, size_t *restrict, int *restrict);

5.4. Dependencies
RTLinux-3.1.

5.5. Status
First version (1.0) released. It is being considered to be included in the RTLinux-3.2
release.

5.6. Implementation issues
In a typical RTLinux application, the programmer usually splits the application code
in a set of realtime tasks (executed by the RTLinux executive) plus one or more Linux
user processes (executed by the Linux kernel). These two parts will be hereafter referred
to as the applications s RTLinux side and Linux side. If some trace support has to be
given to the two sides, the RTL-PT system has to be present at both. Therefore, we have
implemented RTL-PT as two cooperating trace subsystems, one at each level:

a. RTLinux trace subsystem. The RTL-PT support at the RTLinux level has been
integrated into the RT-Linux scheduler (module rtl_scheduler.o ). The trace sup-
port is then always available to the RTLinux application, whether or not the ap-
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plication wants to use it. Nevertheless, its overhead in the case of not using it is
practically null.

All the data structures necessary to keep the entire tracing status are created and
managed inside this module. These data structures include among other: control
information, the set of event types registered for the target and all the active streams
with its currently stored events.

b. Linux trace subsystem. Maybe the most natural way to support POSIX Trace
at the Linux level could have been to modify the Linux kernel by adding the re-
quired facilities as new Linux system calls. However, we chose not to do this for two
reasons: firstly, because then the support would have been completely coupled to a
particular version of the Linux kernel, and secondly because the actual functionality
to be supported (see below) did not actually require such ambitious implementation.
As a result, the decision was to implement this subsystem as a library to be linked
with any Linux process that required trace support (called libposix trace.a). This
library is made available in Linux when RTLinux (with the RTL-PT system) is com-
piled. Internally, this library communicates with the RTLinux scheduler (where the
RTLinux trace subsystem is) in order to make both systems work in a synchronised
manner. This communication is done by several dedicated RT-FIFOs.

Figure 5-1. POSIX trace systems overview.
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5.7. Tests
Although several simple functionality tests has been developed, the best way to test this
component is by using it. The POSIX trace was successfully used during the develop-
ment of the RTLGnat component.

5.8. Validation criteria
The main overhead introduced by the trace system is due to the amount of main memory
used to store the logged data. There is little margin to improve the implementation.
Some preliminary results show that the overhead of tracing an event is in the range
from 100 to 500 nanoseconds.
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6.1. Descritpion
Application-defined scheduling (ADS for short) is an application program interface (API)
that enables applications to use application-defined scheduling algorithms in a way com-
patible with the scheduling model defined in POSIX. Several application-defined sched-
ulers, implemented as special user threads, can coexist in the system in a predictable
way.

Although research in scheduling theory has been one of the most active and fertile ar-
eas in real-time, most of the results had never been implemented in commercial RTOS.
A notorious example of this situation is the EDF (Earliest Deadline First) scheduling
policy; it is well known, with good theory background and in most cases provides better
performance than fixed priority algorithms. The EDF is not implemented in any com-
mercial RTOS. The commercial real-time market is very conservative, new theory is only
accepted when it has been tested and widely validated.

Previous to the Linux and RTLinux development, it was almost impossible to modify the
core kernel of a commercial RTOS since it is one of the best guarded industrial secrets.
RTLinux enjoys a special position in the RTOS area: it is accepted as a strong and valid
RTOS that can be used to build carrier grade applications, and also it can be easily used
by the academia researchers to include new functionality.

The application defined scheduler in RTLinux is a key facility which will help in the
adoption of the already available scheduling theory. The ADS enabled RTLinux to imple-
ment, in a very portable way, new scheduling algorithms that can be ported immediately
to other RTOS.

Application-defined scheduler was designed by Mario Aldea Rivas and Michael González
Harbour [Aldea02], and implemented in the MaRTE OS.

Figure 6-1. Conventional O.S. operation
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Figure 6-1 shows a simplified schema of how the scheduling subsystem of a conventional
operating system is internally designed. The internal scheduling algorithm (labelled
as "Internal Logic") receives all the events that may change the state of the threads,
and according to that information threads are dispatched to the processor or marked as
blocked. The scheduling policy is the part of the scheduling subsystem that select among
active thread the one that will be dispatched to the processor (CPU).

Figure 6-2. Application-defined scheduler O.S. operation

In a ADS system, the events related to scheduling decisions are not processed by the
operating system but delivered to the scheduler thread. The scheduler thread then
analyses the received information and sends back a list of actions to be performed by
the operating system. Figure 6-2 outlines the internal structure and the data flow.

It is important to note that the ADS do not remove the original scheduling facility. In
fact, there will be two different thread types depending on how are scheduled: system
scheduled and application scheduled threads.

At a first glance, it could seem that moving the scheduling policy out of the RTOS’s
kernel, would result in a high overhead. Nevertheless, the clever design and cleanness
of the interface proposed by M. González and M. Aldea, allows to implement almost any
scheduling algorithm in an easy and efficient way.

6.2. Layer
This component is located at the low level RTLinux layer. The core scheduler was modi-
fied to intercept the required events.

6.3. API / Compatibility
The application defined scheduler facility API is a little more complex than "normal" op-
erating systems services like file management since the ADS has to provide two different
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API’s. One API for the application scheduler thread and another API for the application
scheduled thread.

Following is the list of function that can use the application scheduler:

/* program scheduling actions ( suspending or activating threads) */
int posix_appsched_actions_addactivate(posix_appsched_actions_t *sched_actions,

pthread_t thread);
int posix_appsched_actions_addsuspend (posix_appsched_actions_t *sched_actions,

pthread_t thread);
int posix_appsched_actions_addlock (posix_appsched_actions_t *sched_actions,

pthread_t thread, const pthread_mutex_t *mutex);

/* Execute Scheduling Actions */
int posix_appsched_execute_actions (const posix_appsched_actions_t *sched_actions,

const sigset_t *set,
const struct timespec *timeout,
struct timespec *current_time,
struct posix_appsched_event *event);

/* Getting and setting app. Scheduled thread’s data */
int pthread_remote_setspecific(pthread_key_t key,pthread_t th,void *value);
void *pthread_remote_getspecific(pthread_key_t key,pthread_t th)

/* Set and get mutex-specific data */
int posix_appsched_mutex_setspecific (pthread_mutex_t *mutex,void *value );
int posix_appsched_mutex_getspecific (const pthread_mutex_t *mutex, void **data);

/* Scheduling events sets manipulation */
int posix_appsched_emptyset (posix_appsched_eventset_t *set);
int posix_appsched_fillset (posix_appsched_eventset_t *set);
int posix_appsched_addset (posix_appsched_eventset_t *set, int appsched_event);
int posix_appsched_delset (posix_appsched_eventset_t *set, int appsched_event);
int posix_appsched_ismember (const posix_appsched_eventset_t *set, int appsched_event);
int posix_appschedattr_seteventmask (const posix_appsched_eventset_t *set);
int posix_appschedattr_geteventmask (posix_appsched_eventset_t *set);

While in the application scheduled thread’s side the API is:

/* Explicit Scheduler Invocation */
int posix_appsched_invoke_scheduler (void * msg, size_t msg_size);

/* Manipulate application scheduled threads attributes */
int pthread_attr_setthread_type(pthread_attr_t *attr, int type);
int pthread_attr_setappscheduler(pthread_attr_t *attr, pthread_t sched);
int pthread_attr_setappsched_param(pthread_attr_t *attr, void *param, int size);
int pthread_attr_getappscheduler(pthread_attr_t *attr, pthread_t *sched);
int pthread_getappsched_param(pthread_t thread, void *param,int *size);

/* Application-defined Mutex Protocol */
int pthread_mutexattr_setappscheduler (pthread_mutexattr_t *attr,

struct rtl_thread_struct * appscheduler);
int pthread_mutexattr_getappscheduler (const pthread_mutexattr_t *attr,

struct rtl_thread_struct * *appscheduler)
int pthread_mutexattr_setappschedparam (pthread_mutexattr_t *attr, const

struct pthread_mutex_schedparam *sched_param);
int pthread_mutexattr_getappschedparam (const pthread_mutexattr_t *attr,

struct pthread_mutex_schedparam *sched_param);
int pthread_mutex_setappschedparam (pthread_mutex_t *mutex, const

struct pthread_mutex_schedparam *sched_param);
int pthread_mutex_getappschedparam (const pthread_mutex_t *mutex,

struct pthread_mutex_schedparam *sched_param);

6.4. Dependencies
This component depends on RTLinux 3.1, POSIX signals and Posix timers components.
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6.5. Status
It is a beta version. All the examples implemented in the MaRTE OS has been success-
fully compiled and run in RTLinux.

6.6. Implementation issues
Due to the special characteristic of RTLinux, where all the threads as well as the
RTLinux executive share the same memory space, system calls are implemented
as simple functions calls. Even in some cases, the API is implemented as inline
functions, and data can be shared (not copied) between RTLinux and user threads. It is
important to note that these optimisations do not jeopardise the standard API.

In the initial proposal of the POSIX-Compatible Application-defined Scheduling some
changes to the sched_param structure were proposed. Changing this structure will re-
quire the modification, among other things, of the standard "C" library. The new version
of the "C" library will not be backward compatible. Therefore, we decided not to mod-
ify the sched_param structure with new member variables but add new functions to
the API to send that parameters to the kernel. ADS authors (Mario Aldea and Michael
González) where alerted about the compatibility problem and they will include the sug-
gested changes in a new API review.

6.7. Tests
The test suite provided consists of the implementation of some well-known scheduling
policies using the application-defined scheduling API.

• Fixed priority preemptive scheduler: This is an implementation of RTLinux sched-
uler. This implementation allow us to check the correctness of implementation and
measure the overhead.

• EDF (Earliest Deadline First scheduler) [Liu73].

• CBS (Constant Bandwith Server) [Abeni98].

And the following resource management protocols:

• PCP (Priority Ceiling Protocol) [Sha90].

• SRP (Shared Resource Protocol) [Baker91].

The following policies and protocols EDF , CBS & PCP have been ported from the
MaRTE OS application-scheduling implementation, in order to check compatibility.

6.8. Validation criteria
The main problem of POSIX-Compatible application defined scheduling is the overhead
introduced. This overhead can be divided in two parts:

Application scheduled thread overhead:

There is no significative difference between the overhead introduced when schedul-
ing a system scheduled thread or an application scheduled thread.

Application-defined scheduler thread overhead:

This thread will introduce at least an additional switch context per application
scheduled thread activation (deppending on the scheduling policy) plus the cost of
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implementing the scheduling policy (find the most urgent, arm timers,....). In the
case of the fixed priority preemptive scheduler (the RTLinux default scheduling
policy) the overhead introduced is three times the overhead needed to schedule a
system thread per scheduled thread activation (introduces two context switches per
scheduled thread plus the cost of implementing the policy).
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7.1. Description
UNIX systems offers several possibilities for interprocess communication: signals, pipes
and fifos, shared memory, sockets, etc. In RTLinux, the most flexible one is shared mem-
ory, but the programmer has to use alternative synchronisation mechanism to build a
safe communication mechanism between process or threads. On the other hand, signals
and pipes lack certain flexibility to establish communication channels between process.

In order to cover some of these weaknesses, POSIX standard proposes a message passing
facility that offers:

• Protected and synchronised access to the message queue. Access to data stored
in the message queue is properly protected against concurrent operations.

• Prioritised messages. Processes can build several flows over the same queue, and
it is ensured that the receiver will pick up the oldest message from the most urgent
flow.

• Asynchronous and temporised operation. Processes have not to wait for opera-
tion to be finish, i.e., they can send a message without having to wait for someone to
read that message. They also can wait an specified amount of time or nothing at all, if
the message queue is full or empty.

• Asynchronous notification of message arrivals. A receiver process can configure
the message queue to notify him on message arrivals. So such a process can be working
on something else until the waited message arrives.

7.2. Layer
POSIX Message Queues is a message passing facility that relies only on services that
are already available or that are going to be incorporated by other components to the
RTLinux core. As they do not require any modification of the RTLinux, they can be
located at the High-Level RTLinux layer.

7.3. API / Compatibility
This components follows the POSIX API specification. The following synopsis presents
the list of supported message queue functions:

int mq_close (mqd_t);
int mq_getattr (mqd_t, struct mq_attr *);
int mq_notify (mqd_t, const struct sigevent *);
mqd_t mq_open (const char *, int, ...);
ssize_t mq_receive (mqd_t, char *, size_t, unsigned *);
int mq_send (mqd_t, const char *, size_t, unsigned );
int mq_setattr (mqd_t, const struct mq_attr *, struct mq_attr *);
ssize_t mq_timedreceive (mqd_t, char *, size_t, unsigned *, const struct timespec *);
int mq_timedsend (mqd_t, const char *, size_t, unsigned, const struct timespec *);
int mq_unlink (const char *)
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7.4. Dependencies
RTLinux 3.2. POSIX Signals are used if available.

7.5. Status
This component is in the first stages of development. An implementation of the basic
functionality is currently under testing. The asynchronous notify functionality and the
timed send and receive operations are still in its design stage, due to its dependencies
with POSIX signals.

7.6. Implementation issues
POSIX Message Queues implementation do not require to modify the core RTLinux
executive. So implementation issues are only intended for internal structures and algo-
rithms.

Two main issues has to be considered when implementing POSIX.1 signals:

• Queue creation: When a message queue is created, using the mq_open function, the
required information about queue and messages maximum size is available. There-
fore, the maximum memory requirements for operation of the message queue are
known and the resource reservation can be performed.

As RTLinux has no dynamic memory support, message queues creation can be per-
formed only when the module is loaded into the kernel. In this instant, Linux kernel
malloc is available for dynamic memory reservation and then mq_open function can
be implemented without problems.

As soon as the dynamic memory component will be available, a less restrictive imple-
mentation of the mq_open function can be performed.

• Sorting of the prioritised messages: POSIX Message Queues standard requires
that a receive operation always obtains as a result the oldest message with the highest
priority. That requires the message queue performs some kind of sorting that allows
to extract the messages in priority order, and within each priority in FIFO order.

Several possibilities arise when this sorting mechanism is analysed. The different
options that has been analysed for the implementation of this component are:

• Use a sorted queue that allocates all the pending messages sorted by priority and
within each priority in FIFO order. This structure can be, e.g., a heap of pointers to
messages. This solution provides low memory requirements, but each insertion and
extraction from the message queue will have a logarithmic computational cost.

• Use a sorted queue that allocates only one token per priority, sorting the queue
only by the priority value. Each token should have a pointer to a FIFO queue that
represents the pending messages of that priority. This implementation provides a
constant computational cost for insertions and extractions, when the queue of a
given priority is not empty, i.e., this solution optimises the FIFO access to the queue.
The memory requirements of this solution are probably proportional to number of
available priorities.

• Use a bitmap to store the priorities used by the pending messages and low-level
processor-specific instructions to find out the highest priority stored in the bitmap.
The rest of the implementation could remain as the previous solution (FIFO queues
within each priority).
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All these possibilities will be analysed carefully. Probably, all this solutions will be
available as configuration options in the final component. At this moment, the second
one has been selected as the basic sorting mechanism.

7.7. Tests
The basic conformance tests have been started and there are still no related results.
Open POSIX Test Suite [PTS] will be used if available, now the message queue facility
tests are under development.

7.8. Validation criteria
POSIX Message queue performance strongly relies on the performance of synchronisa-
tion mechanisms and the system memory bandwidth.
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8.1. Descritpion
RTLinux provides support for neither dynamic memory management nor virtual mem-
ory. This component provides the basic malloc , free and remalloc library functions.

This component meet the realtime requirements, that is, it will have a bounded and
predictable worst case response time. Other, design guidelines are:

• Low internal fragmentation.

• None external fragmentation.

• Immediate coalescing.

• Definable minimum block size.

• Definable splitting threshold.

The new proposed (and implemented) allocation algorithm is called Doubly Indexed Dy-
namic Memory Allocator (DIDMA).

8.2. Layer
Originally is was designed as a high-level RTLinux component, but it can be easily
ported to be used in the high-level Linux layer to replace the non-realtime glibc dy-
namic memory implementation.

8.3. API / Compatibility
In order to avoid naming conflicts, the API provided by DIDMA is non POSIX, it looks
like the API given by the ANSI C standard adding a rt_ prefix:

void *rt_malloc (size_t size)
void rt_free (void *ptr)
void *rt_calloc (size_t nelem, size_t elem_size)
void *rt_realloc (void *p, size_t new_len)

8.4. Dependencies
None. If the BigPhysArea[BPA] patch is installed then it can be used.

8.5. Status
The current version of DIDMA is beta 0.2.
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8.6. Implementation issues
DIDMA uses an indexed strategy with a fixed size preallocated data structure. The
structure used by DIDMA is implemented as two arrays indexed by two indexes.

Figure 8-1. DIDMA data structure
Mapping functions are used to quickly find the list of the required block size. The

mapping functions are optimised to use fast numeric functions (shifts, adds, etc).

The size of each of these two arrays is not fixed and can be customised to fulfil the
specific application requirements. These two parameters determine the response time
of the malloc() and free() functions and also the maximum fragmentation. A guide
to select the best valued of these parameters will be provided with the final version of
this component.

8.7. Tests
The tests will be used to both: validate that the proposed algorithm works correctly and
compare its performance with other algorithms.

Test 1: The first test calls 1000 times the malloc function with a value of 1 byte and
later it calls 1000 times the free function.

Test 2: For the initialization, the second test reserves 1000 blocks and later it free all
the blocks except the last block reserved, afterwards the second test calls 1000 times
malloc with increasing values, and later it calls 1000 times free .

Test 3: For the initialization, the third test reserves 1000 blocks of a increasing value
and then it only frees even blocks, when the initialization has finished, its behaviour is
like the first test but malloc is called with random values.

Test 4: The fourth test calls randomly 1000 times malloc with fixed values, these values
are: 16, 330, 512, 600, 816, 1030, 3000, 4800, 8000 and later free is called.

Test 5: The fifth test calls randomly 1000 times malloc or the free function with
random values.

8.8. Validation criteria
The worst case temporal complexity of the proposed algorithm (DIDMA) has to be
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bounded and it is data independent. The results of the tests (benchmarks) previously
presented show that DIDMA has better response time than the following studied
algorithms:

� Binary Buddy

� RTAI dynamic memory allocator

� RTEMS dynamic memory allocator

� Best fit

� First fit

Here are some preliminary results, running on an Athlon XP 2000 with 512 Mbytes of
RAM. The DIDMA algorithm parameters has been customised to First_Level_Index = 24
(with this value the size of the memory pool will be 16 MBytes) and Second_Level_Index
= 16 (the second level index has importance on the internal fragmentation), which are
reasonable default values.

First number is the time of the malloc() call and the second number is the time re-
quired to complete a free() operation (malloc/free). All the results are on microseconds:

Table 8-1. Test 1 results

DIDMA Bin Buddy RTAI RTEMS Best fit First fit
Average 85,6/160 161/176 59/82 80/88 109/145 110/134
Typical

deviation
18/31 64/46 16/15 21/14 18/17 18/13

Variance 337/1009 4154/2140 269/253 471/201 344/293 326/177
Maximum 416/416 1120/544 416/128 544/160 416/256 384/224
Minimum 64/128 96/128 32/64 64/64 96/128 96/128

Table 8-2. Test 2 results

DIDMA Bin Buddy RTAI RTEMS Best fit First fit
Average 221/194 Failed Failed 81/111 114/191 137/163
Typical

deviation
107/20 Failed Failed 15/19 15/42 15/16

Variance 11595/420 Failed Failed 254/370 255/1775 240/262
Maximum 384/416 Failed Failed 96/416 160/480 160/384
Minimum 64/160 Failed Failed 64/64 96/128 96/128

Table 8-3. Test 3 results

DIDMA Bin Buddy RTAI RTEMS Best fit First fit
Average 343/179 175/289 1172/154 1153/93 1627/186 136/154
Typical
deviation

119/21 53/114 283/256 275/17 209/40 15/18

Variance 14335/478 2843/13018 80378/65611 76002/288 43881/1630 238/354
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DIDMA Bin Buddy RTAI RTEMS Best fit First fit
Maximum 544/480 512/1312 1344/1472 1376/448 2560/512 192/416
Minimum 64/128 96/128 32/64 64/64 1504/128 96/128

Table 8-4. Test 4 results

DIDMA Bin Buddy RTAI RTEMS Best fit First fit
Average 186/175 142/172 94/112 168/89 1889/159 145/164
Typical

deviation
78/27 28/34 32/23 303/15 495/33 17/23

Variance 6188/734 793/1216 1058/535 92289/232 245114/1155 290/551

Maximum 416/256 448/448 224/160 1600/128 14944/352 224/256
Minimum 64/96 96/128 32/64 64/64 1632/128 96/128

Table 8-5. Test 5 results

DIDMA Bin Buddy RTAI RTEMS Best fit First fit
Average 341/154 180/264 64/56 1176/68 1626/160 134/130
Typical

deviation
119/17 52/110 11/13 279/12 209/38 14/16

Variance 14393/322 2744/12167 125/188 78232/154 44053/1477 206/263
Maximum 544/320 512/1152 128/96 1376/128 2560/320 160/192
Minimum 64/96 128/96 32/32 64/32 1472/96 96/96

As shown in the tables, DIDMA passed all the tests. A test was marked as "Failed" when
an algorithm was unable to allocated the requested amount of memory due to excessive
external fragmentation.

Although the First Fit algorithms perform the best in these tests, the theoretic worst
case response time is very high (search through a lengthy linked list). For this reason
the First Fit can not used in real-time systems.

The most important conclusion from these results is that the new proposed algorithm,
DIDMA, provides a good response time (low mean response time and bounded worst
case response time) and also it makes an efficient use of the available memory.
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9.1. Descritpion
In RTLinux, real-time tasks are implemented as kernel modules, implemented in "C".
RTLinux also provides support for the "C++" language.

Special care must be taken when writing kernel modules: a bug in a single task can
make the whole system to hang or crash, since these modules are executed in the kernel
memory space. "C" is a language widely used in low level programming because of its
high efficiency, but it is also true that it is not a programmer friendly language: simply
and error prone syntax, weak typed, no run-time cheking, etc.

This is clearly an area where Ada can be of great help: Ada’s strong typing, consistency
checking, robust syntax and readability, and the availability of high quality compilers,
encourage the writing of correct software and allow to catch bugs early in the implemen-
tation. RTLGnat is a porting of GNAT Ada compiler that allows to write rtlinux modules
in Ada language.

9.2. Layer
The modules create by RTLGnat are loaded on the RTLinux Applications layer. The
porting has been done using only the facilities already available in RTLinux. The base
RTLinux API has not been modified.

9.3. API / Compatibility
RTLGnat allows to load programs compiled in Ada 95 on RTLinux.

9.4. Dependencies
RTLGnat depends on the GNAT-3.14 compiler, GCC 2.8.1 and RTLinux-3.1.

9.5. Status
RTLGnat are on alpha status.

9.6. Implementation issues
A new kernel module, RT-Gnat Layer (RTGL), has been implemented with all the glue
code required by both RTLinux and the upper layers of the ADA runtime support.

On one side, the RTGL module exports the symbols (function and variable names) that
are required by the Linux module loader (like init_module , cleanup_module , author,
license and kernel version strings); and on the other side RTGL provides to the GNAT
runtime support the required, but not provided by RTLinux, OS API functions like for
example the malloc and free .

Some of these functions of the RTGL has been taken from the OSKIT project and from
the source code of GNU GCC 2.8.1. exported symbols.
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9.7. Tests
Tests programs has been developed to check the following functionalities:

• Simple sequencial programs.

• Delays.

• Exceptions.

• Tasks.

• Protected objects, ceiling_locking and dynamic priorities.

9.8. Validation criteria
Quantitatives

• Currently several test are being developed to obtain maximum achievable utilisation
of an harmonic task set.

• Some preliminary results show that the worst observed overhead in a task switch has
been 20 microseconds.

Qualitatives

• Posix Tracer in RTLinux, implemented by Andres Terrasa, has been used to verify the
operation of RTLGnat, and all the tests have been passed.

OCERA. IST 35102 27



Bibliography

[Aldea02] Mario Aldea-Rivas and Michael González-HArbour, 2002, 14 th Euromicro
Conference on Real-Time Systems (ECRTS’02), POSIX-Compatible Application-
Defined Scheduling in MaRTE OS.

[Abeni98] Luca Abeni and Giorgio Buttazzo, IEEE Real-Time Systems Symposium,
Madrid, Spain, 1998, Integrating Multimedia Applications in Hard Real-Time
Systems.

[Sha90] L. Sha, R. Rajkumar, and J.P. Lehoczky, 1990, IEEE Trans. on Computers, 39,
1175-1185, Priority Inheritance Protocols: An Approach to Real-Time Synchronisa-
tion.

[Baker91] T.P. Baker, 1991, The Journal of Real-Time Systems, 3, 67-100, Stack-Based
Scheduling of Realtime Processes.

[Liu73] C.L. Liu and J.W Layland, 1973, Journal of the ACM, Scheduling algorithms for
multiprogramming in a hard real-time environment.

[PTS] Posix Test Suite.

[BPA] Bigphysarea.

28


