WP7 - Communication
Components

Deliverable D7.1 - Design of
Communication Components

WP7 - Communication Components : Deliverable D7.1 - Design of Communication Com-
ponents
by Jan Krakora, Pavel Pisa, Frantisek Vacek, Zdenek Sebek, Petr Smolik, and Zdenek Hanzalek

Published November 2002
Copyright © 2002 by Ocera

You can (in fact you must!) use, modify, copy and distribute this document, of course free of charge, and think about the

appropriate license we will use for the documentation.

Table of Contents

Document presentation

1. Design of Communication Components 1
1.1. The OCERA Real-Time Ethernet (ORTE)............cccooiiiiiiiiiiiiiiiiiieiiiieeeeeeeeee, 1
1.1.1. ORTE deSIZN...ccccoeiiiiiiiiieeeee ettt e e e eeeettreeeeeeeeeeeeettvasaeeeeeeeeeenannnns 1
1.1.2. DAtabase ...uceeeeeiiieeiiiiiiieee ettt e e e et e e e e e e et a e e e e e e e e e eaanaans 2
L1.1.3. MANAZETcevvveveiiiiiieeeiireiritiiee e e sesasssaeaeaaaeaaaaaaaaaaaasasaeaeasassessesseeeenns 2
1.1.3.1. Special objects in 8 MANAZGETccceeeeeiiriiiiireeeeeeeeeiiirreeeee e e, 2

1.1.3.2. Implementation..........cccccceeeeeiiiiiiiiiee e 3

1.1.4. ManagedApPpPLicationccoeeeiiiiiiiieee e e eeitrree e e e e e e eaenns 5
1.1.4.1. Special object in a managedApplication.............cceeeevvvrveeeeeennnn. 5

1.1.4.2. Implementation..........cccccceeeeeeiiiiiiiiie e e 6

I RS TN o USSR 6

1.2. The OCERA CAN COMPONENL.......ovviiiiiiiiiiiiiiiiiieeeeeeeciiiirreeeeeeeeeesneenrrrreeeseesennns 7
1.2.1. Virtual CAN API (VCA) ...ooi ettt ettt 7
1.2.1.1. CAN ATIVET coeeeiieeieiiieee ettt ettt e et e e st e e e s aaeeeseabeeeeens 7

1.2.1.2. VCA functions OVEIVIEWccceeereriuiieeiniiiieerniiieeeeniieeesenieeeeens 8

1.2.2. CAN/CANOPEN MONItOTcuvviiiiiiireeeeeiiiiiieeeeeeeeeeseierrreeeeeeeeeesnnesrneeeeens 8
1.2.2.1. OVEIVIEW...itiiiiiiiieieiiiieeeeiitteeesittee s ettt eeseabreeesssbteeessabaaeesesaseeeeeas 8

1.2.2.2. Basic functionalitycccccoeeeeeiiiiiiiiiiiiicieece e 8

1.2.3. RT-CANOPEN AEVICE ...ccceeeeeeiiiriirieeeeeeeiiiiiieeeeeeeeeesenerrreeeeesseessnnsnsneseeess 10
1.2.3.1. OVEIVIEW...itiiiiiiiieieiiiteeeeitte e ettt e e et eeeesbteeesssibaeeeesabeaeeesareeas 10

1.2.3.2. RT-CANopen device in the Soft real time space........................ 10

1.2.3.3. RT-CANopen device in the Hard real time space...................... 12

1.3. Verification of Distributed Systemsccccccouviieeiiiiiieeiiieeeceee e 12
1.3.1. Problem statementccoceeeeiiiiiniiiinieieieeeeee et 13
1.3.2. Modelling of communication protocol...............cccoeevvvrvrereeeeeeeeeiccnnrennnn.. 14
1.3.2.1. Example of CAN Medium Access Control model 14

1.3.3. Model of RTOS.........uiiiiieeiiieeeeitee ettt eerree e e e s eave e e e evaeaeeas 16
1,304, TOOLS vttt e et e e e e e e et a e e e e e e e e e e aetaraaaaaeas 16
1.3.4.1. PEP t00L..cooeiiiiiiiieeeeee ettt 16

1.3.4.2. UPPAAL ...ttt e 17
Bibliographiy c.cccc i e e e e e e et raraaa e e e e eenaraaes 17

1414

List

List

of Tables

1. Project Co-0rdinatorcooccuiiiiieiiiieiecieee ettt e et e e e e itee e e e are e e e e beee e e ennraaeeennes i
2. Participant LStccoiiiiiiiiiiiiiiiicece ettt e et e e e e e s e st aaee e e e e s ennnanns i

of Figures

B B O) 4 N D = =S TSP UURR 1
1-2. ORTE SEIUCLUIEevvviiiiiiieeeccteeee ettt e e e e e ettt e e e e e e e e e eaeerasaaeeeeeeeeesnanssaaaaaeens 1
1-3. ORTE MANAGETuuviiiiieiieiieiiiiiiieeeeeeeeecittrreeeeeeeeesseesarraeeeeseessssssassseseeseesssssssssssseees 3
1-4. CSTWIItEr DERAVIOLcoeiiiiiiiiiieiiiiee ettt ettt ee st e e et e e e seaeaeesseabeaeeseanes 4
1-5. CSTReader BERAVIOTccovciiiiiiiiiiiieiiee ettt et e e et e e s sbeeeeseanes 4
1-6. ORTE ManagedAPPliCAtionceeiiieieiiiciiiiieeeeeeeeeecciiirreee e e e e eeseetarreeeeeeeeeesnnessneneeeas 6
1-7. Hard real time CAN driver USAZE........cccccuvrriieieeeeeeeiiiiireeeeeeeeeeeierrreeeeeeeeeesnnessneeeesas 7
1-8. Soft real time CAN dAriver USAZE........ccceecuvrrriieeeeeeeeiiciiieeeeeeeeeeseerrrrreeeeeessesssnessneneeens 7
1-9. canmond server-client architectureccccceiiiieiiciiiieee e, 9
1-10. CAN monitor CAN messages WINAOWcceeeeeeeerriririreeeeeeeeennonnnrreeeeeeeesesssnssseeeees 9
1-11. The Object Dictionary tree€ VIEWccccccuviiiieiieeieeeiiiiieeeee e e eeeeiirrreeeee e e e e esneesneeaeens 9
1-12. RT-CANopen device architecture............cccvvviiiiiiiiiieiiiiiiieecc e 10
1-13. Soft real time CANopen device architecture...........ccccovvvieeiiiiiiniiiiiiiiieeeee e 11
1-14. Hard real time CANopen device architecture............cccceeeeeiieeieiciieeeecieee e, 12
1-15. Real time control system structure with denotation of
computation/communication tImMeEscccovvveieeeeeeeeriiiiireeeeeeeeeeeeeiirrreeeeeeeeeenennnes 13
1-16. Model of CAN bus access Mmethodccoecviieieiiiiiiieeiiiiee e e evaee e 15

v

Document presentation

Table 1. Project Co-ordinator

Organisation:

UPVLC

Responsible person:

|Alfons Crespo

Address:

Camino Vera, 14. CP: 46022, Valencia, Spain

Phone:

+34 9877576

Fax:

+34 9877579

E-mail:

alfons@disca.upv.es

Table 2. Participant List

Role Id. Name Acronym |Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore S. Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA CEA FR
CR 5 UNICONTROLS ucC CZ
CR 6 MNIS MNIS FR
CR 7 VISUAL TOOLS S.A. VT E

Chapter 1. Design of Communication
Components

1.1. The OCERA Real-Time Ethernet (ORTE)

1.1.1. ORTE design

The Ocera Real-Time Ethernet (ORTE) will be open source implementation of RTPS
communication protocol. This protocol is being to submit to IETF as an informational
RFC and has been adopted by the IDA group. Figure 1-1 shows the network stack lay-
ers. Non Real-Time applications, which are using standard protocols such as HTTP, FTP,
DCOM etc., are running on top of standard TCP or UDP stack. ORTE is new applica-
tion layer protocol, which is build on top of standard UDP stack. Since there are many
TCP/IP stack implementations under many operating systems and ORTE protocol does
not have any other special HW/SW requirements, it should be easily ported to many
HW/SW target platforms. It doesn’t use or require TCP, so it retains control of timing

and reliability.
| Real-Timeapps. | | NonRealTimeapm. |
| ORTE | [HTTP,FIP,DCOM .. |
[UDP | [er]
l P |
Etherne t hardware / MAC |

] ;:.rhﬂneT

Figure 1-1. ORTE layers

The ORTE is composed from three main components, as shown on Figure 1-2:

Database: stores parameters describing both local as well as remote node’s objects
Processes: perform message processing, serialization/deserialization and communica-
tion between objects

API: application interface

| BT Appleation
F 3
4 DRTE
1 ""IH ORTE
IID‘;‘G"
] Dainbase
| UDP stack |

I Etherne:

Figure 1-2. ORTE structure

The RTPS protocol is implemented as a set of objects. Objects are of the following types:

+ Manager (M)

Chapter 1. Design of Communication Components

+ ManagedApplication (MA)
o Writers (Publication, CSTWriter)
» Readers (Subscription, CSTReader)

A Manager is a special object that facilitates the automatic discovery of other Man-
agers. There is one Manager on each participating network node. A ManagedApplica-
tion is an applciation that is managed by one or more Managers. The Publication is
used to publish issues to matching Subscription. The CSTWriter and CSTReader are
the equivalent of the Publication and Subscription, respectively, but are used solely for
the state-synchronization protocol. Each object on network is characterized by GUID
(Globally Unique Id).

The RTPS protocol uses five logical messages:

ISSUE: Contains the application’s user data. ISSUES are sent by Publications to one
or more Subscriptions.

VAR: Contain information about attributes of state of objects.

HEARTBEAT (HB): Describes the information which is available in a writer.

GAP: Describes information which is no more relevant to readers.

ACK: Provides information on the state of a reader to a writer.

Each of these logical messages are sent between specific readers and writers as follows:

Publication to subscription(s): ISSUE, HEARTBEAT
Subscription to publication: ACK
CSTWriter to a CSTReader: VAR, GAP, HEARTBEAT
CSTReader to a CSTWriter: ACK

1.1.2. Database

Status of all objects is stored in ORTE database. The database is set data structures
containing parameters of all known objects. There are not only data describing local
node’s objects, but also description of all known remote nodes’ objects. Since access to
this database should be granted to both ORTE stack processes as well as to applications,
there should be implemented some access control algorythm allowing concurrent access.
Applications use an API call to access the database. The database will be implemented
as a set of generic sorted arrays.

1.1.3. Manager

The Manager is an independent process, which is created during application startup.
It is a special Application that helps applications automatically discover each other
on the Network. Every Manager keeps track of its managees and their attributes. To
provide this information on the Network, every Manager has the special CSTWriter
writerApplications. The Composite State (CS) that the CSTWriter writerApplications
provides are the attributes of all the ManagedApplications that the Manager manages
(its managees). Whenever the Manager accepts a new ManagedApplication as its man-
agee, whenever the Manager loses a ManagedApplication as a managee or whenever an
attribute of a managee changes, the CS of the writerApplications changes. Each such
change creates new instance of CSChange which has to be transferred to all network
objects (Managers and ManagedApplications) by means of CST protocol.

OCERA. IST 35102 2

Chapter 1. Design of Communication Components

1.1.3.1. Special objects in a manager

The manager is composed from five kinds of objects:

WriterApplicationSelf: CSTWriter throught which the Manager provides informa-
tion about its own parameters to Managers on other nodes.

ReaderManagers: CSTReader through which the Manager obtains information on the
state of all other Managers on the Network.

WriterManagers: CSTWriter throught which the Manager will send the state of all
Managers in the Network to all its managees.

ReaderApplications: CSTReader which is used for the registration of local and remote
managedApplications.

WriterApplications: CSTWriter throught which the Manager will send information
about its managees to other Managers in the Network.

Each Writer communicates with a Reader on remote node. There is one local instance
of RemoteReader object for each such remote Reader. Similarly there is one local in-
stance of RemoteWriter object for each Writer object on remote node. These two types
of objects represent status of remote Readers and Writers on different network nodes.
These objects are not network objects, they do not have any GUID and it is not possible
to communicate with them. Their purpose is solely to provide information on status of
remote Readers and Writers.

1.1.3.2. Implementation

The Manager will be implemented as two threads - reader thread and writer thread.
During its startup it opens two sockets, one for each thread, reads information about
other managers in the network (list of their IP addresses) and initialize database. One
a Manager is created, it starts to announce periodically its presence to other managers
in the network.

[API
Manager F
DB of objects
M, Ma
Sending Task Receiving Task
Changes Changes
Sending port Reca'vi.Tgpurt
[UpDP]

Figure 1-3. ORTE manager

Every change in the CS of the CSTWriter creates a new CSChange with a new Sequen-
ceNumber. The objectGUID of the new CSChange is the GUID of the NetworkObject
that the change in the CS applies to. The attributes of that NetworkObject are repre-
sented as a ParameterSequence in the CSChange. The alive boolean is set to FALSE if
the CSChange represents the removal of the NetworkObject from the set of objects in
the CS. The CSTChangeForReader keeps track of the communication state (attribute

OCERA. IST 35102 3

Chapter 1. Design of Communication Components

¢S) and relevance (attribute relevant) of each CSChange with respect to a specific re-
mote CSTReader. This relevant boolean is set to TRUE when the CSChangeForReader
is created; it can be set to FALSE when the CSChange has become irrelevant for the
remote Reader because of later CSChanges. This can happen, for example, when an at-
tribute of a NetworkObject changes several times. In that case a later CSChange can
make a previous CSChange irrelevant because a Reader is only interested in the latest
attributes of the NetworkObject. It is the responsibility of the remote CSTReader to use
this argument correctly so that the CSTReader can reconstruct the correct CS from the
relevant CSChanges it receives. Figure 1-4 shows the Finite State Machine representing
the state of the attribute ¢S of the CSChangeForReader. The states have the following
meanings:

New: a CSChange with SequenceNumber sn is available in the CSTWriter but this has
not been announced or sent to the CSTReader yet.

Announced: the existence of this SequenceNumber has been announced.

ToSend: it is time to send either a VAR or GAP with this sn to the CSTReader.
Underway: the CSChange has been sent but the Writer will ignore new requests for
this CSChange.

Unacknowledged: the CSChange should have been received by the CSTReader, but
this has not been acknowledged by the CSTReader. As the message could have been lost,
the CSTReader can request the CSChange to be sent again.

Acknowledged: the CSTWriter knows that the CSTReader has received the
CSChange with SequenceNumber sn.

[. N.uw ,l
FUSH= SEMT_HBI=m
[nllnn:ulnmd [Lhm:h’mwiadged]
e i
. RECY_RACEEm
after geralhbil e DataUnd eraayTiire]
[R ; J SEMT_ViR{sm || SEMT_GAPisn) gw

RECV_ACkEn)

—
Acknowrledued |

Figure 1-4. CSTWriter behavior

The reader thread is responsible for receiving of incomming CSTProtocol messages
which are addressed to this manager. The CSTReader receives CSChangeFromWrit-
ers from the CSTWriter. In case a VAR was received for the CSChangeFromWriters,
the CSTReader will store the contents of the VAR in an associated CSChange. The
CSTReader should be able to reconstruct the current CS of a specific CSTWriter by
interpreting all consecutive CSChanges. The Finite State Machine representing this
process is shown of Figure 1-5.

OCERA. IST 35102 4

Chapter 1. Design of Communication Components

Future | Reguested |

RECY_HB(sM SEMT_RACH SN

[= Missing]

HECW WAR(zn] [| RECV_GAR(zn)

T .
Recemed

Figure 1-5. CSTReader behavior

Future: A CSChange with SequenceNumber sn may not be used yet by the CSTWriter
Missing: The sn is available in the CSTWriter and is needed to reconstruct the CS.
Requested: The sn was requested from the CSTWriter, a response might be pending or
underway

Received: The sn was received: as a VAR if the sn is relevant to reconstruct the CS or
as a GAP if the sn is irrelevant.

Each change in CS of an network object which is described in succesfully received
CSChange is written into the database.

1.1.4. ManagedApplication

A ManagedApplication is an Application that is managed by one or more Managers. Ev-
ery ManagedApplication is managed by at least one Manager. TheManagedApplication
has a special CSTWriter writerApplicationSelf. The Composite State of the ManagedAp-
plication::writerApplicationSelf contains only one NetworkObject - the application itself.
The writerApplicationSelf of the ManagedApplication must be configured to announce
its presence repeatedly and does not request nor expect acknowledgements. A Manager
that discovers a new ManagedApplication through its readerApplications must decide
whether it must manage this ManagedApplication or not. For this purpose, the attribute
managerKeyList of the Application is used. If one of the ManagedApplication’s keys (in
the attribute managerKeyList) is equal to one of the Manager’s keys, the Manager ac-
cepts the Application as a managee. If none of the keys are equal, the managed applica-
tion is ignored. At the end of this process all Managers have discovered their managees
and the ManagedApplications know all Managers in the Network.

The ManagedApplications now use the CST Protocol between the writerApplications
of the Managers and the readerApplications of the ManagedApplications in order to
discover other ManagedApplications in the Network. Every ManagedApplication has
two special CSTWriters, writerPublications and writerSubscriptions, and two special
CSTReaders, readerPublications and readerSubscriptions. Once ManagedApplications
have discovered each other, they use the standard CST protocol through these special
CSTReaders and CSTWriter to transfer the attributes of all Publications and Subscrip-
tions in the Network.

OCERA. IST 35102 5

Chapter 1. Design of Communication Components

1.1.4.1. Special object in a managedApplication

The managedApplication is composed from seven kinds of objects.

WriterApplicationSelf: a CSTWriter throught which the ManagedApplication regis-
ters itself with the local Manager.

ReaderApplications: a CSTReader throught which the ManagedApplication receives
information about another ManagedApplications in the network.

ReaderManagers: a CSTReader throught which the ManagedApplication receives in-
formation about Managers.

WriterPublications: a Writer that provides issues to one or more instances of a Sub-
scription using the publish-subscribe protocol and semantics.

ReaderPublications: a Reader throught which the Publication receives information
about Subscriptions.

WriterSubscriptions: a Writer that provides information about Subscription to Pub-
lications.

ReaderSubscriptions: a Reader that receives issues from one or more instances of
Publication, using the publish-subscribe service.

1.1.4.2. Implementation

Implementation of ManagedApplication is similar to implementation of the Manager.
There will be one sending thread and one receiving thread. Each thread uses its own
UDP port for communication. Algorithm of exchange of CSChanges is the same as in
Manager. Aditionaly these two threads will be involved in exchange of application data
by means of Public-Subscribe protocol.

[API
f
ManagedApplication A
DB of objects
M, MA, Pub, Sub

")

Sending Task Receiving Task
Changes Changes
F.
Sendin gdllurt Rec Eivi.Tg port
[UDP]

Figure 1-6. ORTE ManagedApplication

1.1.5. API

First implementation will be designed like one application running in user space using
standard Linux 2.4 kernel. Since the main purpose of this version will be to test this

OCERA. IST 35102 6

Chapter 1. Design of Communication Components

implementation against another commercially available implementation, there will be
no any standard API provided. The real-time capabilities will not be focused during this
phase too. The next version will be written as a Linux kernel module. Interface between
this module and an application will use standard ioctl function and read/write opera-
tion. The function will be divided into three categories:

e Administration - create and destroy database (InitDB, DestDB, SetParamDB, Get-
ParamDB,...)

e Publish - create and destroy publishers, sending data (CreatePub, DestroyPub, Snd-
Data,...)

» Subscribe - create and destroy subscribers, receiving data (CreateSub, DestroySub,
RecDataPoll, @RecDataCallBack, ...)

There are two type of subscribers - polling or callback. Polling subscriberes have to ask
ORTE layer by RecDataPoll API call whether new data are available. Callback sub-
scriber creates an callback function, which will be passed to ORTE stack. ORTE stack
will call this function every time when new data will be available.

1.2. The OCERA CAN component

1.2.1. Virtual CAN API (VCA)

The virtual CAN API is the interface used to connect the application threads either
with the CAN hardware card or with other software layers substituting CAN bus. The
application thread can live either in the Hard RT space or in the Soft RT space. In the
the words we can say that VCA is a layer between the CAN driver and the application
threads.

1.2.1.1. CAN driver

CAN driver in the OCERA project can be realized in two ways, as a standard kernel
module or as a RT-Linux thread. The first approach is assigned for the soft realtime
applications and the second one for the hard realtime ones. In both cases the driver is
accessed via VCA using the same function calls.

The hard realtime CAN driver is the high priority RT-Linux thread which communicates
with a CAN card and puts/gets CAN messages to the VCA queues. The soft realtime CAN
driver is a standard kernel device driver accessed via /dev/can. If we want to use VCA in
the soft realtime, we should use libvca.

HW, RT-Linux / kernel space

CAN driver

CAN bus

RT-Linux
thread

:*¥ SDO FIFO >

> PDO buffers -»
RPDO[0]
RPDOJ[1]

| CAN card |
A

virtual CAN API

Figure 1-7. Hard real time CAN driver usage

OCERA. IST 35102 7

Chapter 1. Design of Communication Components

HW, RT-Linux / kernel space , user space
(2]
=}
Qo
z © CAN driver % libCAN [] application
o g SDO FIFO S =
> [€> < < »| (mainly for
6 PDO buffers 3 % development
RPDO[0] -~ 2 purposes)
RPDOJ[1] 3

Figure 1-8. Soft real time CAN driver usage

1.2.1.2. VCA functions overview

int vca_open_handle(vca_handle_t *vcah_p, const char *dev_name, const char *options, int
flags)

Function returns handle to opened CAN connection. Connection can be opened in read/write
mode (options) and as blocking/nonblocking for reading (flags). Parameter dev_name is used
only in Soft real time mode.

int vea_close_handle(vca_handle_t vcah)

Function closes formerly opened connection identified by handle vcah and frees system re-
sources.

int vea_send_msg_seq(vca_handle_t vcah, canmsg_t *messages, int count)

Function sends a count of CAN messages to CAN bus.

int vea_rec_msg_seq(vca_handle_t vcah, canmsg_t *messages, int count)

Function provides a blocking read of CAN messages from CAN bus. Returns number of red
messages.

int vea_wait(vea_handle_t vcah, int wait_msec, int what)

Function suspends a calling thread for wait_msec. Suspension can be awakened by occur-
rence of CAN message. The details of the awakening are specified by parameter what

1.2.2. CAN/CANopen monitor

1.2.2.1. Overview

CAN/CANopen monitor is a GUI tool written in Java designated for listening on the
CAN bus and showing caught CAN messages.

1.2.2.2. Basic functionality

CAN/CANopen monitor can read/send the CAN messages from/to CAN bus. If some
CANopen device EDS (Electronic Data Sheet) is loaded, the functionality of tool is ex-
tended. The CAN messages are translated according to loaded EDS and received SDO
are shown in the EDS tree. You can also send SDO by editing field in EDS tree.

Necessary part of CAN monitor is the canmond. Canmond is a server connected to VCA,
which sends received messages to all clients (ie. CAN monitor) connected to it through
TCP socket. When some client send CAN message to the canmond, it resents it to CAN

OCERA. IST 35102 8

Chapter 1. Design of Communication Components

bus. TCP connection allows clients to be placed wherever on Internet. One can also
read/send CAN messages using a java applet on this HTML browser.

A \\Q CAN
Q .
" . <O monitor #1
3 CAN driver
zZ
2 canmond CAN
o — monitor #2
<> 8 <>
>
Y local machine CAN
monitor #n

Figure 1-9. canmond server-client architecture

CAN monitor can serve as application showing all messages on CAN bus. You can also
send a raw CAN messages to the CAN bus.

=T

File

c
EDS | Ccan |

-------- Can manitor 100 Window «----—-----

[1] CAN message recelved: {id=393, length=1, data=[02]}
[2] CAN message received: {id=393, length=1, data=[00]}
[3] CAM message recelved: {id=393, length=1, data=[02]}
[4] CAN message received: {id=393, length=1, data=[00]}
[5] CAM message received: {id=393, length=1, data=[02]}
[6] CAN message received: {id=393, length=1, data=[00]}
[7] CAN message received: {id=393, length=1, data=[08]}
18] CANM message recelved: {id=393, length=1, data=[00]}
[9] CAM message received: {id=393, length=1, data=[04]}
[10] CAM ressage received: {id=383, length=1, data=[00]}

ID byte[O]inte[1]yte]2]yte[S]byte[4]nte[S]vte[6]nte] 7]

I e
Figure 1-10. CAN monitor CAN messages window

With loaded EDS you can write/read values straight to the device object dictionary (OD).

OCERA. IST 35102 9

Chapter 1. Design of Communication Components

L=

File

B

DS [fcan |

e IjD.\java\idea\pruject\MT.eds ;5 Mame | Value | Comrment |
[comments | {|ParameterName number of entri...

{4 {[ObjectType 00007

[Fileinfa | DataTvpe 0x05
D Devicelnfo JAccessType ro
D Durnmyl)sage | LaweLirnit
[mandatorcobjects {HighLimit

|| Defaultvalue 0x04

D 1000 - device type | PDOMapping 0

[y 1001 - error register
@ [C11018- identity object
[y 1018.0 - nurmber of entries
Oy 1181 - vendor i
D 1018.2 - product code
[y 10183 - revision number
[y 1016.4 - serial number
[optionalobjects
@7 1003 - pre-defined errar field

Figure 1-11. The Object Dictionary tree view

1.2.3. RT-CANopen device

1.2.3.1. Overview

RT-CANopen device (only device or CANopen device will be used instead in rest of this
section) is the software solution based on the hardware, RT-CANopen FSM (Final State
Machine) threads, EDS (Electronic Data Sheet) file and HDS (Handler Definition Sheet)
file. Device can be configured to work as a CANopen master or CANopen slave.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

, computer

CAN slave | | Object
driver|S < Fsm [< dictionary
O] [€>|O] e
|; > AT8] o)
] w

' PDO handlers

EDS ||| [HDS

CAN bus

hardware

Figure 1-12. RT-CANopen device architecture

CANopen device components description

FSM: FSM (Final State Machine) means set of RT-Linux threads providing PDO and
SDO communication via VCA VCA. Slave FSM also calls appropriate handler PDO com-
munication and looks into the slave’s object dictionary in case of SDO request.

PDO handlers: User written module containing handlers for reading/writing PDO
mapped object data from/to hardware.

EDS: EDS means the Electronic Data Sheet, text file describing all objects in the slave
object dictionary and its mapping tho the PDO. EDS is parsed in order to create the
slave OD.

HDS: HDS (Handler Definition Sheet) means the Handler Definition Sheet, text file
describing the linking PDO’s COB-ID with required handler in order to grant corre-
spondence between the CANopen object value and technological process data from the
hardware. For example a thermometer with the analog output connected to PC A/D con-
verter card needs handler which reads temperature from the card output port and gives
it to the FSM. The slave designer have to write this handler code while the FSM source
code remains always the same, OCERA written.

OCERA. IST 35102 10

Chapter 1. Design of Communication Components

1.2.3.2. RT-CANopen device in the Soft real time space

A HW Hard real time space Soft real time space
— . — EDS EDS
g CAN CANopen OD driver CAN master daemon 0 | n
*> ; driver E state machine ii(E
=] (SDO/NMT <> <4 Object dictionaries
S PDO bufiers| % z) Q 2 = ¥ ¥
— rrDO0] ||| . @ & e <_>| EDS parser IJ
RPDOIT||S Sl = oD[0]
» . § CANopen object[0]
2 . CANopen object[1]
> - < 1PDOA .
Z PDO objects table |« i notify §
o o object[0] '
© H
3 :
object[n] PDO
o|__object[0] processor
= : |¢—| module
Y 2 object[n]

Figure 1-13. Soft real time CANopen device architecture

As can be seen on figure above CAN driver sends the CAN messages to CANopen FSM
via VCA. FSM handles messages of two main categories, process data (PDO) and service
data (SDO, NMT, SFO).

The process data (PDO objects) are handled separately of the SDO. Slave FSM exploits
CAN driver message buffers as the buffers for the slave PDOs. This approach is neces-
sary because some CAN chips have such buffers integrated. On the other hand this can
speed up PDO object handling. Slave FSM role lies in updating this buffers after device
specific event such is timer event or process object value change. The CAN driver sends
objects from its buffers when needed (after SYNC object or as a response to RTR object).
Consequently slave FSM has to read this buffers after WPDO object arrival.

PDO objects table is a memory mirror for transmitted and received PDOs. When a new
RPDO comes, it is written into the table and PDO processor is notified by master FSM
about this event. On the contrary, when PDO processor updates some object in the write
part of PDO table, the FSM should be notified to allow it to transmit object change across
the network.

The PDO processor module is used to synchronize PDO mapped objects values and real
world data examined or set by computer hardware. Every PDO mapped object has as-
signed its reading and writing routine called PDO handler. These handlers are written
by control system developer. Handlers placed in PDO processor share PDO table with
FSM. In this table are stored/retrieved process data according to external events and oc-
currence of messages on the CAN bus. PDO processor is an user written set of functions
designated for processing objects from read part of PDO table and generating new value
of objects in write part of PDO table. New generated write objects can be sent across the
CAN, if the processor notifies master FSM. This way the RPDO-TPDO mapping rules or
control algorithms can be realized.

Some of SFO (Special Function Object) are handled directly by CAN driver. Such objects
are the SYNC or RTR frames

Other objects (SDO, NMT) are sent through the SDO API to OD driver. OD driver is
responsible for all object dictionary manipulations, that means getting and setting object
values. If the PDO mapping change occurs due to SDO object processing, OD driver
informs slave FSM (via SDO API) to correct PDO handlers table to reflect PDO mapping
status in OD properly.

OD driver communicates with OD daemon, which resides in the user space, through RT
FIFOs. OD daemon offers set of primitives to provide basic manipulations with OD like
get/set object value, add object, delete object etc. OD daemon also owns slave OD in its
memory space.

OCERA. IST 35102 11

Chapter 1. Design of Communication Components

Slave OD can be loaded onto OD daemon memory by EDS parser. As EDS parser will
probably serve CAN/CANopen monitor connected with it via Unix socket. This gives us
the opportunity to control the daemon and slave OD remotely using TCP/IP. EDS parser
is also responsible to read HDS and make appropriate changes mapping of handler func-
tions in PDO processor module. This ensures that the proper handlers will be called for
certain PDO objects.

The main difference between CANopen master and CANopen slave device is in OD and
PDO processor module. We can say, that slave is more or less master with only one
EDS in its OD and some restrictions on functionality (can’t send NMT objects etc.). That
means, that the slave device is a special case of the master one. Thanks to this general-
ization we can have also one code for the master and slave device and determinate final
behavior by configuration and by loading different PDO processor module.

1.2.3.3. RT-CANopen device in the Hard real time space

A HW Hard real time space Soft real time space
compilation
,,,,,,,,,,,,,, G (T T T T T T
i - |
2 CAN CANopen ' |OD driver EDS || |[HDS X
RN 8 driver & state machine [=|| | [z |
<Z(PDO buft <Z: 7]« SRoNMT g (—‘-)<o(OD (object dictionary) : T 1
urters ' ' i
o 6 < 2l % CANopen object[0] ' OD driver
— gggg{ﬂ § > é _PDO 3 CANopen object[1] 3 EDS parser I module
d £ Ot ; . ; C coded
] S ' . '
2 H A i
PDO
<Z(PDO ob!'ects table | <€ Enolifyi i
© 5| obiect0] : ! Object dictionary
3 R [A S
object[n] PDO
|_obiectio] processor
£ : |¢—| module
V 2 object[n]

Figure 1-14. Hard real time CANopen device architecture

This architecture is very similar to the previous one. The main difference lies in OD
position which is a part of OD driver module now. Every other part of slave remain the
same. OD driver module is compiled from source code generated by EDS parser from the
slave EDS, HDS and the empty OD driver template.

Benefits of the kernel space solution

» Faster SDO object processing.

» Slave does not need user space applications to work properly.

 Slave can be implemented to other POSIX compliant real-time OS like RTEMS.

» Suitable for CANopen slave realization in embedded systems.

Disadvantages of the kernel space solution
« OD is static, no objects can be added or removed.

« EDS parser can not explore OD any more. The diagnostic pipe has to be used for that
purpose and all the information must be communicated through SDO API and slave
FSM.

OCERA. IST 35102 12

Chapter 1. Design of Communication Components

1.3. Verification of Distributed Systems

1.3.1. Problem statement

This chapter deals with a design conception of theoretical study offering methodology
tool supporting analysis of distributed Real Time (RT) systems. Figure 1-15 illustrates
mayor topic of verification of distributed systems . Figure shows a control system con-
sisting of n independent processors and communication bus with general communication
protocol. Let us consider the parallel machines running applications in the real-time
operating system (RTOS) environment and further let us consider the communication
protocol behaving in Real-time manner.

The crucial problem is whether the general real-time control system (RTCS)
[ctu_ijk_bib_Buttazoo97] behaves in RT manner. This problem can be split into three
subproblems that can be futher composed together:

 application SW (modeled by application developer)
» RTOS (study of preemptive and cooperative schedulers)
* RT communication - CAN (Medium Access Control modeling)

Coresponding three sub models can be futher combined to create RTCS model and it’s
possible behavior can be defined. On the other hand desired behavior of the RTCS has
to be specified in the form of properties (e.g. deadlock, missed deadline, ...).

Environment

LEGEND
B Interface
EZIRTCS
Aoplication

[RrTCS

{dBus

RTCS B S e e e T e e ZZ:;

Figure 1-15. Real time control system structure with denotation of
computation/communication times

OCERA goal is to provide

e model of RTOS and CAN
 develop examples of typical applications
 provide methodology for model checking of RTCS

To resolve the above mentioned problem we use a mathematical formalisms based on:

» system specification by means of PN or communicating automata
 design system behavior formulated by means of LTL

« verification algorithm

OCERA. IST 35102 13

Chapter 1. Design of Communication Components

Especially we use the tools that have been already applied to solve similar problems
(PEP tool, UPAAL etc.). These tools are able to model concurrent systems and mainly
them.

The application developer willing to check to RT properties of the RTCS is required
to model the application SW, to use properly models of RTOS and CAN and to specify
correctly requested system properties (desired system behavior). While using the lin-
ear temporal logic (LTL) the application developer can verify his RT applications that
are communicating via CAN by checking of properties like for example whether all task
deadlines are satisfied or whether the message is received before another one. This ap-
proach is an alternative to the one known as VOLCANO [ctu_ijk_bib_volcano], and it
offers more general framework for verification.

1.3.2. Modelling of communication protocol

When are modelling and verifying a communicating system we have to understand the
idea of communication protocol design [ctu_ijk_bib_Holzmann91]. At the start of the
design we must answer the next five questions:

» What service should be provided by the protocol?

« What assumptions are about the environment in which the protocol is executed?
» What vocabulary of messages should be used to implement the protocol?

+ What encoding (format) of each message in the vocabulary should be used?

« What procedure rules are guarding the consistency of message exchanges?

If we satisfactorily answer the questions we can suggest concrete structure of commu-
nication protocol. It is evident that the most complicated design problem is the most
difficult is his resolving. Partitioning the problem to small subproblems is reason that
tell us common sense. The subproblems can be either easy to solve or they have been
solved before. Some of them can be for example ISO/OSI model of protocol layers, encod-
ing of messages (e.i. CRC) or access control at physical media (i.e. MAC).

In OCERA project we are interested in CAN bus communication protocol due to its real-
time properties (see "Survey on RTOS"). The protocol will be modelled and it will be
included to RTCS as communication part.

1.3.2.1. Example of CAN Medium Access Control model

CAN is based on the so-called broadcast communication mechanism. This broadcast
communication is achieved by using a message oriented transmission protocol. CAN de-
fines address of messages that are identified by using a message identifier. The identifier
serves both as unique number as message priority. Bus access conflicts are resolved by
bit-wise arbitration on the identifiers involved by each station observing the bus level
bit by bit. The example deals with Medium Access Control of messages with different
priority.

Model of the Medium Access Control (MAC) is realized by PN shown in Figure 1-16.
There are three MAC of different priority messages. Places

« P1, P2 and P3 characterize MAC-H - MAC of high priority message

» P4, P5 and P6 characterize MAC-M - MAC of medium priority message
« P7, P8 and P9 characterize MAC-L - MAC of low priority message
Those MAC of the massages have the next three states:

OCERA. IST 35102 14

Chapter 1. Design of Communication Components

« P1, P4, P7 - process in RTOS is computing its own task and it needn’t communicate
via the bus in this time

« P2, P5, P8 - waiting for yielding of communication on the bus. If there is a message
with higher priority it can’t be sent.

» P3, P6, P9 - message is sent on the bus. The message wins the CAN arbitration and
can access the bus

P10 characterizes that the bus is free. P11 and P12 reflect the fact that the high priority
(or medium priority respectively) message is willing to sent or not.

Figure 1-16. Model of CAN bus access method

Verification example of the model is shown bellow. Prior to the use of the verification
tools the verification properties have to be defined. An examples of the properties are
the next ones:

1. Does the system include deadlock?
2. Is there any state on which two messages are sent on the bus at the same time?

These properties have to be transformed to the verification tool formalism (the tools are
described in follow section). The results of Analise are:

1. Deadlock-free analysis result: No deadlock

2. The state doesn’t exist because there is no marking when two of P3, P6 and P9 are
marked at the same time. The output of reachability tool is No.

PN can also contain for example time information which can influence behavior of ap-
plication in global point of view. For example the computing time or ping-pong response
times. Application developer can also check if the evolution of states is running in right
way. For example:

OCERA. IST 35102 15

Chapter 1. Design of Communication Components

» Does exist the sequence:

1. send high priority message
2. communication via bus for high priority message was permitted
3. send low priority message

4. communication via bus for low priority message was permitted too?

SPIN model checker tool is suitable for this kind of verification.

1.3.3. Model of RTOS

The term real-time is frequently used in many application fields. The definitions
[ctu_ijk_bib_Buttazoo97] adopted by us is that the main difference between a real-time
and non-real-time task is that the real-time is characterized by a deadline, which is the
maximum time within which it must complete its execution. In critical applications, a
result produced after the deadline is not late but wrong! RTOS is operating system in
the manner of the definition.

We need RTOS model in this point of view. The model connects application part and com-
munication part of RTCS verified by the verification tools. Since this problem is difficult
to solve in general sense when preemption is allowed. We concentrate on cooperative
schedulers with limited processor capacity assigned to interrupt handlers.

1.3.4. Tools

To modelling and verifying the models above we use a tools that are allowed do that with
sophisticated mathematical formalisms. This tools are based on Petri Net or communi-
cating automata and they proved their qualities in research community. Our intention
is to use them in applications based on RTOS and fieldbus systems.

1.3.4.1. PEP tool

PEP tool (Programming Environment based on Petri nets) [ctu_ijk_bib_best98]
[ctu_ijk_bib_peptool] is able to model concurrent systems and to verify them by
partial model checking based on a compositional denotation Petri nets semantics. The
language supported by the tools covers block structuring, parallel and sequential
composition, synchronous and asynchronous communications and so on.

Modelling allows to create either graphical version of Petri net model or
structured program code of the model in B(PN)? (Basic Petri Net Programming
Notation) [ctu_ijk_bib_best93] or SDL (Specification and Description Language)
[ctu_ijk_bib_peptooll.

PEP contains those verification components:

e Deadlock-free tool - the tool checks whether or not a state can be reached in which no
transition is enabled and displays corresponding transition sequence leading to such
a state if one exists.

» Reachability tool - the tool checks whether a (sub-) marking of a PN is reachable. The
names of the places and the number of tokens on these places can be and the results
of the previous test are displayed.

e SMYV - the tool serves Control Tree Logic (CTL) model checking.

OCERA. IST 35102 16

Chapter 1. Design of Communication Components

+ SPIN - it serves to invoke a fast model checking algorithm for Petri nets based on
Linear Temporal Logic (LTL). The input is PROMELA formalism and property from
PEP Formula editor.

1.3.4.2. UPPAAL

UPPAAL [ctu_ijk_bib_uppaallallows modelling, simulation and verification of
real-time systems. It is appropriate for systems that can be modelled as collection
of non-deterministic processes with finite control structure and real-valued clocks,
communicating through channels or shared variables.

Typical application areas of the tool include real-time controllers and communication
protocols in particular, those where timing aspects are critical.

Bibliography
Gerard J. Holzmann, 1991, Prentice Hall, Design and validation of computer protocols.

Giorgios C. Buttazzo, 1997, Kluwer Academic Publisher, Hard Real-time computing sys-
tems: Predictable Scheduling Algorithms and Applications.

Eike Best and Bernd Grahlmann, 1998, Programming Environment based on Petri nets:
Docummentation and User Guide Version 1.8.

Eike Best and R. P. Hopkins, 1993, B(PN)? - A Basic Petri Nets Programming Notation.
UPPAAL tool: hitp: | /www.docs.uu.se /docs /rtmv /uppaal /.
PEP tool: http:/ | theoretica.informatik.uni-oldenburg.de [~pep /.

Ken Tindell and A. Burns, 1994, Guaranteeing Message Latencies on Controller Area
Network (CAN) .

OCERA. IST 35102 17

