
WP6 - Fault-Tolerance Components

Deliverable D6.2_rep - Fault tolerant
components V2

WP6 - Fault-tolerance components : Deliverable 6.2_rep - Fault-tolerant components V2
by A. Lanusse and P. Vanuxeem

Published April 2004
Copyright © 2004 by OCERA Consortium

Table of Contents
Chapter 1. Introduction ..6

1.1 Basic interaction between components..7
1.2 Principles of utilisation..8
1.3 Current implementation principles..12
1.4 Rapid overview of FT API ...14

Chapter 2. ftappmon component..15
2.1.Summary..15
2.2 Description ...15
2.3 API / Compatibility...16

FT appmon/appli API...17
FT appmon/controller API..19
FT appmon internal functions...20

2.4 Implementation issues...21
2.5 Tests and validation...25

2.5.1 Validation criteria..25
2.5.2 Test 1..25
2.5.3 Test 2..25
2.5.4 Results and comments..25

2.6 Examples ..25
2.6.1 How to run the examples...25
2.6.2 Description...25
2.6.3 Results and comments..26

2.7 Installation instructions..26
Chapter 3. ftcontroller component..27

3.1.Summary..27
3.2 Description...27
3.3 API / Compatibility...28

FT controller/sched API..29
FT controller/appmon API ...31
FT controller internal functions..32

3.4 Implementation issues...34
3.5 Tests and validation...36

3.5.1 Validation criteria..36
3.5.2 Test 1..36
3.5.3 Test 2..37
3.5.4 Results and comments..37

3.6 Example ..38
3.6.1 Description...38
3.6.2 How to run the example...39
3.6.3 Results and comments..41

3.7 Installation instructions..43
Chapter 4. ftbuilder component..45

4.1.Summary..45
4.2 Description...45

Development process..46
Task specification...49
Mode specification..50
Mode transition specification..51

OCERA IST 35102 3

4.3 API / Compatibility...52
4.4 Implementation issues...52
4.5 Tests and validation...52

4.5.1 Validation criteria..52
4.5.4 Results and comments..53

4.6 Example ..53
4.6.1 How to run the example...53

4.7 Installation instructions..53

OCERA IST 35102 4

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0
2_0

04/05/03
15/04/04

First release
Second release

OCERA IST 35102 5

Chapter 1. Introduction
In this document, FT- or ft- prefixe means fault-tolerant or fault-tolerance.

The fault-tolerance components included in this deliverable consists of two complementary
components (ftappmon and ftcontroller) which provide a framework for implementing degraded
mode management support. Located at the application level, they provide both global monitoring
of application and local control of execution. The current version handles only Hard real-time
RTLinux level. The two components must be used together.

The following schema proposes a FT architecture overview.

Figure 1 . FT architecture overview

The ftappmon (application fault-tolerance monitor) component is in charge of applying
application mode change on notification (from ftcontroller) of an abnormal situation related to a
particular ft-task. A ft-task is a user task for which fault-tolerance is required. It involves two
alternate threads, the first one implementing a nominal behavior and the second one implementing
a degraded behavior. These two threads are created during the application init phase but only the
nominal behavior is made active. The ftappmon defines the impact of the event on the current
running tasks and decides of a new configuration (stops tasks, switches tasks modes, activates new
tasks).

The ftcontroller component is a low-level RTLinux application component in charge of
controlling execution of ft-tasks. On detection of an abnormal situation on a thread related to a ft-
task (deadline miss or abort), the ftcontroller activates if possible the alternate thread (degraded
behavior thread) and propagates the event to the ftappmon.

In the current implementation, we consider the implementation architecture at the OCERA Hard
RT level only, and all the application tasks are hard real-time periodic tasks.

OCERA IST 35102 6

1.1 Basic interaction between components

The main interactions between components are illustrated in the following figure.

Figure 2 . Interactions with FT components

At init, information on application modes and tasks is dispatched between the different data
structures and tables in the ftappmon and the ftcontroller.

This concerns the list of all tasks of the application and their associated behaviors along with the
transition tables and error hooks.

When the application starts, threads are submitted with associated scheduling parameters to the
appscheduler. When threads are elected by the scheduler for running, a notification is made
towards the ftcontroller with the deadline parameter.

The ftcontroller keeps tracks of all threads started. If the threads end normally, the ftcontroller is
informed. If an error occurs or a deadline is missed, a specific handler stored in a table in the
ftcontroller applies immediate action. By default the action is to switch the active thread to his
alternate suspended thread. Then, the ftcontroller notifies the ftappmon of the abnormal event
and of task mode switch.

The ftappmon checks if the abnormal event triggers an application mode change condition and
activates it if it is the case. This results in a new configuration of tasks behaviors and associated
scheduling parameters to be submitted to the application scheduler.

The error management process can be illustrated by the next diagram.

Figure 3 . Error management process

For more details on the general philosophy of fault-tolerance issues in OCERA please consult the
Deliverable D6.1 (WP6 section).

OCERA IST 35102 7

1.2 Principles of utilisation

Using these two FT components requires an OCERA kernel implementation including at least the
ptrace component, the ftappmon and the ftcontroller.

A pure fault tolerant application must use only Hard RTlinux tasks. Controlled threads are limited
to threads associated to FT-tasks. An FT-task is an encapsulation that allows the transparent
management of fault-tolerance.

The FT API (fault tolerance application programming interface) provides to the application
developer specific FT functions which may be used in the application user code.

The FT application model specifies the ft-tasks behaviors, application modes and application
modes transitions related to faulty events. Related FT API functions permits to provide to the FT
components some information to achieve when needed degraded mode management at the task
level. When a ft-task running with a normal behavior is reported faulty, the alternate degraded
mode is then automatically activated.

The FT API provides also to the user specific functions to init, create and end the FT-tasks. The
ft_task_init and ft_task_create functions permit the initialization of data related to ft-task and to
create the related threads. The ft_task_end function permits to terminate a ft-task and its related
threads.

The code of tasks is written as usual in start-routines. The only difference is that the user must
define two behaviors for each ft-task. Two routines have to be defined for each ft-task, one
corresponding to the code to be run as the normal behavior of the task and the other one to be used
as a degraded behavior.

In the following example of application user code, a single FT-task is defined with two normal and
degraded behaviors.

First, the FT API headers have to be included in the application user code. In complement, the
header and source code corresponding to the FT application model have to be then included in
global part and init_module part of the application user code.

// FT API include

#include "ft_api_common.h"

#include "ft_api_appmon_appli.h"

// FT application model include code (generated code by FT-Builder)#include
"ft_appli_model.h"

int init_module(void) {

// FT application model source code (generated code by FT-Builder)

#include "ft_appli_model.c"

...

}

OCERA IST 35102 8

Then, the init_module part may use the two functions ft_task_init and ft_task_create in order to
initialise and create the ft-task.

int init_module(void) {

 ...

 // Init a ft-task

 // A ft-task has 2 threads with normal and degraded behavior

 ...

 task_id=ft_task_init(task_name,

 normal_behavior_routine,

 degraded_behavior_routine,

 normal_routine_param,

 degraded_routine_param,

 normal_sched_param,

 degraded_sched_param);

 // Create a ft-task with normal behavior

 // The normal thread is awaked each period

 // The degraded thread is waiting

 task_behavior=FT_TASK_NORMAL;

 ft_task_create(task_id,

 task_behavior);

 ...

 return 0;

}

Inittialisation and creation of FT-task

The ft_task_init function instantiates internal tables of the FT components adding a new FT-task
and data related. Some information have to be specified such as ft-task name, associated behavior
routines, behavior routines parameters (arguments) and behavior scheduling parameters (priority,
period, deadline, duration).

The ft_task_create function really creates the threads (encapsulating usual pthread_create
function) and activates the normal one.

Then, the behaviors of the ft-task are defined, by the way of the routines
normal_behavior_routine and degraded_behavior_routine . Note that at each behavior
(normal or degraded) corresponds one different thread. For this small example, those two
behaviors have almost the same code.

/**/

OCERA IST 35102 9

/* */
/* FT Application task : normal behavior routine */
/* */
/**/
void normal_behavior_routine(void *arg) {
 int no_cycle=0;
 int j=0;
 int nloops=0;
 int task_id=0;

 task_id = (int) arg;
 rtl_printf("\nApplication : ft-task %d, thread %d started, normal behavior",
task_id, pthread_self());
 rtl_printf("\nApplication : ft-task %d, thread %d switching to wait, normal
behavior\n", task_id, pthread_self());

 // Infinite loop
 while(1) {
 // Wait make periodic or next period of the normal behavior thread
 pthread_wait_np();
 if (no_cycle == 0) rtl_printf("\nApplication : ft-task %d, thread %d
switching to running, normal_behavior\n", task_id, pthread_self());
 no_cycle++;
 rtl_printf("\nApplication : ft-task %d, thread %d, no_cycle %d,
normal_behavior\n", task_id, pthread_self(), no_cycle);
 // Timing loop
 nloops=5000;
 for (j=0; j<nloops; j++);
 } // end of 'while'

 return;
}

Normal and degraded behavior routines of a FT-task

/**/
/* */
/* FT Application task : degraded behavior routine */
/* */
/**/
void degraded_behavior_routine(void *arg) {
 int no_cycle=0;
 int j=0;
 int nloops=0;
 int task_id=0;

 task_id = (int) arg;
 rtl_printf("\nApplication : ft-task %d, thread %d started, degraded
behavior", task_id, pthread_self());
 rtl_printf("\nApplication : ft-task %d, thread %d switching to wait, degraded
behavior\n", task_id, pthread_self());

 // Infinite loop
 while(1) {
 // Wait make periodic or next period of the degraded behavior thread
 pthread_wait_np();
 if (no_cycle == 0) rtl_printf("\nApplication : ft-task %d, thread %d
switching to running, degraded behavior\n", task_id, pthread_self());
 no_cycle++;
 rtl_printf("\nApplication : ft-task %d, thread %d, no_cycle %d, degraded
behavior\n", task_id, pthread_self(), no_cycle);
 // Timing loop
 nloops=5000;
 for (j=0; j<nloops; j++);
 } // end of 'while'

 return;
}

Finally, the cleanup_module function uses the ft_task_end function to cleanup the threads related
to a FT-task .

void cleanup_module(void) {

OCERA IST 35102 10

 // Delete a ft-task

 ft_task_end(task_id);

}

Cleanup of FT-task

For the definition of several FT-tasks, the user has just to make a loop on the ft_task_init,
ft_task_create, and ft_task_end functions and to define two normal and degraded routines by ft-
task with different names.

In complement, the application mode transition/switch, that is a more global mode change at
application level than only a ft-task behavior change, requires that several configurations of ft-
tasks be defined in a declarative way. A design/build tool named FT-Builder has been developped
in order to support the user in this design stage. The ft-builder generates the FT application model
(header and code).

OCERA IST 35102 11

1.3 Current implementation principles

The main issue of the implementation is the detection of events related to threads and the
possibility of reacting in a short and safe way to abnormal situations.

This implies a close cooperation with the scheduling component in order to :

• maintain a consistent and accurate image of the application (threads states);

• be informed of abnormal situations (abort or deadline miss as soon as they occur);

• be able to provide a replacement behavior in a deterministic way and in a
deterministic time.

In the current implementation of ft-components, we have made the choice to work in a way that
limits to the minimum the impact on other OCERA components (mainly scheduling components).
So we have used the tracing facility offered by the OCERA ptrace component to survey the kernel
events and react adequately to information gathered through this information source.

FT control architecture using the ptrace component

The ptrace component permits to track user and / or system events. The events are written by the
scheduler into streams that can be read later on by specialized tasks. The ptrace component may
also provide analysis and graphic support.

The ftcontroller is a periodic rtlinux task, it activates the kernel trace and reads system events
related to threads (in the kernel stream created by the ptrace component on activation of tracing
facility). It maintains a database of threads status and activates degraded behavior when abnormal
situation is detected.

OCERA IST 35102 12

The advantage of this choice of implementation is that we can test ft-components independently of
other components in a first place and validate the main architecture of the fault-tolerance
framework.

The status of the implementation is still in a stable phase even if some tests have to be performed
(verification). The example implemented tests degraded mode activation on detection of an
abnormal event.

Detection of abort is simulated through detection of kill event. The abort event is not
provided by the scheduler at the moment. This requires a deeper cooperation with
the scheduler components development teams.

Detection of deadline_miss is not supported yet even if some development has
started. The event is not provided by the scheduler used. In the future, if new
scheduler components provide the event we can use it, if not, we can use the ptimer
component to detect deadline_misses at the ftcontroller level.

Future extended development may concern :

1. Improved detection of abnormal events

2. Synchronization issues (atomicity and deterministic reaction time)

3. Continuation of development of application mode change facility (global).

The first point may be solved with close UPVLC cooperation and does not compromise the use of
the ptrace component as support for event detection.

The second point has to be improved and may require a slight change of implementation strategy.

Actually, the main drawback of this first implementation is the fact that atomicity is lost between
event occurrence at kernel level and handling in the ftcontroller since the detection mechanism
relies currently on a polling strategy.

The only guaranteed property is that if an abnormal event occurs on a controlled thread, it can be
detected and a reaction will take place within a delay bounded by the ftcontroller period (if the
edfscheduler is used).

A more reactive implementation may be envisaged. First, an awaking pattern for ftcontroller is
considered as a more appropriate mechanism than polling, where the ftcontroller will be waiting
for an event to occur and react as soon as it can be read in the stream. A second possibility would
be that when an abnormal situation is detected by the scheduler, the ftcontroller would be set to a
high priority in order to handle the event and get back to its normal priority afterwards. A third one
would be to let the scheduler use the ftcontroller API to handle the situation itself. The problem
with that last solution would be that it would imply the writing of specialized FT versions of
schedulers which would increase maintenance costs.

The third point has been seriously treated in the current implementation, in particular with the FT-
Builder development. It could be of course enriched, in particular concerning resources
(semaphore, mutex, fifo) management translation on different behaviors (threads) while
application modes change.

OCERA IST 35102 13

1.4 Rapid overview of FT API

The Fault-Tolerance components described in this document have to be used jointly since they
interfere strongly. It is the reason why though each one has its own API described in a distinct
section, it may be useful to get a general overview of them.

Each component provides both external and internal API.

The ftappmon offers the application developer (external) API , named FT API, that is restricted to
very few functions ft_task_init(), ft_task_create(), ft_task_end(). In complement, for FT
application model, some additional API functions have been added : ft_init_appli,
ft_set_appli_mode, ft_set_appli_control. The FT-Builder generating these function calls, these
last functions may be considered as transparent to the user.

The ftcontroller has an (external) API that can be used by the scheduler mainly to notify events to
the ftcontroller.

In addition, each component has also an (internal) API that permits interactions between them.

Interactions through FT APIs

In this schema, the application calls ftappmon external FT API functions at init (0), this induces
notification to the ftcontroller (1), then threads are created. Each time the scheduler produces an
event related to a ft_thread, a notification is issued (2) towards the ftcontroller. The information is
used to update the database and/or to react to abnormal situation (3). In case of abnormal situation,
a notification is issued from the ftcontroller towards the ftappmon(4). Then an application mode
switch can be activated (5).

The next sections describe in details the two FT components.

OCERA IST 35102 14

Ftappmon

Ftcontroller

ft_notify_task_created()
ft_switch_task_mode()
ft_set_task_status()
ft_get_task_status()
ft_get_task_mode()

ft_notify_thread_started()
ft_notify_thread_finished()
ft_notify_thread_deadline_miss()
ft_notify_thread_aborted()

ft_task_init()
ft_task_create()
ft_task_end()

ft_notify_failed_thread()
ft_switch_appli_mode()
ft_get_appli_mode()

0

2

3 4

5

6

1

User Appli

Scheduler

Chapter 2. ftappmon component

2.1.Summary

• Name : ftappmon

• Description :

• Author (name and email) :
A. Lanusse (agnes.lanusse@cea.fr)

 P. Vanuxeem (patrick.vanuxeem@cea.fr)

• Reviewer :

• Layer : application RTLinux Level.

• Version : V0.2

• Status : test

• Dependencies : ocera, requires ftcontroller component

• Release date : M2

2.2 Description

The ftappmon (or ftappmonitor) component is the FT Application Monitor. This component
consists of one controlling thread, an application control database and an application status
database.

Figure 4 . ftappmon : internal view

The application control database contains the transition conditions for application mode
change and the related actions.

OCERA IST 35102 15

Application mode change refers to dynamic reconfiguration of tasks in order to activate a
new functioning of the application. This new functioning in our case is consecutive to partial
failure of the application. The reconfiguration consists in redefining the set of eligible tasks
in the new context and their associated behavior.

In the current implementation, predefined configurations are stored in the Appli Control
Database and transition rules determine conditions of activation of a new mode.

The application status database contains information on the current configuration of the
application, i.e. for each ft-task its status and active mode.

The ftappmon controlling thread receives notification of errors and ft-task behavior changes,
analyses the situation and if necessary activates an application mode change.

Depending on the error and the current application mode, the ftappmon detects which
application mode transition must be fired. Then it compares the current configuration and
the new targeted one.

For each ft-task in the current configuration, the configuration change specification is :

If the ft-task is present in the new configuration with the same behavior, nothing is done
for the ft-task and its current running thread.

If the ft-task is present in the new configuration with a different behavior, the current
thread of the ft-task is aborted, and the alternate behavior is made active for the next
period.

For each ft-task not in the current configuration, new ft-tasks are created with appropriate
behavior.

Synchronization is ensured in order to respect the periodic functioning of the application.
Tasks interrupted during the period in which the error occurs will have misbehaving during
this period that will be tolerated by tasks with which they communicate.

2.3 API / Compatibility

This component uses POSIX compatible RTLinux API for threads manipulation. A few
additional functions have been defined. Scheduling parameters will follow the structure
required by the OCERA scheduling components (CBS and / or EDF) if used.

The API can be divided into two subsets. An external API used by application developers
(FT appmon/appli API) and an internal API to be used for communications between
ftappmon and ftcontroller (FT appmon/controller API).

OCERA IST 35102 16

FT appmon/appli API

ft_task_init

ft_task_create

ft_task_end

FT appmon/controller API

ft_notify_failed_thread

FT appmon/appli API

This part deals with the API functions between the ftappmon
component and application code called by application.

ft_task_init // init a ft-task

Parameters :

in

ft_task_name

ft_normal_routine

ft_degraded_routine

ft_normal_param

ft_degraded_param

ft_normal_sched_param

ft_degraded_sched_param

out

ft_task_id

Description :

The ft_task_init function is used by application developer to init ft-
task. When invoked, the ftappmon instantiates its ft-task database and
setup related data structures. In particular, information relative to
behaviorial routines will be stored in order to be further used to handle
related threads in ft_task_create function. The function returns the ft-
task identifier to be used by the other functions ft_task_create and
ft_task_end.

Prototype :

extern int ft_task_init

 (

OCERA IST 35102 17

 char *ft_task_name,

 void *(ft_normal_routine)(void*),

 void *(ft_degraded_routine)(void*),

 int ft_normal_param,

 int ft_degraded_param,

 FT_sched_param ft_normal_sched_param,

 FT_sched_param ft_degraded_sched_param

);

ft_task_create // create a ft-task

Parameters :

in

ft_task_id

ft_task_behavior <normal | degraded>

Description :

The ft_task_create function is used by application developer to create a
ft-task. It really creates the two threads related to the ft-task,
encapsulating the pthread_create primitive. The thread corresponding to
the selected behavior is made active while the other is suspended. The
internal ft-task state database is updated.

Prototype :

extern int ft_task_create

 (

 int ft_task_id,

 FT_task_behavior ft_task_behavior

);

ft_task_end // end a ft-task

Parameters :

in

ft_task_id

Description :

The ft_task_end function is used by application developer to end an ft-
task and its associated threads.

Prototype :

extern int ft_task_end

 (

OCERA IST 35102 18

 int ft_task_id

);

FT appmon/controller API

This part deals with the API functions between the ftappmon and
ftcontroller components called by ftcontroller.

ft_notify_failed_thread // notify a failed thread

Parameters :

in

ft_failed_thread_kid

ft_failed_task_id

ft_failure_parameters

ft_thread_failure_cause < error | deadline_miss >

ft_task_behavior_when_failed

ft_task_behavior_current

Description :

The ft_notify_failed_thread function is used by the ftcontroller to
inform the ftappmon that an abnormal situation occurs on the thread
ft_failed_thread_kid related to the ft-task and that a new behavior has
been activated. The ftappmon updates its database and checks if this
failure triggers a need for mode change. If it is the case, it calls the
internal ft_switch_appli_mode function.

Prototype :

static int ft_notify_failed_thread

 (

 pthread_t ft_failed_thread_id,

 int ft_failed_task_id,

 int ft_failure_parameters,

 FT_thread_failure_cause ft_thread_failure_cause,

 FT_task_behavior ft_task_behavior_when_failed,

 FT_task_behavior ft_task_behavior_current

);

OCERA IST 35102 19

FT appmon internal functions

This part deals with the internal functions of the ftappmon
component called by ftappmon.

ft_select_new_appli_mode // select a new application mode

Parameters :

in

ft_failed_thread_kid

ft_failed_task_id

ft_failure_parameters

ft_thread_failure_cause < error | deadline_miss >

ft_task_behavior_when_failed

ft_task_behavior_current

Description :

The ft_select_new_appli_mode function is used internally by the ftappmon
on notification of a failed thread. This function applies the rules
specified by the FT application model in order to select a new
application mode.

Prototype :

static int ft_select_new_appli_mode

 (

 pthread_t ft_failed_thread_kid,

 int ft_failed_task_id,

 int ft_failure_parameters,

 FT_thread_failure_cause ft_thread_failure_cause,

 FT_task_behavior ft_task_behavior_when_failed,

 FT_task_behavior ft_task_behavior_current,

 FT_Appli_Mode* ft_dest_appli_mode_ptr

);

ft_switch_appli_mode // switch to an application mode

Parameters :

in

ft_failed_thread_kid

ft_failed_task_id

ft_failure_parameters

ft_thread_failure_cause < error | deadline_miss >

ft_task_behavior_when_failed

ft_task_behavior_current

OCERA IST 35102 20

ft_dest_appli_mode

Description :

The ft_switch_appli_mode function is used internally by the ftappmon on
notification of a failed thread. This function makes effective the new
application mode, calls the API function ft_switch_task_behavior of the
ftcontroller to change ft-tasks behaviors and updates its database.

Prototype :

static int ft_switch_appli_mode

 (

 pthread_t ft_failed_thread_kid,

 int ft_failed_task_id,

 int ft_failure_parameters,

 FT_thread_failure_cause ft_thread_failure_cause,

 FT_task_behavior ft_task_behavior_when_failed,

 FT_task_behavior ft_task_behavior_current,

 FT_Appli_Mode ft_dest_appli_mode

);

2.4 Implementation issues

• Modifications to the existing RTLinux or Linux code

This component is a new one, there is no modification to existing RTLinux component.

• Modifications of types, structures,tables and databases.

Following modifications of types, structures, tables and databases have allowed to improve
the structure and behavior of the ftappmon component.

• Types, structures,tables and databases for ftappmon (in ft_appli_monitor.h)

- The table of the ft-tasks (ftappmon point of view) : MTT :

FT_Task_Elt ft_tasks_tab[FT_TASKS_MAX_NB+1]

 with :

typedef struct {

 int ft_task_id;

 char ft_task_name[FT_TASK_NAME_MAX_LN];

 FT_task_state ft_task_state;

 FT_task_behavior ft_task_behavior;

 void (*ft_normal_routine)(void*);

 void (*ft_degraded_routine)(void*);

OCERA IST 35102 21

 int ft_normal_param;

 int ft_degraded_param;

 FT-sched_param ft_normal_sched_param;

 FT_sched_param ft_degraded_sched_param;

 pthread_t ft_normal_thread_kid;

 pthread_t ft_degraded_thread_kid;

} FT_Task_Elt;

- The FT Appli Control Database ACDB :

FT_Appli_Control_Database_Elt ft_app_ctrl_db
[FT_APP_MODES_MAX_NB+1];

with :

typedef struct {

 FT_Appli_Mode ft_app_mode;

 FT_Event_Task_Appli_Mode_Elt ft_event_task_app_modes_tab
[FT_TASKS_MAX_NB+1];

} FT_Appli_Control_Database_Elt;

with :

typedef struct {

 int ft_task_id;

 char ft_task_name[FT_TASK_NAME_LN];

 FT_Appli_Mode ft_kill_normal_dst_app_mode;

 FT_Appli_Mode ft_deadline_miss_normal_dst_app_mode;

 FT_Appli_Mode ft_kill_degraded_dst_app_mode;

 FT_Appli_Mode ft_deadline_miss_degraded_dst_app_mode;

} FT_Event_Task_Appli_Mode_Elt;

- The FT Appli Mode Table AMT :

FT_Appli_Mode_Elt ft_app_modes_tab[FT_APP_MODES_MAX_NB+1];

with :

typedef struct {

 FT_Appli_Mode ft_app_mode;

 FT_Task_Behavior_Elt ft_task_behaviors_tab
[FT_TASKS_MAX_NB+1];

} FT_Appli_Mode_Elt;

with :

typedef struct {

 int ft_task_id;

 char ft_task_name[FT_TASK_NAME_MAX_LN];

 FT_Task_Behavior ft_task_behavior;

} FT_Task_Behavior_Elt;

- The FT Appli State Database ASDB

OCERA IST 35102 22

FT_Appli_State_Database_Elt ft_app_stat_db[FT_TASKS_MAX]_NB+1;

with :

typedef struct {

 int ft_task_id;

 FT_task_state ft_task_state;

 FT_task_behavior ft_task_behavior;

 } FT_Appli_State_Database_Elt;

• API common types to application, ftappmon and ftcontroller (in ft_api_common.h) :

- FT-Task behavior :

typedef enum {

 FT_TASK_BEHAVIOR_NOT_DEFINED,

 FT_TASK_NOT_STARTED,

 FT_TASK_NORMAL,

 FT_TASK_DEGRADED,

 FT_TASK_TERMINATED

 } FT_task_behavior;

- FT scheduling parameters of one behavior of a ft-task :

typedef enum {

 int prio;

 hrtime_t periiod;

 hrtime_t deadline;

 hrtime_t duration;

} FT_sched_param;

- FT Task Behavior Element :

typedef struct {

 int ft_task_id;

 char ft_task_name[FT_TASK_NAME_MAX_LN];

 FT_Task_Behavior ft_task_behavior;

} FT_Task_Behavior_Elt;

- FT Appli Mode :

typedef struct {

 int ft_app_mode_id;

 char ft_app_mode_name[FT_MODE_NAME_MAX_LN];

} FT_Appli_Mode;

- FT Event Task Appli Mode :

typedef struct {

 int ft_task_id;

OCERA IST 35102 23

 char ft_task_name[FT_TASK_NAME_LN];

 FT_Appli_Mode ft_kill_normal_dst_app_mode;

 FT_Appli_Mode ft_deadline_miss_normal_dst_app_mode;

 FT_Appli_Mode ft_kill_degraded_dst_app_mode;

 FT_Appli_Mode ft_deadline_miss_degraded_dst_app_mode;

} FT_Event_Task_Appli_Mode_Elt;

• Common types to ftappmon and ftcontroller (in ft_common.h) :

- FT task state :

typedef enum {

 FT_TASK_STATE_NOT_DEFINED,

 FT_TASK_CREATED,

 FT_TASK_RUNNING,

 FT_TASK_ENDED

 } FT_task_state;

- FT thread type :

typedef enum {

 FT_THREAD_TYPE_NOT_DEFINED,

 FT_THREAD_NORMAL,

 FT_THREAD_DEGRADED

 } FT_thread_type;

- FT thread failure cause :

typedef enum {

 FT_THREAD_EVENT_NOT_DEFINED,

 FT_THREAD_KILL,

 FT_THREAD_DEADLINE_MISS

 } FT_thread_failure_cause;

2.5 Tests and validation

2.5.1 Validation criteria
Validation criteria concern mainly functional qualitative issues .

Application initialization

Verification that all the threads related to ft-tasks are created correctly and that
the data structures are updated.

Application mode change is effective and correct after activation.

OCERA IST 35102 24

Verification that the new configuration of ft-tasks has been loaded and is
active.

Verification that no ft-tasks from the previous configuration is left in an
undesired state.

2.5.2 Test 1
Initialisation procedures.

This test has been achieved and shows correct data initialisation.

2.5.3 Test 2
Application mode commutation.

This test has been achieved and shows correct application mode change.

2.5.4 Results and comments
Tests have been performed by several examples with several application modes, ft-tasks and
behaviors. Faulty event is only kill on a particular thread (pthread_kill) corresponding to a
particular behavior. The tests runs with a user example module and the two components
ftappmon and ftcontroller.

The facilities tested concern initialization procedures, behavior commutations and
application mode changes.

The initialization of ft-tasks initializes correctly the data structures and creates the threads
associated to two behaviors (normal and degraded) for each ft-task..

The application mode transition test shows correct application mode change with related ft-
tasks behaviors change.

2.6 Examples

2.6.1 How to run the examples
The examples developed are common to the two components, please refer to the
ftcontroller examples section.

2.6.2 Description
The examples developed are common to the two components, please refer to the
ftcontroller examples section.

2.6.3 Results and comments
The examples developed are common to the two components, please refer to the
ftcontroller examples section.

2.7 Installation instructions

See section 3.7

OCERA IST 35102 25

OCERA IST 35102 26

Chapter 3. ftcontroller component

3.1.Summary

• Name : ftcontroller

• Description :

• Author (name and email) :
A. Lanusse (agnes.lanusse@cea.fr)

 P. Vanuxeem (patrick.vanuxeem@cea.fr)

• Reviewer :

• Layer : application RTLinux Level.

• Version : V0.2

• Status : test

• Dependencies : ocera, requires Ptrace component and ftappmon component

• Release date : M2

3.2 Description

The ftcontroller component is the FT Controller. This component consists of one
controlling thread, a threads status database and a table containing handler routines for tasks
mode switch on errors. Additional ft-tasks table from the ftcontroller point of view has been
added.

Figure 5 . ftcontroller internal view

The threads status data base collects the current status of the threads from the tracing facility
(ptrace component). The ftcontroller reads periodically the kernel stream where kernel
events are written by the scheduler.

OCERA IST 35102 27

The handlers routine table contains two entries for each possible thread of the application.
These two entries correspond to the two types of errors (abort and deadline miss).

The routines have all the same structure and are instantiated at application init.

Each routine has four actions :

• Ends the current thread (faulty if not yet aborted)

• Sets the scheduling parameters for the replacement behavior

• Activates the replacement behavior

• Propagates event to ftappmon

The need for different routines resides in the fact that in the future, richer error handling
strategies will be made available and may be different for different tasks.

3.3 API / Compatibility

This component uses posix compatible RTLinux API for threads manipulation and OCERA
components API (ptrace, psignals, ptimers, pbarriers, appsched). A few additional functions
have been defined.

The API can be divided into two subsets. An external API to be used for communications
with the scheduler (FT controller/sched API) and an internal API to be used for
communications between ftappmon and ftcontroller (FT controller/appmon API).

FT controller/sched API

ft_notify_thread_started

ft_notify_thread_finished

ft_notify_deadline_miss

ft_notify_thread_aborted

FT controller/appmon API

ft_notify_task_created

ft_switch_task_behavior

ft_set_task_status

ft_get_task_status

ft_get_task_behavior

OCERA IST 35102 28

FT controller/sched API

This part deals with the design API functions between ftcontroller
and scheduler components called by scheduler.

ft_notify_thread_started

Parameters :

in :

ft_thread_kid

execution_start_date

deadline

Description:

The ft_notify_thread_started function could be used (not presently) by
the scheduler to notify that a thread has started its execution (running
and elected). If it is a periodic thread, it must be notified at each new
period.

Prototype :

extern int ft_notify_thread_started

 (

 pthread_t ft_thread_kid,

 int execution_start_date,

 int deadline

);

ft_notify_thread_finished

Parameters :

in :

 ft_thread_kid

 execution_end_date

 deadline

Description :

The ft_notify_thread_finished function could be used (not presently) by
the scheduler to notify the normal end of execution of a thread. For a
periodic thread it notifies the end of a cycle.

Prototype :

extern int ft_notify_thread_finished

 (

 pthread_t ft_thread_kid,

OCERA IST 35102 29

 int execution_end_date,

 int deadline

);

ft_notify_deadline_miss

Parameters :

in :

ft_thread_kid

Description :

The ft_notify_deadline_miss function could be used (not presently) by the
scheduler to notify an error. This should rather be a signal. If not, the
scheduler must set a high priority to ftcontroller after this call.

Prototype :

extern int ft_notify_deadline_miss

 (

 pthread_t ft_thread_kid

);

ft_notify_thread_aborted // notify that a thread has aborted

Parameters :

in :

ft_thread_kid

ft_thread_failure_cause

Description :

The ft_notify_thread_aborted function could be used (not presently) by
the scheduler to notify an error. This should rather be a signal. If not,
the scheduler must set a high priority to ftcontroller after this call.

The ft_notify_thread_aborted function is used (presently) by the
ftcontroller when pthread kill event is detected. This function calls the
internal function ft_int_switch_task_behavior of the ftcontroller.

Prototype :

extern int ft_notify_thread_aborted

 (

 pthread_t ft_aborted_thread_kid,

 FT_thread_failure_cause ft_thread_failure_cause

);

OCERA IST 35102 30

FT controller/appmon API

This part deals with the API functions between ftcontroller and
ftappmon components called by ftappmon.

ft_notify_task_created // Notify that a ft-task has been created

Parameters :

in :

ft_task_id

ft_task_name

ft_task_state

ft_task_behavior

ft_normal_behavior_routine

ft_degraded_behavior_routine

ft_normal_sched_param

ft_degraded_sched_param

ft_normal_thread_kid

ft_degraded_thread_kid

Description :

The ft_notify_task_created function is used by the ftappmon to notify the
creation of a ft-task and transmit related information to the
ftcontroller. This information is used to init the data structures in the
ftcontroller (threads status database, table of the ft-tasks).

 Prototype :

int ft_notify_task_created

 (

 int ft_task_id,

 char *ft_task_name,

 FT_task_state ft_task_state,

 FT_task_behavior ft_task_behavior,

 void (*ft_normal_behavior_routine)(void*),

 void (*ft_degraded_behavior_routine)(void*),

 pthread_t ft_normal_thread_kid,

 pthread_t ft_degraded_thread_kid

);

ft_switch_task_behavior // Switch the behavior of a ft-task

Parameters :

in :

ft_task_id

OCERA IST 35102 31

ft_task_src_behavior

ft_task_dst_behavior

Description :

The ft_switch_task_behavior function is used by the ftappmon to activate
ft-task behavior switch. The ft-task behavior possible values are normal
or degraded. It determines the current behavior of the ft-task. This
function calls the internal function ft_int_switch_task_behavior of the
ftcontroller.

Prototype :

extern int ft_switch_task_behavior

 (

 int ft_task_id,

 FT_task_behavior ft_task_src_behavior,

 FT_task_behavior ft_task_dst_behavior

);

FT controller internal functions

This part deals with the internal functions of the ftcontroller
component called by ftcontroller.

ft_int_switch_task_behavior // Switch the behavior of a ft-task

Parameters :

in :

ft_normal_thread_id

ft_degraded_thread_id

ft_src_task_behavior

ft_dst_task_behavior

Description :

The ft_int_switch_task_behavior function is used internally by the
ftcontroller to activate ft-task behavior switch. The ft-task behavior
possible values are normal or degraded. It determines the current
behavior of the ft-task.

Prototype :

int ft_int_switch_task_behavior

 (

 int ft_normal_thread_id,

 int ft_degraded_thread_id,

 FT_task_behavior ft_src_task_behavior,

 FT_task_behavior ft_dst_task_behavior

OCERA IST 35102 32

);

ft_set_task_status

Parameters :

 in :

task_id

task_status

Description :

The ft_set_task_status function could be used (not presently) internally
by the ftcontroller to set the task status.

The task status tells if a task is created, active or ended.

Prototype :

int ft_set_task_status

 (

 int task_id,

 int task_status

);

ft_get_task_status

Parameters :

in :

task_id

out :

task_status

Description :

The ft_get_task_status function could be used (not presently) internally
by the ftcontroller to get the task status.

Prototype :

int ft_get_task_status

 (

 int task_id,

 int task_status

);

ft_get_task_behavior

OCERA IST 35102 33

Parameters :

in :

task_id

out :

task_behavior

Description :

The ft_get_task_behavior function could be used (not presently)
internally by the ftcontroller to get the task behavior.

The task behavior indicates the current active behavior of the task
(normal or degraded).

Prototype :

int ft_get_task_behavior

 (

 int task_id,

 int task_mode

);

3.4 Implementation issues

• Modifications to the existing RTLinux or Linux code

The ftcontroller component is a new one, there is no modification to existing RTLinux
component.

• Modifications of types, structures, tables and databases.

Following modifications of types, structures, tables and databases have allowed to improve
the structure and behavior of the ftcontroller component.

• Types, structure, tables and databases for ftcontroller (in ft_controller.h) :

- The FT thread event type

typedef enum {

 FT_THREAD_CREATED,

 FT_THREAD_STARTED,

 FT_THREAD_STARTED_NEW_CYCLE,

 FT_THREAD_ENDED_CYCLE,

 FT_THREAD_ENDED_NORMALLY,

 FT_THREAD_ABORT,

} FT_threads_event_types_t;

- The FT Threads Status Database : TSDB

FT_Threads_Status_Database_Elt ft_thr_stat_db

OCERA IST 35102 34

[FT_THREADS_MAX_NB+1];

with :

typedef struct {

 pthread_t ft_thread_kid;

 FT_thread_type ft_thread_type;

 FT_sched_param ft_thread_sched_param;

 FT_thread_failure_cause ft_thread_failure_cause;

 int ft_task_id;

 } FT_Threads_Status_Database_Elt;

- The table of the ft-tasks (ftcontroller point of view) : CTT

FT_task_elt_c ft_tasks_tab_c[FT_TASKS_MAX_NB+1]

 with :

typedef struct {

 int ft_task_id;

 char ft_task_name[FT_TASK_NAME_MAX_LN];

 FT_task_state ft_task_state;

 FT_task_behavior ft_task_behavior;

 void (*normal_behavior)(void*);

 void (*degraded_behavior)(void*);

 int ft_normal_thread_id;

 int ft_degraded_thread_id;

} FT_task_elt_c;

- The FT thread event

typedef struct {

 int ft_thread_event_id;

 int ft_thread_event_type;

 char ft_thread_event_data;

 struct timespec posix_timestamp;

 pthread_t ft_thread_id;

} FT_thread_event;

• API common types to application, ftappmon and ftcontroller (in ft_api_common.h) :

- See ftappmon component description.

• Common types to ftappmon and ftcontroller (in ft_common.h) :

- See ftappmon component description.

OCERA IST 35102 35

3.5 Tests and validation

3.5.1 Validation criteria
Validation criteria mainly concern functional qualitative criteria.

Verification that in absence of abnormal situation the application runs
normally.

Verification that a faulty ft-task commutes correctly from a normal behavior
to a degraded behavior (the normal thread is ended and the new one is started).

Verification that the propagation of an abnormal event to the ftappmon is
achieved correctly.

Verification that faulty events (abort and deadline miss) are detected.

Further, we will verify synchronization issues.

Verification that the replacement behavior activation is achieved at the right
time (next activation period of the previous running thread)

Verification of atomiticity of the commutation

and, if possible, performance issues will be targeted

Verification that commutation times satisfy minimum period requirement
from the application.

3.5.2 Test 1
Management of ft-task commutation.

In this test, the behavior commutation of a ft-task on detection of an abnormal event is
achieved. The abnormal event is simulated by a kill (issued by pthread_cancel).

On detection of the event, the concerned ft-task is identified, then the normal behavior is
replaced by the degraded behavior. The thread running the degraded behavior, which was in
a waiting state, is awakened and made running.

3.5.3 Test 2
Detection of abnormal event

The principle of abnormal event detection has been tested. It is based on the analysis of the
kernel stream trace (ptrace component). For the test, the event looked for is a thread kill
event.

With the version of scheduler used, no deadline miss or abort events are traced by the kernel.
This should be provided.

3.5.4 Results and comments
The testing process is still on going.

Up to now, we have tested the basic communication mechanisms between the components
involved in Fault-Tolerance management and the functioning of basic commutation
mechanisms.

OCERA IST 35102 36

This has permitted to set up a global FT framework for degraded mode management. The
principles of initialization, event detection, commutation and termination have been settled
with success.

Anyway, the FT framework has to be improved by future extended development which may
concern : improved detection of abnormal events, synchronization issues (atomicity and
deterministic reaction time), continuation of development of global application mode change
facility.

OCERA IST 35102 37

3.6 Example

The example provided is intended to test the different points cited above and related both to
application initialization, event detection, behavior commutation, application switch and
application termination.

Since there is no global example directory for Fault-Tolerance, all installation and testing are
done in the examples subdirectory located within the ftcontroller component.

The example requires a running RTLinux version including the ptrace component. The
components ptrace, ftappmon, ftcontroller, ftbuilder have to be selected previously at the
OCERA installing phase (configuration).

3.6.1 Description

A simple fault-tolerant example named ftappli is proposed.

The ftbuider is used to specify and generate the application model. The application modes
are FT_MODE_INIT, FT_MODE_DEGRADED, FT_MODE_STOP. The application mode
FT_MODE_INIT is composed of two ft-tasks FT_TASK_1, FT_TASK_2 with respectively
FT_TASK_NOT_STARTED, FT_TASK_NORMAL behaviors. The application mode
FT_MODE_DEGRADED is composed of two ft-tasks FT_TASK_1, FT_TASK_2 with
respectively FT_TASK_NORMAL, FT_TASK_DEGRADED behaviors. The application
mode FT_MODE_STOP is composed of the two ft-tasks FT_TASK_1, FT_TASK_2 with
FT_TASK_TERMINATED behaviors.

The example creates 2 periodic ft-tasks FT_TASK_1 and FT_TASK_2 with period equal to
1 s. Each ft-task has two behaviors : a normal behavior and a degraded behavior. The ft-task
FT_TASK_1 has initially a not-started behavior (the ft-task is created but normal and
degraded threads are suspended) whilst the ft-task FT_TASK_2 has a normal behavior. The
2 ft-tasks has the same normal and degraded behavior routines. The normal and degraded
behaviors routines only performs loops.

On the 10
th
 cycle, the normal behavior routine of the second ft-task FT_TASK_2 kills itself (

by pthread_cancel(pthread_self()). Then the kill event is detected by ftcontroller and
notified to ftappmon. Following the specified application model, the normal behavior of the
first ft-task FT_TASK_1 and the degraded behavior of the ft-task FT_TASK_2 are
activated. After a certain number of cycles in the new behaviors, the application is
terminated.

This example is running during about 200 sec.

OCERA IST 35102 38

3.6.2 How to run the example
Description :

The example named ftappli is localed in the ftappli directory within the examples directory.

The Ocera installing phase (compilation) builds one module ftappmonctrl.o for the two FT
components ftappmon and ftcontroller and also builds the example module ftappli.o.

The Makefile file located within the ftappli directory may build the example module
ftappli.o (only if cleaned) and may instal (loading) and execute all the modules : FT
components module ftappmonctrl.o and example module ftappli.o .

Implementation :

The examples directory (ocera/components/ft/ftcontroller/examples) is located within the
ftcontroller component.

- The examples directory is composed of the following directories:

• ftappli

and the following files:

• README

• INSTALL

• Makefile

- The ftappli directory contains the following directories:

• include

• src

and the following files:

• README

• INSTALL

• Makefile

• dmesg or messages

Compilation :

Be careful : the compilation of the example has to be made only if ftappli.o module has
been cleaned. If ftappli.o module already exists within ftappli/src directory, do-not make the
compilation.

In order to compile the ftappli.o module (if cleaned), please follow next steps:

- Be a <lambda> user (not a root user)

$

OCERA IST 35102 39

- Go to the ftappli directory:

$ cd ocera/components/ft/ftcontroller/examples/ftappli

- Clean the ftappli directory:

$ make clean

- Compile the ftappli module:

$ make

Installation/Execution :

It is recommended to use the Makefile file in ftappli directory in order to install and execute
all the modules.

Note that the installation order between modules is important due to the dependencies
between the FT components (API).

The imperative order is:

• rtlinux start

• insmod ftappmonctrl.o

• insmod ftappli.o

In order to run the example, please follow next steps:

- Be a root user (necessary)

$ su

Password:

#

- Go to the ftappli directory:

cd ocera/components/ft/ftcontroller/examples/ftappli

- Run the exemple:

 The Makefile install and execute all the modules (ptrace, ft-components, example).

make example

- Get the modules execution traces:

dmesg > dmesg

or

cp /var/log/messages .
chown <owner> messages
chgrp <group> messages

 Be careful to see only the last execution traces (not the previous ones).

OCERA IST 35102 40

3.6.3 Results and comments
The execution trace (file dmesg or messages) shows the various events detected by the
ftcontroller and the application switch and the commutation of behaviors can be seen.

The traces below show the threads creation at application initialisation and the application
running. Whilst the ft-task 1 is not started, the ft-task 2 has normal behavior.

 mbuff: kernel shared memory driver v0.7.2 for Linux 2.4.18-ocera-1.0.0

 mbuff: (C) Tomasz Motylewski et al., GPL

 mbuff: registered as MISC device minor 254

 RTLinux Extensions Loaded (http://www.fsmlabs.com/)

 FT_Controller

 FT_Appli_Monitor

 FT_Appli

 Application : ap_i=2 ap_task_behavior=FT_TASK_NORMAL

 Application : ft-task 2, thread -951123968 started, normal or not
started behavior

 Application : ft-task 2, thread -951123968 switching to wait, normal or
not started behavior

 Application : ft-task 2, thread -951123968 switching to running,
normal_behavior

 Application : ap_i=1 ap_task_behavior=FT_TASK_NOT_STARTED

 Application : ft-task 1, thread -953942016 started, normal or not
started behavior

 Application : ft-task 1, thread -953942016 switching to wait, normal or
not started behavior

OCERA IST 35102 41

Whilst the ft-task 1 is not started, the ft-task 2 with normal thread runs during 10 cycles,
then kills itself. The ftcontroller detects pthread_kill event, makes local change at thread
level of the faulty behavior ft-task 2 and notifies to ftappmon the failed thread. The
ftappmon selects new application mode and switches from ft_mode_init to
ft_mode_degraded application mode. The ftappmon asks then to ftcontroller to really
change at threads level the behaviors of the ft-tasks 1 and 2.

 Application : ft-task 2, thread -951123968 cancelling, normal_behavior

 FT_Controller : ft_task_id=2 PTHREAD_KILL

 FT_Controller : Cancel the normal thread !!!

 ft task id --- 2

 ft normal thread kid --- -951123968

 Application : ft-task 2, thread -950566912 switching to running,
degraded_behavior

 FT_Controller : Make periodic the degraded thread !!!

 ft task id --- 2

 ft degraded thread kid --- -950566912

 FT_Appli_Monitor : Function ft_notify_failed_thread

 FT_Appli_Monitor : before switch ft_current_appli_mode= {1 ,
FT_MODE_INIT}

 FT_Appli_Monitor : ft_new_appli_mode= {2 , FT_MODE_DEGRADED}

 Application : ft-task 1, thread -953942016 switching to running,
normal_behavior

 FT_Controller : Make periodic the normal thread !!!

 ft task id --- 1

 ft normal thread kid --- -953942016

 FT_Controller : Cancel the normal thread !!!

 ft task

The ft-task 2 with the degraded behvior is now running whilst the ft-task 1 has switched
from not-started to normal behavior and is now running. The application is then stopped
when 200 seconds are elapsed : the 2 ft-tasks are ended which imply that related threads are
deleted. The modules of ptrace, example and ft-components are removed.

 Application : ft-task 2, thread -950566912, no_cycle 20,
degraded_behavior

 Application : ft-task 1, thread -953942016, no_cycle 20, normal_behavior

 Application : CLEANUP application threads !!!

 unloading mbuff

 mbuff device deregistered

OCERA IST 35102 42

3.7 Installation instructions

This the installation information and instructions for FT.

The two FT components ftappmon and ftcontroller provided make part of the OCERA tree
under the ft branch.

This ft directory contains the following directories and files :

ft

|--- ftappmon

| |--- README

| |--- INSTALL

| |--- Makefile

| |--- doc

| |--- include

| | |--- ft_api_appmon_appli

| | |--- ft_api_appmon_ctrl

| | |--- ft_api_common.h

| | |--- ft_appli_monitor.h

| |--- src

| |--- ft_appli_monitor.c

|--- ftcontroller

| |--- README

| |--- INSTALL

| |--- Makefile

| |--- include

| | |--- ft_api_ctrl_appmon.h

| | |--- ft_api_ctrl_sched.h

| | |--- ft_api_common.h

| | |--- ft_controller.h

| |--- src

| | |--- Makefile

| | |--- ft_appmon_ctrl.c

| | |--- ft_controller.c

| |--- examples

| |--- INSTALL

| |--- Makefile

| |--- ftappli

| |--- README

| |--- INSTALL

| |--- Makefile

OCERA IST 35102 43

| |--- include

| | |--- ft_appli.h

| | |--- ft_appli_model.h

| |--- src

| |--- Makefile

| |--- ft_appli.c

| |--- ft_appli_model.c

|--- ftbuilder

|--- ftredundancymgr

|--- ftreplicamgr

A general OCERA installation procedure is provided that install the selected components
from a configuration selection. It makes use of the various makefile defined at each
component level. This procedure has been tested and is globally operational for fault-
tolerance.

For a separate testing of the FT components (ftappmon and ftcontroller) use the Makefile
defined in ftappli directory (see example section above).

OCERA IST 35102 44

Chapter 4. ftbuilder component

4.1.Summary

• Name : ftbuilder

• Description : The FT-Builder is a design support tool that helps users' specify temporal
constraints of their applications, modes definition and mode transitions conditions. Once
this is done it generates code that is used to instanciate internal control databases of run-
time FT components.

• Author (name and email) :
A. Lanusse (agnes.lanusse@cea.fr)

 P. Vanuxeem (patrick.vanuxeem@cea.fr)

• Reviewer :

• Layer : Off-line Linux Component

• Version : V0.2

• Status : test

• Dependencies : Requires TCL/TK 8.3

• Release date : M2

4.2 Description

The design choices for FT facilities have been based on a declarative approach combined
with transparent error handling mechanisms. This choice is driven by the fact that we
consider fault-tolerance as non-functional requirements that must not interfere with
application core coding for two main reasons: first to get a better control over consistency of
fault-tolerance related coding and second, to facilitate maintainability since such
requirements may be subject to change. Propagation of requirements change must be
handled in a consistent manner which is much more complex if fault-tolerance programming
is embedded in the user code.

According to these choices, non functional requirements related to fault-tolerance are
collected through a design/build tool and used to instantiate the various run-time
components in charge of the behavioural control of the application.

The ftbuilder is this design support tool that helps user's specify :

• temporal constraints of their applications,

• modes definition and

• mode transitions conditions.

Once this is done it generates code that is used to instanciate internal control databases of
run-time FT components.

OCERA IST 35102 45

The approach retained for degraded mode management, relies on a specific programming
model providing the concepts of ft_task and application_mode (along with the notions of
ft_task_behaviour and application_mode_transition); and on two specific run-time
components that implement degraded mode management through activation of
ft_task_behaviour change and application_mode switching.

The role of these ft-components is to insure a transparent and safe management of such
transitions at ft-task and application level. A particular attention has been paid to the overall
application logical and temporal consistency and to a clean resource management so that
aborting a task does not produce subsequent tasks blocking. The basic principles of degraded
mode management according to this approach are the following: when an error is detected at
task level, it triggers a task behaviour change to a degraded mode and propagates the
notification of abnormal event at the application level where a decision is taken to apply or
not an application mode change.

One of the major issue in the introduction of FT facilities was to preserve as far as possible
user programming habits and thus to keep unchanged the way he writes tasks routines. We
have thus introduced a limited number of primitives mainly used at init to declare what we
call ft_tasks while the rest of code writing is kept unchanged. The only important thing
concerning ft_tasks is that the user has to provide a routine for each possible behavior
(actually two in the current implementation: one for the normal behavior and one for the
degraded one).

The introduction of mode management at application level implies that additional
information is provided to the system in order to handle abnormal situations in a proper way.
This information is actually gathered into internal databases within the run-time
ft_components.

In order to facilitate the initialization of these internal databases, information collected off-
line is processed in order to produce specific files used at init to instantiate them. This way
the user has not to provide additional code but only to include these files during the
compilation of their application.

Development process

The proposed development process follows thus three steps :

• Global application design

Done by user

• identification and specification of the tasks and provides real_time
constraints for each one

• identification and specification of modes (valid configuration of tasks)

• identification and specification of transitions between modes (transitions
and conditions of transitions.

Automatically generated

Verification and code generation is achieved by the ftbuilder and provides

• ft_appli_model.h

• ft_appli_model.c

OCERA IST 35102 46

• Detailed task coding

The user has to provide code for each task identified in the previous step .

Actually he must provide two routines :

• one for the normal_behavior

• one for the degraded behavior

Both routines are standard rtlinux routines that are run in rtlinux periodic
threads

• Compilation

Normal compilation using makefile, user' s application files are completed by
inclusion of files generated by the Ftbuilder. This provides additionnal
information that is used by the ft-components to control dynamically the
application.

The first step is done with the Ftbuilder

The second one must be done by hand by the application developer

The third step combines files issued by the two previous steps and links it with ft-
components

The whole process is described in the following image :

OCERA IST 35102 47

The FT-Builder provides various facilities to define tasks, modes, transitions, to edit and
view them. It permits also to generate application model files used for application
compilation. The following figure shows a general overview of the tool where tasks and
modes are displayed. In the next sections we review dedicated acquisition windows for task,
modes, and transition specification.

In this figure we can see an example of display showing tasks and modes .

Tasks and modes are listed in the left part ot the screen while details are displayed on the
rigth part. The bottom part is devoted to the display of messages or to list entities such as
tasks, modes and mode transitions (menu Edit/<entity>/List<entity>

Real-time parameters are :

• Period,

• Ready Time,

• Estimated Duration

• Deadline

Modes are described by the list of tasks and related behavior that must be applied in the
mode.

OCERA IST 35102 48

Task specification

The task specification consists in prividing ft_task real_time and ft_task parameters. This is
done using the FT-Builder NewTask or ModifyTask facility.

In the current (V1.0) implementation, only FT_tasks are handled and management of
redundancy is not yet provided

Validation of consistency of real-time criteria is performed before storing information.

OCERA IST 35102 49

Mode specification

The mode specification consists in selecting for each task the behavior expected in the mode

This done using the Ftbuilder option NewMode facility

The user has just to enter a mode name (which must be different from an existing one) and
to select for each task, the right behavior to adopt in this mode.

Once these choices have been made, just save and exit (or cancel if you wish).

OCERA IST 35102 50

Mode transition specification
The mode transition specification consists in the specification of :

• a Source Mode

• a Destination Mode

• a transition condition

 where the transition condition consists of

• a triggering event (the event can be KILL or deadline Miss)

• a triggering task (the task that receive the event)

OCERA IST 35102 51

The user must enter the source and dest. Modes, then select the type of event and the
triggering task.

Then he can validate his choice, a confirmation step displays a summary of the choices
made for the transition, and waits for confirmation or cancellation.

The user can list the existing defined transitions with the Edit/Modes/ListModesTransitions
facility.

The transitions are displayed in the bottom part of the main window.

4.3 API / Compatibility

Not applicable

Generates code to be used with FT (controller and appmon) components V2.0.

4.4 Implementation issues

The implementation has been done in TCL/TK8.3 .

The current status of the tool permit the specification of application model including

• Tasks (name name and real_timeparameters)

• Modes

• Modes Transitions

As it is the tool can generate code necessary to instanciate internal databases of the two ft-
components developed during the first phase of the project (ftappmon and ftcontroller).

This permit to support the Degraded Mode management facility.

The code code generated is currently limited to the production of files related to DataBases
Information.

However information gathered could easily be used to provide an extension that would
produce tasks code templates. This would insure consistency between the model and the
code and facilitate maintainability of applications. One could easily change real_time
parameters of taks and propagate change in the code. This has not been done yet.

An other limitation is the fact that tasks handled are limited to FT_tasks.

In a seconf phase of the project, Redundancy Management have been introduced, the tool
will be extended in order to handle this new facility.

4.5 Tests and validation

4.5.1 Validation criteria
In a first stage validation criteria concern purely functional qualitative criteria.

OCERA IST 35102 52

4.5.4 Results and comments
The tool has been used to enter models related to the ft_controller example.

The tool is still in a construction step, and all expected facilities have not yet been
implemented (mainly global verification facilities and additional faciilities to build the
application), however, as it is it permits to enter completely information required for
handling degraded mode management.

A first version has been tested by CTU which revealed a few errors, mainly due to not yet
handled facilities.

These bugs have been corrected and a new version is now available.

4.6 Example

The ftbuilder contains examples that can be loaded using the File/OpenApplication facility
of the menu.

You can define your own models.

One of the examples corerspond to the application example provided in the
ftcontroller/examples directory (see section 3 for details).

4.6.1 How to run the example
Simply start the ftbuilder and use the options provided in the menu.

Once an application has been defined (tasks, modes and mode Transitions), the user can
activate the Build Applicaion option which triggers the code generation process .

The generated files ft_appli_model.h and ft_appli_model.c are stored by default in
<ftbuilder_dir/appli_generated_files/<appli_name>/.

They can then be copied into the application directory to be included during the compilation
step.

4.7 Installation instructions

Just copy the ftbuilder directory in your favorite place, then you can start the ftbuilder by
using the following command.

./FT_builder.tcl

The ftbuilder starts you can open an existing application and navigate through tasks, mods
and modes transitions.

Creating a new application is quite simple.

The Help facility provides a summary of all options available.

Th information gathered by the tool is stored in an internal databases that is located under

<ftbuilder_dir/saved_appli_files/<appli_name>/.

OCERA IST 35102 53

The code generated by the BuildApplication option is stored in

<ftbuilder_dir/appli_generated_files/<appli_name>/.

You can change these locations by entering your modifications in the FT_preferences.tcl
file.

OCERA IST 35102 54

