
WP7 – Development of Communication
Components

D7.2_rep Communications components V1

Communication components
by Frantisek Vacek

by Jan Krakora

by Pavel Pisa

by Petr Smolik

by Zdenek Sebek

by Libor Waszniowski

by Zdenek Hanzalek

Published April 2003
Copyright © 2003 by Ocera

Table of Contents
Communication components..i
1. CAN/CANopen...1

1.1. Virtual CAN API (VCA) ...1
1.1.1. Summary...1
1.1.2. Description..1
1.1.3. API / Compatibility...1

struct canmsg_t..1
vca_h2log ..1
vca_open_handle ..1
vca_close_handle..1
vca_send_msg_seq ...1
vca_rec_msg_seq ..1
vca_wait..1
vca_log ..1
vca_log_redir ..1

1.1.4. Implementation issues ...2
1.1.5. Tests ..2
1.1.6. Examples...2
1.1.7. Installation instructions ..2

1.2. CAN monitor ..3
1.2.1. Summary...3
1.2.2. Description..3

1.2.2.1. canmond - CAN/CANopen proxy..3
1.2.2.2. testclient..4
1.2.2.3. CanMonitor ...4

1.2.3. API / Compatibility...5
1.2.3.1. canmond ..5
1.2.3.2. testclient..5
1.2.3.3. CanMonitor ...6

1.2.4. Implementation issues ...6
1.2.4.1. canmond ..6

1.2.5. Tests ..7
1.2.6. Examples...7
1.2.7. Installation instructions ..8

1.3. CAN device ...8
1.3.1. Summary...8
1.3.2. Description..1
1.3.3. API / Compatibility...1

1.3.3.1. SDO FSM API...1
struct vcasdo_fsm_t...1
vcasdo_error_msg..1
vcasdo_init_fsm ...1
vcasdo_destroy_fsm...1
vcasdo_run...1
vcasdo_fsm_taste_msg ..1
vcasdo_abort_msg ...1

1.3.4. Implementation issues ...2
1.3.4.1. Architecture overview...2
1.3.4.2. RT-CANopen device in the Soft real time space..........................2
1.3.4.3. RT-CANopen device in the Hard real time space........................3

1.3.5. Tests ..4
1.3.6. Examples...4
1.3.7. Installation instructions ..4

iii

2. ORTE - OCERA Real-Time Ethernet..5
2.1. ORTE ..5

2.1.1. Sumary..5
2.1.2. Description..5
2.1.3. API / Compatibility...5

struct ORTERcvInfo ..5
struct ORTEPublStatus ..7
struct ORTESubsStatus ..8
struct ORTESubsProp ...9
struct ORTEPublProp ...10
ORTEAppCreate ..11
ORTEAppDestroy ..12
ORTEAppPublAdd...13
ORTEAppPublRemove ..14
ORTEAppPublSend ...15
ORTEAppPublPropGet..16
ORTEAppPublPropSet ..17
ORTEAppPublWaitForSubs ..18
ORTEAppPublGetStatus...19
ORTEAppSubsAdd ..20
ORTEAppSubsRemove ..21
ORTEAppSubsPropGet ...22
ORTEAppSubsPropSet..23
ORTEAppSubsWaitForPubl ..24
ORTEAppSubsGetStatus ..25
ORTEVerbositySet...26
ORTESleepMs..27
NtpTimeAssembFromMs ..28
NtpTimeDisAssembToMs..29
NtpTimeAssembFromUs...30
NtpTimeDisAssembToUs ..31

2.1.4. Implementation issues ...32
2.1.5. Tests ..34
2.1.6. Examples...34
2.1.7. Installation instructions ..36

2.2. Real Time Ethernet analyzer ..36
2.2.1. Sumary..36
2.2.2. Description..36
2.2.3. API / Compatibility...36
2.2.4. Implementation issues ...36
2.2.5. Tests ..36
2.2.6. Examples...37
2.2.7. Installation instructions ..37

3. Verification ..39
3.1. CAN model by timed automata /Petri Nets ..39

3.1.1. Summary...39
3.1.2. Description..39

3.1.2.1. Problem statement..39
3.1.2.2. CAN bus description ...40

3.1.2.2.1. Real-time data transmission ..40
3.1.2.2.2. Message frame formats...41
3.1.2.2.3. Detecting and signaling errors42

3.1.3. API/Compatibility...43
3.1.4. Implementation issues ...43

3.1.4.1. Model of bit-wise arbitration..43

OCERA. IST 35102 iv

3.1.4.2. MAC arbiter implementation...44
3.1.5. Tests ..46
3.1.6. Examples...46

3.1.6.1. Implementation of process ...46
3.1.7. Installation instructions ..47
Bibliography ...47

3.2. Verification of cooperative scheduling and interrupt handlers48
3.2.1. Summary...48
3.2.2. Description..48
3.2.3. API/Compatibility...51
3.2.4. Implementation issues ...51

3.2.4.1. Cooperative scheduling...52
3.2.4.2. Interrupts ..53
3.2.4.3. Inter process communication primitives55

3.2.4.3.1. Semaphore ...55
3.2.4.4. Conclusion and future work ...57

3.2.5. Tests ..58
3.2.6. Examples...58

3.2.6.1. Example of system with interrupt ...58
Bibliography ...59

OCERA. IST 35102 v

List of Figures
1-1. Hard real time CAN driver usage..2
1-2. Soft real time CAN driver usage..2
1-3. canmond server-client architecture ...3
1-4. CAN monitor CAN messages window ...4
1-5. The Object Dictionary tree view ..4
1-6. CanMonitor testing ..7
1-7. RT-CANopen device architecture...2
1-8. Soft real time CANopen device architecture...2
1-9. Hard real time CANopen device architecture...4
2-1. Communication among network objects..33
2-2. Screenshot...37
3-1. Real time control system structure with denotation of computation/communication

times ..40
3-2. Arbitration model ...43
3-3. MAC model ...44
3-4. Bus model..45
3-5. Example model ...46
3-6. Application process model..46
3-7. State transition diagram of the process in the multitasking operating system50
3-8. Example of monoprocessor scheduling anomaly...51
3-9. Model of the application process executed under cooperative scheduling policy....52
3-10. Synchronisation of cooperative scheduler with application processes52
3-11. One automaton (Schi) of the cooperative scheduler in Figure 3-10.......................53
3-12. System architecture with interrupt server ...54
3-13. Interrupt server routines ..55
3-14. Computation location considering interrupts ...55
3-15. Time diagram of ISR execution within interrupt server...55
3-16. Model of process containing Take and Give one semaphore56
3-17. Scheduler model containing Take and Give of one semaphore (extension of Figure

3-11) ...56
3-18. Automaton wFifoQueue providing writing to the FIFO queue..............................57
3-19. Interconnection of sample automata ...58
3-20. Model of Environment generating IRQ...58
3-21. Model of hardware interrupt controller ..58
3-22. ISR_Server model ...58
3-23. Model of high-priority process Proc_Int ..59
3-24. Model of low-priority periodic process Proc_Period ..59

vi

Document Presentation

Table 1 Project Coordinator

Organisation

Responsible person

UPVLV

Alfons Crespo
Address

Phone:

Fax:

Camino Vera, 14

46022 Valencia, Spain

+34 963877576

+34 963877576
Email:alfons@disca.upv.es

Table 2 Participant List

Role Id. Participant Name Partcipant acronym
CO 1 Universidad Politecnica de Valencia UPVLC
CR 2 Scuola Superiore Santa Anna SSSA
CR 3 Czech Technical University in Prague CTU
CR 4 CEA/DRT/LIST/DTSI CEA
CR 5 Unicontrols UC
CR 6 MNIS MNIS
CR 7 Visual Tools S.A. VT

Table 3 Document version

Release Date Reason of change
1_0 15/04/03First release

vi

Communication components

i

Chapter 1. CAN/CANopen

1.1. Virtual CAN API (VCA)
The virtual CAN API is the interface used to connect the application threads either
with the CAN hardware card or with other software layers substituting CAN bus. The
application thread can live either in the Hard RT space or in the Soft RT space. In the
the words we can say that VCA is a layer between the CAN driver and the application
threads.

1.1.1. Summary
Name of the component

Virtual CAN API (VCA)
Author

Pavel Pisa, Frantisek Vacek
Reviewer

not validated
Layer

Low-level (not implemented yet), High-level
Version

0.1 Alfa
Status

Alfa
Dependencies

High-level version needs CAN driver module (it is connected via /dev/can).

Low-level version needs RT-CAN driver installed.

Release date

N/A

1.1.2. Description
A virtual CAN API is an interface used to connect the application threads either with a
CAN hardware card or with other software layer which can substitute a CAN bus. An
application thread can live either on low-level (RT-Linux) or on application-level (user
space). In the other words we can say that VCA is an uniform layer between a CAN
driver and the application threads on any level.

1.1.3. API / Compatibility

struct canmsg_t
struct canmsg_t — structure representing CAN message

1

struct canmsg_t

Synopsis

struct canmsg_t {
short flags;
int cob;
unsigned long id;
unsigned long timestamp;
unsigned int length;
unsigned char * data;

};

Members
flags

extra flags for internal use
cob

communication object number (not used)
id

ID of CAN message
timestamp

not used
length

length of used data
data

data bytes buffer

Header
can.h

OCERA. IST 35102 2

vca_h2log
vca_h2log — converts VCA handle to printable number

Synopsis
long vca_h2log (vca_handle_t vcah);

Arguments
vcah

VCA handle

Header
can_vca.h

Return Value
unique printable VCA handle number

1

vca_open_handle
vca_open_handle — opens new VCA handle from CAN driver

Synopsis
int vca_open_handle (vca_handle_t * vcah_p , const char * dev_name , const char * options , int flags);

Arguments
vcah_p

points to location filled by new VCA handle
dev_name

name of requested CAN device, if NULL, default VCA_DEV_NAME is used
options

options argument, can be NULL
flags

flags modifying style of open (VCA_O_NOBLOCK)

Header
can_vca.h

Return Value
VCA_OK in case of success

1

vca_close_handle
vca_close_handle — closes previously acquired VCA handle

Synopsis
int vca_close_handle (vca_handle_t vcah);

Arguments
vcah

VCA handle

Header
can_vca.h

Return Value
Same as libc close returns.

1

vca_send_msg_seq
vca_send_msg_seq — sends sequentially block of CAN messages

Synopsis
int vca_send_msg_seq (vca_handle_t vcah , canmsg_t * messages , int count);

Arguments
vcah

VCA handle
messages

points to continuous array of CAN messages to send
count

count of messages in array

Header
can_vca.h

Return Value
Number of sucessfully sent messages or error < 0

1

vca_rec_msg_seq
vca_rec_msg_seq — receive sequential block of CAN messages

Synopsis
int vca_rec_msg_seq (vca_handle_t vcah , canmsg_t * messages , int count);

Arguments
vcah

VCA handle
messages

points to array for received CAN messages
count

number of message slots in array

Header
can_vca.h

Return Value
number of received messages or error < 0

1

vca_wait
vca_wait — blocking wait for the new message(s)

Synopsis
int vca_wait (vca_handle_t vcah , int wait_msec , int what);

Arguments
vcah

VCA handle
wait_msec

number of miliseconds to wait, 0 => forever
what

0,1 => wait for Rx message, 2 => wait for Tx - free 3 => wait for both

Header
can_vca.h

Return Value
Positive value if wait condition is satisfied

1

vca_log
vca_log — generic logging facility for VCA library

Synopsis
void vca_log (const char * domain , int level , const char * format ,);

Arguments
domain

pointer to character string representing source of logged event, it is VCA_LDOMAIN
for library itself

level

severity level
format

printf style format followed by arguments
...

variable arguments

Description
This functions is used for logging of various events. If not overridden by application,
logged messages goes to the stderr. Environment variable VCA_LOG_FILENAMEcan be
used to redirect output to file. Environment variable VCA_DEBUG_FLGcan be used to
select different set of logged events through vca_debug_flg.

Note
only messages with level <= vca_log_cutoff_level will be logged. see can_vca .h

1

vca_log_redir
vca_log_redir — redirects default log output function

Synopsis
void vca_log_redir (vca_log_fnc_t * log_fnc , int add_flags);

Arguments
log_fnc

new log output function. Value NULL resets to default function
add_flags

some more flags

1

Chapter 1. CAN/CANopen

1.1.4. Implementation issues
Applications can be connected to CAN via VCA in two ways, either from hard real-time
space or from soft real-time one. Other CAN driver is used in each case (RT-Linux or
Linux resp.), but VCA remains always the same. Following the POSIX standard and
VCA one can easy write applications, which can be compiled and run in both spaces.

C
A

N
 c

ar
d RT-Linux

threads

C
A

N
 b

us

RT-Linux / kernel spaceHW

vi
rt

ua
l C

A
N

 A
P

I

CAN driver

vi
rt

ua
l C

A
N

 A
P

I

PDO buffers

RPDO[0]
RPDO[1]

SDO FIFO

Figure 1-1. Hard real time CAN driver usage

C
A

N
 c

ar
d CAN driver

PDO buffers

RPDO[0]
RPDO[1]

libvca

TCP/IP

C
A

N
 b

us

user spaceRT-Linux / kernel spaceHW

V
C

A application
(mainly for
development
purposes)

remote
applications

(for ex.
CanMonitor)

canmod

/d
ev

/c
an

 x
x

SDO FIFO

Figure 1-2. Soft real time CAN driver usage

On figure above we can also find, that user space application can be connected through
TCP/IP to the canmond server. Canmond works like CAN/IP proxy (see canmond de-
scription).

1.1.5. Tests
Only soft real-time solution was implemented yet. No heavy tests were made. All tests
were performed during CanMonitor testing (see CanMonitor tests).

All VCA sources were compiled by GNU C ver. 3.2 and linked with glibc ver. 2.2.5.

1.1.6. Examples
Directory ocera/components/comm/can/canvca/cantest contains two example pro-
grams - sendcan and readcan. First one shows the simplest way to send CAN message
via VCA. The second one shows, how to read CAN message. You can find more informa-
tion in their source codes (sendcan.c, readcan.c) in the same directory.

sendcan invocation: sendcan id byte_1 ... byte_n

Note: don’t forget restart CAN device before communication (sendcan 0 1 0).

OCERA. IST 35102 2

Chapter 1. CAN/CANopen

1.1.7. Installation instructions
All communication components can be compiled issuing make command in directory
ocera/components/comm/can/ . You can also make only some of them by issuing make
in appropriate directory.

VCA components don’t have special requirements on gcc or glibc version.

1.2. CAN monitor
CAN monitor is a component used to sniff on a CAN bus. It can log messages and send
ones. If CAN device EDS (Electronic Data Sheet) is available CanMonitor offers alse
basic SDO functionality. Package consists of three parts: canmond, testclient and Can-
Monitor.

1.2.1. Summary
Name of the component

CanMonitor
Author

Frantisek Vacek
Reviewer

not validated
Layer

High-level
Version

0.1 Alfa
Status

Alfa
Dependencies

It needs interface layer providing VCA.
Release date

N/A

1.2.2. Description
Can monitor component consists of three parts. CAN proxy - canmond, console canmond
client testclient and Java GUI canmond client CanMonitor.

1.2.2.1. canmond - CAN/CANopen proxy
Canmond is the heard of component. It works like CAN proxy , translates every CAN
message to the textual, platform independent form and send it to the all connected ap-
plications. TCP connection allows clients to be placed wherever on Internet. One can
also read/send CAN messages using a java applet on his HTML browser.

OCERA. IST 35102 3

Chapter 1. CAN/CANopen

soft real-time/user space

libvca

V
C

A

CanMonitor #1

CanMonitor #2

testclient #1

application #1

/d
ev

/c
an

 x
x canmod

V
C

A

TCP/IP

Figure 1-3. canmond server-client architecture

1.2.2.2. testclient
Testclient is an simple console based application for communication with canmond. It
provides us basic operation on CAN/CANopen bus like sending messages and SDO com-
munication.

1.2.2.3. CanMonitor
CanMonitor is a GUI Java based application connected to the canmond. Like testclient
provides us basic CAN/CANopen communication primitives. If one has CANopen device
EDS (Electronic Data Sheet), he can read/write CANopen objects just clicking on the
mouse.

Figure 1-4. CAN monitor CAN messages window

CAN monitor can serve as application showing all messages on CAN bus. You can also
send a raw CAN messages to the CAN bus clicking on Send button.

OCERA. IST 35102 4

Chapter 1. CAN/CANopen

Figure 1-5. The Object Dictionary tree view

With loaded EDS you can upload/download CANopen objects values straight to the de-
vice object dictionary (OD).

1.2.3. API / Compatibility

1.2.3.1. canmond
Canmond command line arguments:
CANMOND - CAN monitor server
canmond [OPTION]

OPTIONS:
-h
--help this help screen
-v --verbose
-p
--port [n] sets port where the server listens (default 1001)
-g
--log_level [n] sets how many log messages you will see.

0 - fatal errors onyl
1 - level 0 + errors
2 - level 1 + messages
3 - level 2 + info messages
4 - level 3 + debug messages
log level can be also set by environment variable CANMOND_LOG_LEVEL

1.2.3.2. testclient
Command line arguments
TESTCLIENT - canmond client
testclient [OPTION]

OPTIONS:
-h
--help this help screen
-v
--verbose tverbose
-a
--host [n] sets the IP address where the server listens default is "127.0.0.1"
-p
--port [n] sets port on which server listens default 1001

COMMANDS:
sendmsg id [byte1 byte2 ...] - sends CAN message (short version)

OCERA. IST 35102 5

Chapter 1. CAN/CANopen

send {CANDTG flags cob timestamp id [byte_1 .. byte_n]}
- sends CAN message (detailed version)
{SDOR UPLOAD server_port client_port node index subindex}
- uploads CANopen object from device object dictionary
server_port, client_port can be 0 for default values (0x580, 0x600)
{SDOR DOWNLOAD server_port client_port node index subindex [byte_1 ... byte_n]}
- downloads CANopen object to device object dictionary

q quits

1.2.3.3. CanMonitor
In current version CanMonitor does not have GUI configuration dialog. It can be config-
ured only from command line during launching.

Command line arguments
CanMonitor -a host -n node -f EDS-file-name

1.2.4. Implementation issues

1.2.4.1. canmond
Any application can attach itself to the canmond. It works like TCP server listening on
port 1001. If an application opens socket to the server, it can send/receive text messages
described in section canmond API.

canmond has simple text API to communicate with its clients. API is of following struc-
ture:

Rough CAN message format

{CANDTG flags cob timestamp id [data_byte_1 .. data_byte_n]}

flags, cob, timestamp, id and data_byte_1 ... data_byte_n are numbers in hexadeci-
mal format. Number of bytes should be less or equal 8 in case of single CAN mes-
sage.

Example: {CANDTG 0 104500C8 6400B40 189 [0F]}

SDO upload request

{SDOR UPLOAD server_port client_port node index subindex}

Requests upload of object[index.subindex] from device with CANopen address node.
Uploaded data are returned in SDOC UPLOADmessage.

server_port and client_port could be 0. In that case the default values, 0x580 for the
server_port and 0x600 for the client_port are considered.

Example: {SDOR UPLOAD 0 0 9 2000 1} - request for upload of index 0x2000,
subindex 0x1 of node 9.

SDO upload confirmation

{SDOC UPLOAD server_port client_port node index subindex [data_byte_1
... data_byte_n]}

Confirmation message for previously requested CANopen object upload. Uploaded
data are returned as a byte array [data_byte_1 ... data_byte_n]. Number of returned
bytes can be greater than 8 in case of SDO. For description of other parameters see
SDO upload request

Example: {SDOC UPLOAD 580 600 9 2000 1 [0]} - answer for the upload re-
quest from the paragraph above.

OCERA. IST 35102 6

Chapter 1. CAN/CANopen

SDO download request

{SDOR DOWNLOAD server_port client_port node index subindex [data_byte_1
... data_byte_n]}

Requests download of the byte array [data_byte_1 ... data_byte_n] to the CANopen
device. For description of other parameters see SDO upload request

Example: {SDOR DOWNLOAD 0 0 9 2100 1 [FF]} - request for download one byte
0xFF to the index 0x2000, subindex 0x1 of node 9.

SDO download confirmation

{SDOC DOWNLOAD server_port client_port node index subindex}

Confirmation message for previously requested CANopen object download. For de-
scription of other parameters see SDO upload request

Example: {SDOC DOWNLOAD 580 600 9 2100 1 }- answer for the download re-
quest from the paragraph above.

Communication error and abort messages

Upon some circumstances, CANopen device aborts SDO communication. Also a com-
munication error can occur.

In case of aborted communication canmond includes word ’ABORT’ , abort code (de-
fined in CiA Standard 301) and textual representation of that code in place of re-
turned data byte array.

Example: {SDOC DOWNLOAD 580 600 9 2100 2 ABORT 6090011 ’Sub-index
does not exist.’}

In case of communication error canmond includes word ’ERROR’ error code (de-
fined in OCERA vcasdo_fsm.h) and textual representation of that code in place of
returned data byte array.

Example: {SDOC UPLOAD 580 600 9 2000 1 ERROR 1 ’SDO transfer time
out.’}

1.2.5. Tests
Component was tested with real CANopen device WAGO 750-307.

CAN

TCP-IP

WAGO 750-307
canmond

CanMonitor

Figure 1-6. CanMonitor testing

All VCA sources were compiled by GNU C ver. 3.2 and linked with glibc ver. 2.2.5.

OCERA. IST 35102 7

Chapter 1. CAN/CANopen

1.2.6. Examples
Type make in directory ocera/components/comm/can/canmon/canmond . Than type
canmond .

You should see something like this
[root@arnost canmond]# ./canmond
CANMOND - the can monitor server

Than you can launch testclient program either on the same machine or on other one.
[fanda@mandrake canmond]$ testclient -a arnost
testclient -a arnost
finding arnost:1001 ...
found address: arnost - 147.32.84.158
connecting 147.32.84.158:1001 ...
OK
got HELLO from canmond.

You can also use rdln utility (also part of the OCERA project) in directory ocera/components/comm/can/utils/rdln .
[fanda@mandrake canmond]$ rdln testclient -a arnost

This utility gives the program in argument list readline facility like command history,
BASH like line editing etc.

If you have a graphical environment with Java installed, you can launch CanMonitor.
Type

canmonitor -a host_addr -n CAN_device_node_no
Example: canmonitor -a 147.32.84.158 -n 9

If everything works right, you should see application window like one in section Can-
Monitor description. Now you can load device EDS file and upload/download CANopen
objects.

1.2.7. Installation instructions
Program from this package does not need special installation. They can run from any
directory. Just type make in ocera/components/comm/can directory. If you want to
compile only one component, type make in component’s directory.

Restrictions on versions of GNU C or glibc are not known in this stage of project.

JAR package of CanMonitor is not available yet, you need all *.class files in directory
class in CanMonitor home to run it. CanMonitor is a pure Java application, you don’t
need anything more than standard JRE.

1.3. CAN device

1.3.1. Summary
Name of the component

CANopen device

OCERA. IST 35102 8

Author

Pavel Pisa

Frantisek Vacek

Reviewer

not validated
Layer

Low-level, High-level
Version

N/A
Status

Design
Dependencies

High-level version needs VCA installed.

Low-level version needs RT-Linux with RT-CAN driver installed.

Release date

N/A

1.3.2. Description
CANopen device is the software solution based on CANopen FSM (Finite State Machine)
threads, EDS (Electronic Data Sheet) file and HDS (Handler Definition Sheet) file. De-
vice can be configured to work as a CANopen master or CANopen slave.

1.3.3. API / Compatibility
CANopen device should be compatible with standard industrial CANopen devices ac-
cording to CiA Draft Standard 301.

1.3.3.1. SDO FSM API
This library should be used for SDO FSM implementation in Low-level space and in
High-level one too. It is used by CANopen device and also by canmond.

struct vcasdo_fsm_t
struct vcasdo_fsm_t — structure representing SDO FSM

Synopsis

struct vcasdo_fsm_t {
unsigned server_port, client_port;
unsigned node;
unsigned index, subindex;
struct timeval last_activity;
int bytes_to_load;
char toggle_bit;
int type;
int state;
vcasdo_fsm_state_fnc_t * statefnc;
int err_no;

1

struct vcasdo_fsm_t

ul_dbuff_t data;
canmsg_t out_msg;

};

Members
client_port

number of SDO client port (default is 0x600)
node

SDO node number
subindex

subindex of communicated object
last_activity

time of last FSM activity (internal use)
bytes_to_load

number of stil not uploaded SDO data bytes (internal use)
toggle_bit

(internal use)
type

type of FSM (sdofsmUploader = 1, sdofsmDownloader = 2)
state

state of SDO (sdofsmIdle = 0, sdofsmRun , sdofsmDone , sdofsmError , sdofsmAbort)
statefnc

pointer to the state function (internal use)
err_no

number of error in state sdofsmError
data

uploaded/downloaded bytes (see ul_dbuff .h)
out_msg

if vcasdo_taste_msg generates answer, it is stored to the out_msg

OCERA. IST 35102 2

vcasdo_error_msg
vcasdo_error_msg — translates err_no to the string message

Synopsis
const char* vcasdo_error_msg (int err_no);

Arguments
err_no

number of error, if FSM state == sdofsmError

1

vcasdo_init_fsm
vcasdo_init_fsm — init SDO FSM

Synopsis
vcasdo_fsm_t * vcasdo_init_fsm (vcasdo_fsm_t * fsm , unsigned server_port , unsigned client_port ,
unsigned node);

Arguments
fsm

fsm to init, if NULL, function creates and inits a new one
server_port

SDO server port number (default value 0x580 is set if parameter == 0)
client_port

SDO client port number (default value 0x600 is set if parameter == 0)
node

number of node on CAN bus to communicate with

Return Value
pointer to the (created) inited FSM, NULL in case of allocation error.

1

vcasdo_destroy_fsm
vcasdo_destroy_fsm — frees SDO FSM and also frees all its resources

Synopsis
void vcasdo_destroy_fsm (vcasdo_fsm_t * fsm);

Arguments
fsm

fsm to destroy

1

vcasdo_run
vcasdo_run — starts SDO communication protocol for this FSM

Synopsis
int vcasdo_run (vcasdo_fsm_t * fsm);

Arguments
fsm

SDO FSM

Return Value
not 0 if fsm->out_msg contains CAN message to send

1

vcasdo_fsm_taste_msg
vcasdo_fsm_taste_msg — try to process msg in FSM

Synopsis
int vcasdo_fsm_taste_msg (vcasdo_fsm_t * fsm , const canmsg_t * msg);

Arguments
fsm

fsm to process msg
msg

tried msg

Return Value
sdofsmMsgRefuseif FSM refuses msg, sdofsmMsgEat if FSM proceses msg, sdofsmMsgEatAnswer
if FSM proceses msgand it has answer in fsm- >out_msg prepared sdofsmMsgEatError
msg was eaten, but it does not match communication protocol or abort msg was detected

1

vcasdo_abort_msg
vcasdo_abort_msg — translates abort_code to the string message

Synopsis
const char* vcasdo_abort_msg (__u32 abort_code);

Arguments
abort_code

abort code

Header
vcasdo_msg .h

1

Chapter 1. CAN/CANopen

1.3.4. Implementation issues

1.3.4.1. Architecture overview
computer

load/compile

ha
rd

w
ar

e
C

A
N

 c
ar

d

C
A

N
 b

us

PDO handlers

EDS HDS
slave

FSM

Object

dictionary

(OD)

CAN

driver

V
C

A

V
C

A

E
D

S
 A

P
I

E
D

S
 A

P
I

Figure 1-7. RT-CANopen device architecture

CANopen device components description
FSM

FSM (Finite State Machine) means set of RT-Linux threads providing PDO and
SDO communication via VCA (see VCA). Slave FSM also calls appropriate PDO
communication handler and looks into slave’s object dictionary in case of SDO re-
quest.

PDO handlers

User written module containing handlers for reading/writing PDO mapped object
data from/to hardware.

EDS

EDS means the Electronic Data Sheet, text file describing all objects in the slave
object dictionary and its mapping into the PDOs. EDS is parsed in order to create
slave OD representation in CANopen device.

HDS

HDS means the Handler Definition Sheet, a text file describing linking of PDO COB-
ID with required handler in order to grant correspondence between the CANopen
object value and technological process data from the hardware. For example a ther-
mometer with the analog output connected to PC A/D converter card needs handler
which reads temperature from card output port and gives it to FSM. The slave de-
signer have to write this handler code while the FSM source code remains always
the same.

1.3.4.2. RT-CANopen device in the Soft real time space

C
A

N
 c

ar
d

vi
rt

ua
l C

A
N

 A
P

I

CAN
driver

S
D

O
 A

P
I

CANopen
state machine

C
A

N
 A

P
I

PDO objects table

SDO/NMT

PDO

object[0]

object[n]

re
ad

w
rit

e object[0]

object[n]

PDO buffers

RPDO[0]
RPDO[1]

OD driver

R
T

 F
IF

O
s

S
D

O
 A

P
I

CAN master daemon

Object dictionaries

EDS parser

EDS
0

EDS
n

C
A

N
 b

us

Soft real time spaceHard real time spaceHW

PDO
processor
module

PDO
notify

OD[0]

CANopen object[0]
CANopen object[1]

Figure 1-8. Soft real time CANopen device architecture

OCERA. IST 35102 2

Chapter 1. CAN/CANopen

As can be seen on figure above CAN driver sends the CAN messages to CANopen FSM
via VCA. FSM handles messages of two main categories, process data (PDO) and service
data (SDO, NMT, SFO).

The process data (PDO objects) are handled separately of the SDO. Slave FSM exploits
CAN driver message buffers as the buffers for the slave PDOs. This approach is neces-
sary because some CAN chips have such buffers integrated. On the other hand this can
speed up PDO object handling. Slave FSM role lies in updating this buffers after device
specific event such is timer event or process object value change. The CAN driver sends
objects from its buffers when needed (after SYNC object or as a response to RTR object).
Consequently slave FSM has to read this buffers after WPDO object arrival.

PDO objects table is a memory mirror for transmitted and received PDOs. When a new
RPDO comes, it is written into the table and PDO processor is notified by master FSM
about this event. On the contrary, when PDO processor updates some object in the write
part of PDO table, the FSM should be notified to allow it to transmit object change across
the network.

The PDO processor module is used to synchronize PDO mapped objects values and real
world data examined or set by computer hardware. Every PDO mapped object has as-
signed its reading and writing routine called PDO handler. These handlers are written
by control system developer. Handlers placed in PDO processor share PDO table with
FSM. In this table are stored/retrieved process data according to external events and oc-
currence of messages on the CAN bus. PDO processor is an user written set of functions
designated for processing objects from read part of PDO table and generating new value
of objects in write part of PDO table. New generated write objects can be sent across the
CAN, if the processor notifies master FSM. This way the RPDO-TPDO mapping rules or
control algorithms can be realized.

Some of SFO (Special Function Object) are handled directly by CAN driver. Such objects
are the SYNC or RTR frames

Other objects (SDO, NMT) are sent through the SDO API to OD driver. OD driver is
responsible for all object dictionary manipulations, that means getting and setting object
values. If the PDO mapping change occurs due to SDO object processing, OD driver
informs slave FSM (via SDO API) to correct PDO handlers table to reflect PDO mapping
status in OD properly.

OD driver communicates with OD daemon, which resides in the user space, through RT
FIFOs. OD daemon offers set of primitives to provide basic manipulations with OD like
get/set object value, add object, delete object etc. OD daemon also owns slave OD in its
memory space.

Slave OD can be loaded onto OD daemon memory by EDS parser. As EDS parser will
probably serve CAN/CANopen monitor connected with it via Unix socket. This gives us
the opportunity to control the daemon and slave OD remotely using TCP/IP. EDS parser
is also responsible to read HDS and make appropriate changes mapping of handler func-
tions in PDO processor module. This ensures that the proper handlers will be called for
certain PDO objects.

The main difference between CANopen master and CANopen slave device is in OD and
PDO processor module. We can say, that slave is more or less master with only one
EDS in its OD and some restrictions on functionality (can’t send NMT objects etc.). That
means, that the slave device is a special case of the master one. Thanks to this general-
ization we can have also one code for the master and slave device and determinate final
behavior by configuration and by loading different PDO processor module.

OCERA. IST 35102 3

Chapter 1. CAN/CANopen

1.3.4.3. RT-CANopen device in the Hard real time space

Object dictionary

OD driver

S
D

O
 A

P
I

OD (object dictionary)

CANopen object[0]
CANopen object[1]

compilation

EDS parser

EDS HDS

OD driver
module
C coded

C
A

N
 c

ar
d

vi
rt

ua
l C

A
N

 A
P

I

CAN
driver

S
D

O
 A

P
I

CANopen
state machine

C
A

N
 A

P
I

PDO objects table

SDO/NMT

PDO

object[0]

object[n]

re
ad

w
rit

e object[0]

object[n]

PDO buffers

RPDO[0]
RPDO[1]

C
A

N
 b

us

Soft real time spaceHard real time spaceHW

PDO
processor
module

PDO
notify

Figure 1-9. Hard real time CANopen device architecture

This architecture is very similar to the previous one. The main difference lies in OD
position which is a part of OD driver module now. Every other part of slave remain the
same. OD driver module is compiled from source code generated by EDS parser from the
slave EDS, HDS and the empty OD driver template.

Benefits of the kernel space solution

• Faster SDO object processing.

• Slave does not need user space applications to work properly.

• Slave can be implemented to other POSIX compliant real-time OS like RTEMS.

• Suitable for CANopen slave realization in embedded systems.

Disadvantages of the kernel space solution

• OD is static, no objects can be added or removed.

• EDS parser can not explore OD any more. The diagnostic pipe has to be used for that
purpose and all the information must be communicated through SDO API and slave
FSM.

1.3.5. Tests
N/A

1.3.6. Examples
N/A

1.3.7. Installation instructions
N/A

OCERA. IST 35102 4

Chapter 2. ORTE - OCERA Real-Time
Ethernet

2.1. ORTE
The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS commu-
nication protocol. RTPS is new application layer protocol targeted to real-time commu-
nication area, which is build on the top of standard UDP stack. Since there are many
TCP/IP stack implementations under many operating systems and RTPS protocol does
not have any other special HW/SW requirements, it should be easily ported to many
HW/SW target platforms. Because it uses only UDP protocol, it retains control of timing
and reliability.

2.1.1. Sumary
Name of the component

OCERA Real-Time Ethernet
Author

Petr Smolik
Reviewer

not validated
Layer

High-level
Version

0.1 alfa
Status

Alfa
Dependencies

Any Ethernet adapter and standard TCP/IP stack.
Release date

N/A

2.1.2. Description
The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS commu-
nication protocol. This protocol is being to submit to IETF as an informational RFC and
has been adopted by the IDA group. ORTE has been designed with compliance to RTPS
protocol version 1.17.

2.1.3. API / Compatibility

struct ORTERcvInfo
struct ORTERcvInfo — description of an issue

5

struct ORTERcvInfo

Synopsis

struct ORTERcvInfo {
PathName subsTopic;
TypeName subsTypeName;
NtpTime localTimeReceived;
NtpTime remoteTimePublished;
SequenceNumber seqNumber;
u_char * data;
u_short dataLength;
u_char reverseOrder;

};

Members
subsTopic

name of topic
subsTypeName

name of data type
localTimeReceived

time when the issue was received
remoteTimePublished

time when the issue was published
seqNumber

sequential number
data

buffer containing published data
dataLength

length of data in buffer
reverseOrder

different endianing

Description
A message can be sent from a big endian machine to a little endian machine. Currently
ORTE supports only little endianing and returns 0 in all cases.

OCERA. IST 35102 6

struct ORTEPublStatus
struct ORTEPublStatus — status of a publication

Synopsis

struct ORTEPublStatus {
u_short subsReliable;
u_short subsUnReliable;
u_short issues;
u_short unacknowledgedIssues;

};

Members
subsReliable

count of reliable subscribers (best effort) connected on responsible publisher
subsUnReliable

count of unreliable subscribers (strict) connected on responsible publisher
issues

number of messages in sending queue
unacknowledgedIssues

number of unacknowledged issues (only for best effort)

7

struct ORTESubsStatus
struct ORTESubsStatus — status of a subscription

Synopsis

struct ORTESubsStatus {
u_short publReliable;
u_short publUnReliable;
u_short issues;

};

Members
publReliable

count of reliable publishers (best effort) connected to responsible subscriber
publUnReliable

count of unreliable publishers (strict) connected to responsible subscriber
issues

number of messages in receiving queue

Description
Current implementation has always issues=0. It means, that all messages were sent to
user application by callback function.

8

struct ORTESubsProp
struct ORTESubsProp — properties of a subscription

Synopsis

struct ORTESubsProp {
NtpTime deadline;
NtpTime minimumSeparation;
int recvQueueSize;
unsigned long reliability;

};

Members
deadline

how long wait if publication is not available
minimumSeparation

requested minimum separation between issues
recvQueueSize

receiver’s queue size
reliability

reliability requested (ORTE_RELIABILITY_BEST_EFFORTS or ORTE_RELIABILITY_STRICT)

ORTE_RELIABILITY_BEST_EFFORTS
Data are received with requested separation. Delivery in sequence order is not guaran-
teed. If a message has been drop, won’t be resend.

ORTE_RELIABILITY_STRICT
All messages have to be acknowled by the subscribers. Every lost message will be re-
transmitted.

9

struct ORTEPublProp
struct ORTEPublProp — properties of a publication

Synopsis

struct ORTEPublProp {
NtpTime persistence;
int strength;
int sendQueueSize;
unsigned long reliability;

};

Members
persistence

porsistence of the publication
strength

strength of the publication
sendQueueSize

send queue size
reliability

offered reliability of publication (see ORTESubsProp)

10

ORTEAppCreate
ORTEAppCreate — creates new ManagedApplication object

Synopsis
void ORTEAppCreate (ManagedApp ** papp);

Arguments
papp

pointer to ManagedApp

Description
Pointer to ManagedApp object (NULL if an error occured) will be returned in papp .

11

ORTEAppDestroy
ORTEAppDestroy — destroys ManagedApplication

Synopsis
void ORTEAppDestroy (ManagedApp * app);

Arguments
app

pointer to ManagedApp

Description
Destroys ManagedApplication object specified by app .

12

ORTEAppPublAdd
ORTEAppPublAdd — creates new publication

Synopsis
int ORTEAppPublAdd (ManagedApp * app , const char * topic , const char * typeName , NtpTime * persistence ,
long strength);

Arguments
app

pointer to ManagedApp object which will provide this publication
topic

name of topic
typeName

data type description
persistence

persistende of publication
strength

strength of publication

Description
Returns handle to Publication object.

13

ORTEAppPublRemove
ORTEAppPublRemove — removes a publication

Synopsis
int ORTEAppPublRemove (ManagedApp * app , int happ);

Arguments
app

pointer to ManagedApp object which provides this publication
happ

handle to publication to be removed

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid publica-
tion handle.

14

ORTEAppPublSend
ORTEAppPublSend — creates new instance of data change to be publicated to its
subscribers

Synopsis
int ORTEAppPublSend (ManagedApp * app , int happ , char * msg, u_int msg_len);

Arguments
app

pointer to ManagedApp object which provides this publication
happ

handle to publication
msg

pointer to buffer with data to be published
msg_len

size of data in buffer

Description
Returns ORTE_OK if successful or ORTE_QUEUE_FULL if send queue is full.

15

ORTEAppPublPropGet
ORTEAppPublPropGet — read properties of a publication

Synopsis
int ORTEAppPublPropGet (ManagedApp * app , int happ , ORTEPublProp * properties);

Arguments
app

pointer to ManagedApp object which provides this publication
happ

handle to publication
properties

pointer to ORTEPublProp structure where values of publication’s properties will
be stored

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid publica-
tion handle.

16

ORTEAppPublPropSet
ORTEAppPublPropSet — set properties of a publication

Synopsis
int ORTEAppPublPropSet (ManagedApp * app , int happ , ORTEPublProp * properties);

Arguments
app

pointer to ManagedApp object which provides this publication
happ

handle to publication
properties

pointer to ORTEPublProp structure containing values of publication’s properties

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid publica-
tion handle.

17

ORTEAppPublWaitForSubs
ORTEAppPublWaitForSubs — waits for given number of subscriptions

Synopsis
int ORTEAppPublWaitForSubs (ManagedApp * app , int happ , NtpTime wait , u_short retries , u_short
no_subs);

Arguments
app

pointer to ManagedApp object which provides this publication
happ

handle to publication to be removed
wait

time how long to wait
retries

number of retries if specified number of subscriptions was not reached
no_subs

desired number of subscriptions

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid publica-
tion handle or ORTE_TIMEOUT if number of retries has been exhausted.

18

ORTEAppPublGetStatus
ORTEAppPublGetStatus — removes a publication

Synopsis
int ORTEAppPublGetStatus (ManagedApp * app , int happ , ORTEPublStatus * status);

Arguments
app

pointer to ManagedApp object which provides this publication
happ

handle to publication
status

pointer to ORTEPublStatus structure

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid publica-
tion handle.

19

ORTEAppSubsAdd
ORTEAppSubsAdd— adds a new subscription

Synopsis
int ORTEAppSubsAdd (ManagedApp * app , const char * topic , const char * typeName , NtpTime * minimumSeparation ,
NtpTime * deadline , RcvMessageCallBack rcvMessageCallBack);

Arguments
app

pointer to ManagedApp object where this subscription will be created
topic

name of topic
typeName

name of data type
minimumSeparation

minimum time interval between two publications sent by Publisher as requested
by Subscriber

deadline

-- undescribed --
rcvMessageCallBack

callback function called when new Subscription has been received

Description
Returns handle to Subscription object.

20

ORTEAppSubsRemove
ORTEAppSubsRemove— removes a subscription

Synopsis
int ORTEAppSubsRemove (ManagedApp * app , int happ);

Arguments
app

pointer to ManagedApp object
happ

handle to subscriotion to be removed

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid subscrip-
tion handle.

21

ORTEAppSubsPropGet
ORTEAppSubsPropGet — get properties of a subscription

Synopsis
int ORTEAppSubsPropGet (ManagedApp * app , int happ , ORTESubsProp * properties);

Arguments
app

pointer to ManagedApp object which owns this subscription
happ

handle to publication
properties

pointer to ORTESubsProp structure where properties of subscrition will be stored

22

ORTEAppSubsPropSet
ORTEAppSubsPropSet — set properties of a subscription

Synopsis
int ORTEAppSubsPropSet (ManagedApp * app , int happ , ORTESubsProp * properties);

Arguments
app

pointer to ManagedApp object which owns this subscription
happ

handle to publication
properties

pointer to ORTESubsProp structure containing desired properties of the subscrip-
tion

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid subscrip-
tion handle.

23

ORTEAppSubsWaitForPubl
ORTEAppSubsWaitForPubl — waits for given number of publications

Synopsis
int ORTEAppSubsWaitForPubl (ManagedApp * app , int happ , NtpTime wait , u_short retries , u_short
no_publ);

Arguments
app

pointer to ManagedApp object which owns this subscription
happ

handle to subscription
wait

time how long to wait
retries

number of retries if specified number of publications was not reached
no_publ

-- undescribed --

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid subscrip-
tion handle or ORTE_TIMEOUT if number of retries has been exhausted..

24

ORTEAppSubsGetStatus
ORTEAppSubsGetStatus — get status of a subscription

Synopsis
int ORTEAppSubsGetStatus (ManagedApp * app , int happ , ORTESubsStatus * status);

Arguments
app

pointer to ManagedApp object which owns this subscription
happ

handle to subscription
status

pointer to ORTESubsStatus structure

Description
Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid subscrip-
tion handle.

25

ORTEVerbositySet
ORTEVerbositySet — add a subscription

Synopsis
void ORTEVerbositySet (int level);

Arguments
level

level of verbosity, 0 - minimum, 5 - maximum

26

ORTESleepMs
ORTESleepMs — suspends calling thread for given time

Synopsis
ORTESleepMs (x);

Arguments
x

time in miliseconds

27

NtpTimeAssembFromMs
NtpTimeAssembFromMs — converts seconds and miliseconds to NtpTime

Synopsis
NtpTimeAssembFromMs (time , s , msec);

Arguments
time

time given in NtpTime structure
s

seconds portion of given time
msec

miliseconds portion of given time

28

NtpTimeDisAssembToMs
NtpTimeDisAssembToMs — converts NtpTime to seconds and miliseconds

Synopsis
NtpTimeDisAssembToMs (s , msec, time);

Arguments
s

seconds portion of given time
msec

miliseconds portion of given time
time

time given in NtpTime structure

29

NtpTimeAssembFromUs
NtpTimeAssembFromUs — converts seconds and useconds to NtpTime

Synopsis
NtpTimeAssembFromUs (time , s , usec);

Arguments
time

time given in NtpTime structure
s

seconds portion of given time
usec

microseconds portion of given time

30

NtpTimeDisAssembToUs
NtpTimeDisAssembToUs — converts NtpTime to seconds and useconds

Synopsis
NtpTimeDisAssembToUs (s , usec , time);

Arguments
s

seconds portion of given time
usec

microseconds portion of given time
time

time given in NtpTime structure

31

Chapter 2. ORTE - OCERA Real-Time Ethernet

2.1.4. Implementation issues
The RTPS protocol is implemented as a set of objects. Objects are of the following types:

Manager (M): Special object that facilitates the automatic discovery of other Managers.
There is one Manager on each participating network node.
ManagedApplication (MA): An applciation that is managed by one or more Managers.
Writers (Publication, CSTWriter): provide locally available data (a composit state or
stream of issues) on the network.
Readers (Subscription, CSTReader): obtain information provided by Writers.

The Manager is an independent process, which is created during application startup. It
is a special Application that helps applications to automatically discover each other on
the Network. Every Manager keeps track of its managees and their attributes. To pro-
vide this information on the Network, every Manager has the special CSTWriter writer-
Applications. The Composite State (CS) provided by the CSTWriter writerApplications
are the attributes of all the ManagedApplications the Manager manages (its managees).
Whenever the Manager accepts a new ManagedApplication as its managee, whenever
the Manager loses a ManagedApplication as a managee or whenever an attribute of a
managee changes, the CS of the writerApplications changes. Each such change creates
new instance of CSChange which has to be transferred to all network objects (Managers
and ManagedApplications) by means of CST protocol.

The Publication is used to publish issues to matching Subscription. The CSTWriter and
CSTReader are the equivalent of the Publication and Subscription, respectively, but are
used solely for the state-synchronization protocol.

The manager is composed from five kinds of objects:

WriterApplicationSelf: CSTWriter throught which the Manager provides information
about its own parameters to Managers on other nodes.
ReaderManagers: CSTReader through which the Manager obtains information on the
state of all other Managers on the Network.
WriterManagers: CSTWriter throught which the Manager will send the state of all
Managers in the Network to all its managees.
ReaderApplications: CSTReader which is used for the registration of local and remote
managedApplications.
WriterApplications: CSTWriter throught which the Manager will send information
about its managees to other Managers in the Network.

A ManagedApplication is an Application that is managed by one or more Managers. Ev-
ery ManagedApplication is managed by at least one Manager. TheManagedApplication
has a special CSTWriter writerApplicationSelf. The Composite State of the ManagedAp-
plication’s writerApplicationSelf object contains only one NetworkObject - the applica-
tion itself. The writerApplicationSelf of the ManagedApplication must be configured to
announce its presence repeatedly and does not request nor expect acknowledgements.
A Manager that discovers a new ManagedApplication through its readerApplications
must decide whether it must manage this ManagedApplication or not. For this purpose,
the attribute managerKeyList of the Application is used. If one of the ManagedAppli-
cation’s keys (in the attribute managerKeyList) is equal to one of the Manager’s keys,
the Manager accepts the Application as a managee. If none of the keys are equal, the
managed application is ignored. At the end of this process all Managers have discovered
their managees and the ManagedApplications know all Managers in the Network.

The ManagedApplications now use the CST Protocol between the writerApplications
of the Managers and the readerApplications of the ManagedApplications in order to
discover other ManagedApplications in the Network. Every ManagedApplication has
two special CSTWriters, writerPublications and writerSubscriptions, and two special
CSTReaders, readerPublications and readerSubscriptions.

OCERA. IST 35102 32

Chapter 2. ORTE - OCERA Real-Time Ethernet

Once ManagedApplications have discovered each other, they use the standard CST pro-
tocol through these special CSTReaders and CSTWriter to transfer the attributes of all
Publications and Subscriptions in the Network. The managedApplication is composed
from seven kinds of objects.

WriterApplicationSelf: a CSTWriter throught which the ManagedApplication regis-
ters itself with the local Manager.
ReaderApplications: a CSTReader throught which the ManagedApplication receives
information about another ManagedApplications in the network.
ReaderManagers: a CSTReader throught which the ManagedApplication receives in-
formation about Managers.
WriterPublications: a Writer that provides issues to one or more instances of a Sub-
scription using the publish-subscribe protocol and semantics.
ReaderPublications: a Reader throught which the Publication receives information
about Subscriptions.
WriterSubscriptions: a Writer that provides information about Subscription to Publi-
cations.
ReaderSubscriptions: a Reader that receives issues from one or more instances of
Publication, using the publish-subscribe service.

Following example shows communication between two nodes (N1, N2). There are two
applications running on each node - MA1.1, MA1.2 on node N1 and MA2.1, MA2.2 on
node N2. Each node has it own manager (M1, M2).

1. MA1.1 introduces itself to local manager M1

2. M1 sends list of remote managers Mx and other local applications MA1.x

3. MA1.1 is introduced to all Mx by M1

4. All remote MAs are reported now to M1.1

5. Local MAs are queried for their CS (composite state)

6. All local MAs are sending their CS

7. Remote MAs are queried for their CS

8. All remote MAs are sending their CS

The corresponding publishers and subscribers with matching Topic and Type are con-
nected and starts their data communication

OCERA. IST 35102 33

Chapter 2. ORTE - OCERA Real-Time Ethernet

M A 1 ,2
p ub
sub

M A 2 ,1
p ub
sub

pu b
sub

M A 1 ,1
M A 2,2

pu b
sub

M ana ger M 1
O RTE /RT I

M anager M 2
O RT E /RTI

N od e N 1
IP /U D P 7 40 0 IP /U D P 7 40 0

N od e N 2

1 2 7
8

5
6

3
4

0

Figure 2-1. Communication among network objects.

2.1.5. Tests
There were not any serious tests performed yet. Current version has been intensively
tested against reference implementation of the protocol. Results of these test indicate
that ORTE is fully interoperable with implementation provided by another vendor.

2.1.6. Examples
The skeleton of an ORTE application is very simple:

#include <orte.h>

int main(int argc, char *argv[])
{
ManagedApp *app1;

ORTEAppCreate(&app1);

/*
.....
here is your application dependent code
.....
*/
}

In order to exchange user data, the application must create the publications of its vari-
ables. Application which wants to receive an issues of published data must create a sub-
scription. Properties of publication and subscription contain specification of Topic and
TypeName, which specify an application variable within whole network. It is allowed
to have more publications of same Topic and TypeName. If it subscribes to such publi-
cation, it will receive issues from all publications of the same Topic and TypeName. An
publication will be created by calling function ORTEAppPublAdd. Once the publication
is created, it is are ready to publish data using function ORTEAppPublSend.

int h_pub;
NtpTime timePersistence;
long strength;
char msg[128];
u_long i=0;

NtpTimeAssembFromMs(timePersistence, 5, 0); /* this issue is valid for 5 seconds */

OCERA. IST 35102 34

Chapter 2. ORTE - OCERA Real-Time Ethernet

strength=1; /* strength of this publication */
h_pub=ORTEAppPublAdd(app1,

"HelloWorld", /* Topic */
"HelloWorldData", /* TypeName */
&timePersistence,
strength);

while (1) {
sprintf(msg,"Hello World count:%li\n",i);
ORTEAppPublSend(app1,h_pub,msg,strlen(msg)+1);
ORTESleepMs(1000); /* sleep for 1 second */
i++;

}

Subscribing application needs to create a subscription with publication’s Topic and Type-
Name. A callback function will be then called when new issue from publisher will be
received.

ManagedApp *app1;
int h_sub;
NtpTime minimumSeparation,deadline;

NtpTimeAssembFromMs(minimumSeparation, 0, 0);
NtpTimeAssembFromMs(deadline, 5, 0);
h_sub=ORTEAppSubsAdd(app1,

"HelloWorld", /* Topic */
"HelloWorldData", /* TypeName */
&minimumSeparation,
&deadline,
rcvCallBack); /* callback function */

while (1) {
ORTESleepMs(1000);

}

The callback function is shown in the following example:
void rcvCallBack(ORTERcvInfo *rcvInfo,u_char status)
{
switch (status) {

case 0: /* Issue */
printf("%s",rcvInfo->data);
break;

case 1: /* Deadline */
printf("\ndeadline\n");
break;

}
}

There must be the Manager process running on each network node. This manager must
be started manualy before any other ORTE-enabled application. Manager process will
be created by program ORTEManager with following options:
-P, --peer IPAddress1:IPAddress2:...:IPAddressn
-p, --port port
-v, --verbosity level
-V, --version
-h, --help

Each manager has to know where are other managers in the network. Their IP ad-
dresses are therefore specified as IPAddressX parameters. All managers must use the
same port, the default port is 7400.

Example:

ORTEManager -P 147.32.86.167:147.32.86.186 -v 3

Now you are ready to run your ORTE enabled application.

There are following examples available:

HelloWorld: Very simple program demonstrating how to create an application which
will publish some data and another application, which will subscribe to this publication.
Ping: Similar to HelloWorld example, publication and subscription is in one source code.
Teletype: More complicated example demonstrating functionality of various settings
such as persistence, minimum separation etc.

OCERA. IST 35102 35

Chapter 2. ORTE - OCERA Real-Time Ethernet

2.1.7. Installation instructions
There are no any special steps in order to install ORTE package. Simply untar instala-
tion package into desired directory, enter this directory and issue following commands:

./configure

make

make install

2.2. Real Time Ethernet analyzer
Real Time Ethernet analyzer is a module which adds support for RTPS protocol into
Ethereal (http://www.ethereal.com) network analyzer.

2.2.1. Sumary
Name of the component

Real Time Ethernet analyzer
Author

Zdenek Sebek
Reviewer

not validated
Layer

High-level available
Version

0.1 alfa
Status

Alfa
Dependencies

Ethereal source code.
Release date

N/A

2.2.2. Description
Real Time Ethernet analyzer is not standalone tool. It is the module which is compiled
into Ethereal network analyzer and adds support for RTPS protocol.

2.2.3. API / Compatibility
not applicable

2.2.4. Implementation issues
Internal structure is completly driven by requirements for Ethereal’s modules. It con-
sists of single function, which receives data as they were received from network, ana-
lyzes them according to RTPS data format description and vizualizes them by standard
Ethereal’s means.

OCERA. IST 35102 36

Chapter 2. ORTE - OCERA Real-Time Ethernet

2.2.5. Tests
The tests performed were focusing on evaluation of abilities to correctly parse whole
set of RTPS commands. There are no other real-time parameters to be tested, because
analyzis of received network frames is performed off-line and there are not any time
constraints.

2.2.6. Examples
The structure of a sample RTPS message is shown on the Ethereal’s window screenshot.

Figure 2-2. Screenshot

2.2.7. Installation instructions
First you need download source code distibution of Ethereal network analyze from http://www.ethereal.com
and unpack it. Current implementation has been succesfully tested with Ethereal ver-
sion 0.9.6 and 0.9.7. Untar instalation package into directory containg Ethereal’s source.
Edit file Makefile.in . Find all occurences of string packet-rtsp (yes, rtsp, it is not a
typo) and add similar entries with string packet-rtps . Now you can compile Ethereal
analyzer by following commands:

./configure

make

OCERA. IST 35102 37

Chapter 2. ORTE - OCERA Real-Time Ethernet

make install

OCERA. IST 35102 38

Chapter 3. Verification

3.1. CAN model by timed automata /Petri Nets

3.1.1. Summary
Name of the component

CAN model by timed automata /Petri Nets
Description

This component is theoretical study offering methodology tool support for anal-
ysis of distributed system consisting of n independent processors and determin-
istic communication bus (CAN). In order to verify distributed RT system, appli-
cation designer needs to create a model of application tasks and to interconnect
this model with the communication bus model provided by this component. Finally
he/she needs to define system properties to be verified (deadlock, missed deadline
etc.). This component can be used either in a design phase or it can be used to verify
existing implementation.

Author

Jan Krakora, Zdenek Hanzalek
Reviewer

not validated
Layer

High-level available
Version

0.1 Alfa
Status

Analysis
Dependencies

Not validated
Release date

2003-04-01

3.1.2. Description

3.1.2.1. Problem statement
This section deals with a design conception of theoretical study offering methodology tool
supporting analysis of distributed Real Time (RT) systems. Figure 3-1 illustrates mayor
topic of verification of distributed systems . The figure shows a control system consisting
of n independent processors and CAN communication bus. Let us consider the parallel
running applications in the real-time operating system (RTOS) environment and further
let us consider the communication protocol behaving in Real-time manner.

The crucial problem is whether the general real-time control system (RTCS) [Butta-
zoo97] behaves in RT manner. This problem can be split into three subproblems that
can be further composed together:

• application SW (modeled by application developer)

39

Chapter 3. Verification

• RTOS (study of preemptive and cooperative schedulers) - see "Verification of coopera-
tive scheduling and interrupt handlers" component

• RT communication - CAN (Medium Access Control modeling) - addressed in this com-
ponent

Corresponding three sub models can be further combined to create RTCS model and it’s
possible behavior can be defined. Desired behavior of the RTCS has to be specified in the
form of properties (e.g. deadlock, missed deadline, ...).

Processor 1

Environment

Sensor
control

Actuator
control

Processor 2 Processor 3 Processor 4

RTCS

e.g. CAN bus

10
m

s

2ms

1m
s

Interface
Application
Bus
RTOS

Legend

Figure 3-1. Real time control system structure with denotation of
computation/communication times

Goal of "Verification of cooperative scheduling and interrupt handlers" and this compo-
nent is to provide:

• model of RTOS and CAN

• develop examples of typical applications

• provide methodology for model checking of RTCS

To resolve the above mentioned problem we use a mathematical formalisms based on:

• system specification by means of communicating automata

• design system behavior formulated by means of CTL

• verification algorithm

While using this component the application developer can verify his RT applications
that are communicating via CAN by checking of properties like for example whether
all task deadlines are satisfied or whether the message is received before another one.
This approach is an alternative to the one known as VOLCANO [Tindell94], and it offers
more general framework for verification. Specifically it can be combined with RTOS and
application SW.

3.1.2.2. CAN bus description
This section introduces a basic terminology further used in CAN model. It can be skipped
by the reader familiar with this technology.

Controller Area Network (CAN) [CAN] is a serial bus system especially suited to inter-
connect smart devices to build smart systems or sub-systems.

OCERA. IST 35102 40

Chapter 3. Verification

3.1.2.2.1. Real-time data transmission

In real-time processing the urgency of messages to be exchanged over the network can
differ greatly: a rapidly changing dimension, e.g. engine load, has to be transmitted more
frequently and therefore with less delays than other dimensions, e.g. engine tempera-
ture.

The priority at which a message is transmitted compared to another less urgent message
is specified by the identifier of each message. The priorities are laid down during system
design in the form of corresponding binary values and cannot be changed dynamically.
The identifier with the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by
each station observing the bus level bit for bit. This happens in accordance with the
"wired and" mechanism, by which the dominant state overwrites the recessive state. The
competition for bus allocation is lost by all those stations (nodes) with recessive trans-
mission and dominant observation. All those "losers" automatically become receivers of
the message with the highest priority and do not re-attempt transmission until the bus
is available again.

Transmission requests are handled in the order of the importance of the messages for
the system as a whole. This proves especially advantageous in overload situations. Since
bus access is prioritized on the basis of the messages, it is possible to guarantee low
individual latency times in real-time systems.

3.1.2.2.2. Message frame formats

The CAN protocol supports two message frame formats, the only essential difference
being in the length of the identifier. The so-called CAN standard frame, also known as
CAN 2.0 A, supports a length of 11 bits for the identifier, and the so-called CAN extended
frame, also known as CAN 2.0 B, supports a length of 29 bits for the identifier.

• CAN standard frame

A message in the CAN standard frame format begins with the start bit called "Start Of
Frame (SOF)", this is followed by the "Arbitration field" which consist of the identifier and
the "Remote Transmission Request (RTR)" bit used to distinguish between the data frame
and the data request frame called remote frame. The following "Control field" contains
the "IDentifier Extension (IDE)" bit to distinguish between the CAN standard frame and
the CAN extended frame, as well as the "Data Length Code (DLC)" used to indicate the
number of following data bytes in the "Data field". If the message is used as a remote
frame, the DLC contains the number of requested data byte. The "Data field" that follows
is able to hold up to 8 data byte. The integrity of the frame is guaranteed by the following
"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the
ACK slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is
overwritten as a dominant bit by those receivers which have at this time received the data
correctly. Correct messages are acknowledged by the receivers regardless of the result of
the acceptance test. The end of the message is indicated by "End Of Frame (EOF)". The
"Intermission Frame Space (IFS)" is the minimum number of bits separating consecutive
messages. If there is no following bus access by any station the bus remains idle.

• CAN extended frame

A message in the CAN extended frame format is likely the same as a message in CAN
standard frame format. The difference is the length of the identifier used. The identifier is
made up of the existing 11-bit identifier (so-called base identifier) and an 18-bit extension
(so-called identifier extension). The distinction between CAN standard frame format and
CAN extended frame format is made by using the IDE bit which is transmitted as dom-
inant in case of a frame in CAN standard frame format, and transmitted as recessive in
case of a frame in CAN extended frame format. As the two formats have to co-exist on one

OCERA. IST 35102 41

Chapter 3. Verification

bus, it is laid down which message has higher priority on the bus in the case of bus access
collision with different formats and the same identifier / base identifier: The message in
CAN standard frame format always has priority over the message in extended format.

CAN controllers which support the messages in CAN extended frame format are also
able to send and receive messages in CAN standard frame format. When CAN con-
trollers which only cover the CAN standard frame format are used in one network, then
only messages in CAN standard frame can be transmitted in the entire network. Mes-
sages in CAN extended frame format would be misunderstood. However there are CAN
controllers which only support CAN standard frame format but recognize messages in
CAN extended frame format and ignore them (version 2.0 B passive).

3.1.2.2.3. Detecting and signaling errors

Unlike other bus systems, the CAN protocol does not use acknowledgment messages
but instead signals any errors immediately as they occur. For error detection the CAN
protocol implements three mechanisms at the message level:

• Cyclic Redundancy Check (CRC).

The CRC safeguards the information in the frame by adding redundant check bits at the
transmission end. At the receiver these bits are re-computed and tested against the re-
ceived bits. If they do not agree there has been a CRC error.

• Frame check.

This mechanism verifies the structure of the transmitted frame by checking the bit fields
against the fixed format and the frame size. Errors detected by frame checks are designated
"format errors".

• ACK errors.

As already mentioned frames received are acknowledged by all receivers through positive
acknowledgment. If no acknowledgment is received by the transmitter of the message an
ACK error is indicated.

The CAN protocol also implements two mechanisms for error detection at the bit level:

• Monitoring.

The ability of the transmitter to detect errors is based on the monitoring of bus signals.
Each station which transmits also observes the bus level and thus detects differences be-
tween the bit sent and the bit received. This permits reliable detection of global errors and
errors local to the transmitter.

• Bit stuffing.

The coding of the individual bits is tested at bit level. The bit representation used by
CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit
coding. The synchronization edges are generated by means of bit stuffing. That means after
five consecutive equal bits the transmitter inserts into the bit stream a stuff bit with the
complementary value, which is removed by the receivers.

OCERA. IST 35102 42

Chapter 3. Verification

If one or more errors are discovered by at least one station using the above mechanisms,
the current transmission is aborted by sending an "error flag". This prevents other sta-
tions accepting the message and thus ensures the consistency of data throughout the
network. After transmission of an erroneous message that has been aborted, the sender
automatically re-attempts transmission (automatic re-transmission). There may again
competition for bus allocation.

However effective and efficient the method described may be, in the event of a defec-
tive station it might lead to all messages (including correct ones) being aborted. If no
measures fr self-monitoring were taken, the bus system would be blocked by this. The
CAN protocol therefore provides a mechanism to distinguishing sporadic errors from
permanent errors and local failures at the station. This is done by statistical assess-
ment of station error situations with the aim of recognizing a stations own defects and
possibly entering an operation mode where the rest of the CAN network is not nega-
tively affected. This may go as far as the station switching itself off to prevent messages
erroneously from being recognized as incorrect .

3.1.3. API/Compatibility
Not applicable.

3.1.4. Implementation issues

3.1.4.1. Model of bit-wise arbitration
The model of CAN arbitration is shown in Figure 3-2. The model describes the con-
trol MAC mechanism of the CAN bus for one message accessing the bus. The loca-
tion no_trans_needed represents a situation when the arbitration model is waiting for
trans_request from application process. The locations send_bit_to_bus, listen_bus, check_next_bit
represent the arbitration process. The locations request_denied and request_success de-
scribe arbitration result in arbitration process.

First of all let us assume there is only one transmission request from one application
process at each node. The message is in CAN data frame format and without loose of
generality the first bit (SOF) was correctly sent. In first step the first bit from the Ar-
bitration filed is sent to the bus (transition send_bit_to_bus -> listen_bus). At the same
time the bus is sensed by the transmitting node and both transmitted (id local variable)
and sensed (signal global variable) bits are compared. If they are identical and end of the
Arbitration field (i==(nsigi-1)) was not reached the next bit is proceeded (check_next_bit
location). If the arbitration is finished the node wins the arbitration (request_success
location).After than the next message frame bits (DLC, Data field etc.) are send to the
bus.

The CAN Arbitration field model designed in UPPAAL [UPPAAL] includes the informa-
tion about the duration of each bit-time given by invariant t<=1 in listen_bus location
and guards t>=1, t>=0 on outgoing transitions.

OCERA. IST 35102 43

Chapter 3. Verification

send_bit_to_bus

listen_bus
t<=1

check_next_bit

request_denied request_success

no_trans_needed

signal[i]:=id[i]*signal[i], t:=0

t>=1, i<(nsigi-1), id[i]==signal[i]

t>=0, id[i]!=signal[i] t>=1, i==(nsigi-1), id[i]==signal[i]

trans_request?

i:=i+1

Figure 3-2. Arbitration model

3.1.4.2. MAC arbiter implementation
The implementation of the MAC arbitration model is depicted in Figure 3-3. There are
three sections:

• arbitration section described already in Figure 3-2

• synchronization section (waiting_for_free_bus-> send_bit_to_bus transition) that is used
to synchronize all transmitting nodes prior to arbitration (this part realizes broadcast
communication [UPPAAL]) and

• data transmission section characterized by locations trans_section, trans_section_finished
and trans_finished

The principle is as follows. If the trans_request comes then the node is in waiting state
(waiting_for_free_bus) till the bus isn’t free. If the bus is idle the arbitration starts (
synchronization by broadcast_synch channel variable). If the transmission was denied
(trans_denied) the transmission request is immediately repeated (by bs_i1 local vari-
able) and the node is again waiting for the bus (waiting_for_free_bus location). Oth-
erwise the node message is sent (trans_section). When all message’s bits were sent
(trans_section_finished) the bus gets idle and the application process is informed about
the end of transmission (trans_finished -> no_trans_needed transition).

OCERA. IST 35102 44

Chapter 3. Verification

send_bit_to_bus

listen_bus
t<=1

check_next_bit

request_denied request_success

trans_request_place

trans_section

no_trans_needed

trans_section_finished

trans_finished

waiting_for_free_bus

signal[i]:=id[i]*signal[i], t:=0

t>=1, i<(nsigi-1), id[i]==signal[i]

t>=0, id[i]!=signal[i] t>=1, i==(nsigi-1), id[i]==signal[i]

i:=i+1

trans_request?

bus_trans_finished!
signal[0]:=true, signal[1]:=true, signal[2]:=true

trans_finished_ack!

bs_i1:=bs_i1+1

i:=0
bus_broadcast_synch?

bs_i1:=bs_i1+1

Figure 3-3. MAC model

The Figure 3-4 depicts the physical bus behavior. The bus can be either idle or busy. The
"idle" means there is no activity on the bus and the "busy" corresponds to active bus.
The bc_place1 and bc_place2 locations are part of the broadcast communication model.

idle

busy

bc_place1 bc_place2bus_trans_finished?

bs_i1!=0

bs_i1==bs_i2, bs_i2!=0
bs_i1:=0, bs_i2:=0

bs_i1!=bs_i2

bus_broadcast_synch!
bs_i2:=bs_i2+1

Figure 3-4. Bus model

OCERA. IST 35102 45

Chapter 3. Verification

3.1.5. Tests
Not applicable.

3.1.6. Examples

3.1.6.1. Implementation of process
In Figure 3-5 there are 3 nodes (one application process on each node) using the MAC
arbitration model. The application process 1 repeatedly sends the high priority mes-
sage, the application process 2 repeatedly sends the medium priority message and the
application process 3 repeatedly sends the low priority message. The question is how to
design the application processes and how to verify the properties of the whole model.

application
process 1

transmiter

CAN bus

application
process 2

transmiter

application
process 3

transmiter

tr
an

s_
re

qu
es

t

co
m

m
_f

in
is

he
d_

ac
k

br
oa

dc
as

t_
sy

nc
h

tr
an

s_
fin

is
he

d_
ac

k

node 1 node 2 node 3
tr

an
s_

re
qu

es
t

co
m

m
_f

in
is

he
d_

ac
k

br
oa

dc
as

t_
sy

nc
h

tr
an

s_
fin

is
he

d_
ac

k

tr
an

s_
re

qu
es

t

co
m

m
_f

in
is

he
d_

ac
k

br
oa

dc
as

t_
sy

nc
h

tr
an

s_
fin

is
he

d_
ac

k

Figure 3-5. Example model
The application process is depicted in Figure 3-6. The first state (no_communication_activity

location) represents a situation when the process does not perform any communication
activity (e.g. it performs some computations). The second one describes situations the
process has some data to be transmitted(communication location).

no_communication_activity

communication

trans_request!trans_finished_ack?

Figure 3-6. Application process model

Verification of the model:

OCERA. IST 35102 46

Chapter 3. Verification

The properties to be verified are the following:

1. Does the system include deadlock?

2. Is there any state in which two messages are sent on the bus at the same time?

3. Does higher priority message win the arbitration?

These properties have to be transformed to the verification tool formalism. The formula
(formula form is described in [UPPAAL]) are:

1. A[](not deadlock)

2. E<> not (MAC_1.trans_section and MAC_2.trans_section and MAC_3.trans_section)

3. All the following formulae have to be satisfied:

• E<> (MAC_1.request_denied and MAC_2.trans_section and MAC_3.request_denied);

• E<> (MAC_1.request_denied and MAC_2.trans_section and MAC_3.no_trans_needed);

• E<> (MAC_1.request_denied and MAC_2.no_trans_needed and MAC_3.trans_section);

• E<> (MAC_1.no_trans_needed and MAC_2.trans_section and MAC_3.request_denied);

• E<> (MAC_1.trans_section and MAC_2.no_trans_needed and MAC_3.no_trans_needed);

• E<> (MAC_1.no_trans_needed and MAC_2.trans_section and MAC_3.no_trans_needed);

• E<> (MAC_1.no_trans_needed and MAC_2.no_trans_needed and MAC_3.trans_section);

The results of UPPAAL analyze are:

1. Property satisfied

2. Property satisfied

3. All properties are satisfied

Timed automata in UPPAAL can also contain for example time information which can
influence behavior of application in global point of view. For example the computing
time or ping-pong response times. Application developer can also check if the evolution
of states is running in right way. For example:

• Does exist the sequence:

1. send high priority message

2. communication via bus for high priority message was permitted

3. send low priority message

4. communication via bus for low priority message was permitted too?

3.1.7. Installation instructions
Not applicable.

Bibliography
[Holzmann91] Gerard J. Holzmann, 1991, Prentice Hall, Design and validation of com-

puter protocols.

[Buttazoo97] C. Buttazzo, 1997, Kluwer Academic Publisher, Hard Real-time computing
systems: Predictable Scheduling Algorithms and Applications.

OCERA. IST 35102 47

Chapter 3. Verification

[Best98] Eike Best and Bernd Grahlmann, 1998, Programming Environment based on
Petri nets: Docummentation and User Guide Version 1.8.

[Best93] Eike Best and R. P. Hopkins, 1993, B(PN)2 - A Basic Petri Nets Programming
Notation.

[UPPAAL] UPPAAL tool: http://www.docs.uu.se/docs/rtmv/uppaal/.

[PEPTOOL] PEP tool: http://theoretica.informatik.uni-oldenburg.de/~pep/.

[Tindell94] Ken Tindell and A. Burns, 1994, Guaranteeing Message Latencies on Con-
troller Area Network (CAN) .

[CAN] CAN description: http://www.can-cia.de.

3.2. Verification of cooperative scheduling and
interrupt handlers

3.2.1. Summary
Name of the component

Verification of cooperative scheduling and interrupt handlers
Description

This component is a theoretical study offering methodology and tool support for
model checking of real-time applications running under multitasking operating sys-
tem. Theoretical background is based on timed automata by Allur and Dill. As this
approach does not allow to model pre-emption we focus on cooperative schedul-
ing. The cooperative scheduler under assumption performs rescheduling in specific
points given by "yield" instruction in the application processes. In the addition, in-
terrupt service routines are considered, and their enabling/disabling is controlled
by interrupt server considering specified server capacity. The server capacity has
influence on the margins of the computation times in the application processes.
Such systems, used in practical real-time applications, can be modelled by timed
automata and further verified by existing model checking tools. The approach is
illustrated in the form of examples in the real-time verification tool UPPAAL.

Author

Libor Waszniowski, Zdenek Hanzalek
Reviewer

not validated
Layer

High-level available
Version

0.1 Alfa
Status

Analysis
Dependencies

Not validated
Release date

N/A

OCERA. IST 35102 48

Chapter 3. Verification

3.2.2. Description
The aim of this chapter is to show, how timed automata [Alur94] can be applied to mod-
elling of real time software applications running under operating system with coopera-
tive scheduling. Model checking theory based on timed automata and implemented in
model checking tools (e.g. UPPAAL[David]) can be used for verifying time parameters
or safety and liveness properties of proposed models. The application under considera-
tion runs under multitasking operating system, it consists of several process, it includes
mechanisms for interrupt handling, and it uses inter-process communication primitives
like semaphores, queues etc. Since the processes are not truly concurrent, they share
the processor, it is needed to model the scheduler.

Timing analysis of software (especially with concurrency and synchronisation) is not
trivial problem and it requires sophisticated methods and analysis tools. Several spe-
cial purpose methods have been developed in the area of real time scheduling [But-
tazzo97],[Liu2000]. These methods e.g. rate monotonic analysis (RMA) [Sha91] are very
successful for analysis of time-driven systems with periodic processes. To deal with
non-periodic processes in event-driven systems, the standard method is to consider the
non-periodic process as the periodic one using the minimal inter-arrival time as pro-
cess period. The analysis based on such model is too pessimistic in some cases since
inter-arrival times can vary over time [Fersman02]. Incorporation of inter-process com-
munication primitives leads to pessimistic results as well.

To achieve more precise analysis, process models allowing more precise and complex tim-
ing constraints are needed. In [Fersman02] the timed automata are extended by asyn-
chronous processes i.e. processes triggered by events to provide model for event-driven
systems, which is further used for schedulability analysis. Processes (in [Fersman02]
called tasks) associated to locations of timed automaton are executable programs char-
acterised by its worst-case execution time, deadline and other parameters for schedul-
ing (e.g. priority). Transition leading to a location in such automaton denotes an event
triggering the process and the guard on transition specifies the possible arrival times
of the event. Released processes are stored in a process queue and they are assumed
to be executed according to a given scheduling strategy. Both non-preemptive and pre-
emptive scheduling strategies are allowed. In the case of non-preemptive processes, the
schedulability checking problem can be transformed to the reachability problem for or-
dinary timed automata. In the case of preemptive processes, the schedulability checking
problem can be transformed to a reachability problem for bounded time automata with
subtraction. Both of these problems are decidable [Fersman02].

The model based on the above mentioned extended timed automata can deal with non-
periodic processes in more accurate manner than for example RMA, which does not
contain any representation of internal process structure and inter-process communica-
tion. Therefore any worst-case blocking time in RMA(e.g. inter-process communication)
must be involved in the worst-case execution time.

Approaches based on the worst case computation time of the whole process (e.g. RMA
[Sha91] or timed automata with asynchronous processes [Fersman02]) lead to pessimistic
conclusion in schedulability analysis since the worst case blocking time is considered for
the resource sharing.

This disadvantage is overcome by more detailed process model proposed in [Corbett96]
providing a method for constructing models of real time Ada tasking programs. Time,
safety or liveness properties of produced model based on constant slope linear hybrid
automata can be automatically analysed by HyTech verifier. The state of the hybrid
automaton consists of various state variables representing an abstraction of program’s
state and also of continuous variables used to measure the amount of CPU time allo-
cated to each process. A transition of the hybrid automaton represents execution of the
sequential code segment. The timing constraints of the transition are derived from the
time bounds of the corresponding code. Even thought author reports that the analysing

OCERA. IST 35102 49

Chapter 3. Verification

algorithm does usually terminate in practice, the reachability problem for hybrid au-
tomata is undecidable in general.

Hybrid automaton (or some its subclass e.g. stopwatch automaton [Cassez2000]) is needed
to model preemption since it is necessary to accumulate computing time of each process
separately. The continuous variable used to measure the amount of CPU time allocated
to each process must be stopped when the corresponding process is preempted and must
progress when the corresponding process is executed. Such behaviour cannot be mod-
elled by timed automaton that does not allow stopping of the clock variable when the
process was preempted.

Preemptive schedulers are known to provide higher utilisation of processor than coop-
erative ones [Buttazzo97]. On the other hand the processor utilisation is less important
criterion when the schedulability can be proven for a given set of processes under co-
operative policy. Moreover the cooperative scheduling has some advantages important
especially for hard real time applications. In cooperative scheduling, process specifies
when it is willing to release CPU to another process. Then it is easy to make sure all
data structures are in a defined state. Applications using cooperative scheduling are
therefore easier to program and to debug.

In this deliverable we present another important advantage of cooperative scheduling
that is possibility to create mathematical model of the application based on timed au-
tomata and to verify its time, safety and liveness properties. Opposite to the model of the
system with preemption based on hybrid automata, this approach has guarantied ter-
mination of verification algorithm due to decidability of reachability problem and model
checking of timed computation tree logic (TCTL) problem. Moreover timed automata
are one of the most studied models for real time systems and several model checkers are
available (e.g. Kronos and UPPAAL[David])

Multitasking operating system and scheduling anomaly

Several processes share one processor in the systems with multitasking. The processor
sharing is managed by the scheduler according to the scheduling policy. Process changes
its state (state from the point of view of operating system) according to the state transi-
tion diagram in Figure 3-7 representing both, cooperative scheduling ("yield control" on
Deschedule transition) or preemptive scheduling ("preempted" on Deschedule transition).

Descheduled
(preempted, yield control)

Scheduled

Blocked

Signalled

Executed

Ready

Pended

Executed - the process is executed on the processor
Pended - execution of the process cannot continue

due to waiting for some event
(communication, timer, etc.)

Ready - process is ready for execution and it is
waiting in ready queue for the processor.

Figure 3-7. State transition diagram of the process in the multitasking
operating system

Several multiprocessor time anomalies are known in the scheduling theory [Buttazzo97],
[Graham69], [Liu2000]. Similar non-linear behaviour (a shortening of the computation
time leading to the prolongation of the completion time) can be found on one processor
regardless the scheduling policy (preemptive or cooperative), when the processes contain
computations, resource sharing and idle waiting (notice that idle waiting is processed in
parallel with computation of another process).

Example depicted in Figure 3-8 shows a high priority processes P-high and a low priority
process P-low sharing one resource represented by a semaphore Sem . The processes con-
sist of computations with specified deterministic computation time, of idle waiting with
specified deterministic delay and of inter process communication through semaphore,

OCERA. IST 35102 50

Chapter 3. Verification

which can be hold by only one process. The computation times and delays given behind
slash are assumed to be constant. The computation time of CompC/C is C =2 in the
instance a) or C =1 in the instance b).

In the instance a) regardless the scheduling policy (priority based preemptive or priority
based cooperative) the semaphore is taken by P-high first. Consequently the process P-
high is completed in 7 time units and the process P-low is completed in 9 time units,
see Figure 3-8 a). In the instance b), the semaphore is taken by process P-low first and
consequently the process P-high is completed in 9 time units and the process P-low is
completed in 10 time units, see Figure 3-8 b).

The shortening of the computation time in the process P-low (C shorted from 2 to 1)
leads to the prolongation of the completion time of both processes. As a consequence this
example illustrates some important phenomena:

even for preemptive scheduling policy the low priority process influences completion
time of the high priority process (due to the shared resource)

when one wants to make use of the internal process structure, then it is needed to specify
lower margins of computation times even for schedulability analysis (studying the upper
margin of the process completion time).

Based on these observations we provide the models including upper and lower margins
of the computation time, inter process communication primitives and delays. In addition
to that we provide a simple solution for verification of models including interrupts.

Process P-low
{
 CompC/C
 Take Sem
 Delay/3
 Give Sem
 CompD/1
 CompE/1
}

CompC

CompA CompB

CompD

1 10

2 64

5

b)

CompC

CompA CompB

CompD

P-high

P-low

2 6

2 3 7

a)

3

Process P-high
{
 Delay/2
 Take Sem
 CompA/1
 Give Sem
 Delay/1
 CompB/3
}

P-high

P-low

4

5 9

8

4

7

CompE

CompE

9

6

CompA Executed

Delayed

Owning Sem.

Figure 3-8. Example of monoprocessor scheduling anomaly

3.2.3. API/Compatibility
Not applicable.

OCERA. IST 35102 51

Chapter 3. Verification

3.2.4. Implementation issues

3.2.4.1. Cooperative scheduling
Cooperative scheduling enables to deschedule currently executed process only in ex-
plicitly specified points, where the system call yield() is called or where the process is
waiting.

The example of the application process model is depicted in Figure 3-9. We can recognise
four types of locations there. Except one location WaitTimer , where the process does not
require processor, there are several Computation locations corresponding to sequential
blocks of code (Comp) requiring non-preemptible execution on the processor. Computa-
tions do not contain any blocking operation. Each two successive Computation locations
are separated by one Yield location corresponding to yield instruction where the process
can be descheduled and then it waits there until it is scheduled again. WaitTimer loca-
tion is followed by WaitProc location where the process waits until it is signalled and
consequently scheduled.

Comp2

w<=H2

w>=L2
w:=0 w:=0

Comp3

w<=H3

WaitTimer

t<=Period

w>=L3

t:=0

t>=Period

Fnc_Process1
{

while (TRUE)
{
Comp1
yield()
Comp2
yield()
Comp3
Wait_End_of_Period
}

}

Deschedule!

Signal!
Block!

Comp1

w<=H1

w:=0
w>=L1
w:=0 w:=0

WaitProc Yield1 Yield2

Schedule? Schedule? Schedule?
Deschedule!

Figure 3-9. Model of the application process executed under cooperative
scheduling policy

As each part of the program modelled by Computation location cannot be affected by
the preemption, its finishing time is known a priory and equal to computation time
bounded by interval L,H (lower and upper margins allowing to involve uncertainty of
execution time due to non-modelled code branching inside the computations, bus errors,
cache faults, page faults, cycle stealing by DMA device, etc.). Computation locations are
therefore guarded by standard time conditions supported by timed automata.

The following behaviour of the cooperative scheduler is assumed: if the processor is free,
the process with the highest priority among all processes in the ready queue is sched-
uled. The currently executed process will run until it voluntarily relinquishes processor
by calling system call yield() or until it is blocked. The model of the cooperative scheduler
is created as the network of automata synchronised with application processes through
synchronisation channels as depicted in Figure 3-10. Deschedule channel is used to sig-
nal that the process relinquishes the processor (by yield()). The scheduler chooses the
highest priority ready process and enables its execution through Schedule channel.

OCERA. IST 35102 52

Chapter 3. Verification

P1 Sch1

Schedule1

Deschedule1

Block1

Signal1

P2 Sch2

Schedule2

Deschedule2

Block2

Signal2

Pn Schn

Schedulen

Deschedulen

Blockn

Signaln

.........

SchedulerApplication

wPriorQueue

wQch

wQch

wQch

wQch
P

ID1 ID2 ID3 ID4 ... IDnPriorities

- ID3 ID4 ID1 ID2 - - -

rQ wQ

Q

nQReady queue

Figure 3-10. Synchronisation of cooperative scheduler with application
processes

One automaton of the cooperative scheduler model (Sch
i
) is depicted in Figure 3-11.

Ready Execution

Pended

Free:=1

Block?
Signal?

Free==1, Q[rQ]==ID

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Schedule!

Q[wQ]:=ID

wQch! Deschedule?

Free:=1

Q[wQ]:=ID

wQch!

Figure 3-11. One automaton (Schi) of the cooperative scheduler in Figure 3-10

Each process is identified by unique integer ID (0,1,2,...). Priority of the process is stored
in global array P , indexed by ID . ID s of all processes, which are in Ready state, are
stored in queue modelled as global array Q of the size sizeQ representing circular buffer.
The integer nQ is the number of elements in the queue. The integer rQ is the position for
reading of the first element in Q and the integer wQ is position of the first empty element
in Q as is depicted in Figure 3-10. Processes are ordered in descending order according
to their priorities in Q (rQ points to the ready process with highest priority). Therefore Q
must be reordered after writing new ID to the Q on the position wQ . Ordering according
priorities is provided by automaton wPriorQueue. Reordering mechanism is started by
synchronisation channel wQch.

Note on modelling of context switch time:

Please notice that the model of the scheduler proposed in Figure 3-11 is simplified by
assumption that the context switch does not take any time. But for proper exploration
of time properties of real-time system the context switch time should be considered.
Because the context switch in cooperative scheduling occurs once per Computation loca-
tion, context switch time can be involved in the computation time of each Computation.

3.2.4.2. Interrupts
Interrupts are usually used for fast handling of asynchronous external events. Interrupt
is particularly important in cooperative scheduling since a low priority process cannot be
preempted and therefore a high priority process cannot be used to handle asynchronous
event when short requesting time is required. When the interrupt request (IRQ) arrives
from the environment and corresponding interrupt is enabled, currently executed pro-
cess is interrupted and interrupt service routine (ISR) is executed. The relative finishing

OCERA. IST 35102 53

Chapter 3. Verification

time F of currently executed Computation is therefore prolonged by computation time of
ISR (C

ISR
) and it is no more equal to known computation time . In the timed automata

process model it is needed to change upper margin H of each computation location. Each
H is prolonged by MaxSC , the value corresponding to the processor time reserved for all
interrupt service routines. Since the number of interrupt requests depends on the envi-
ronment, the total computation time of all ISR (C

ISR
) is not known a priory and moreover

the existence of its upper bound is not guaranteed.

The interrupt server limiting amount of CPU time spent for interrupts (similar to de-
ferrable server [Buttazzo97][Larsen95]) is used to guarantee that C

ISR
does not exceed

MaxSC value . The lower margin L of computation location is not affected by interrupts
(situation when computation time reaches the lower bound and no interrupt occurs).
The architecture of the system with interrupt server is depicted in Figure 3-12. Interrupt
service routines are not called directly when some interrupt is requested, but they are
wrapped by the code of ISR_Server() function (see Figure 3-13). The interrupt server has
specified server capacity SC , which is filled by the value MaxSC at the beginning of each
computation. The function Fill_Server(MaxSC) listed in Figure 3-13 is used for it. When
an interrupt occurs the server capacity SC is decreased by the value of corresponding
C

ISR
and interrupt server checks if the remaining capacity SC is sufficient for handling

next ISR . If not the corresponding IRQ is disabled. This check is provided when SC
changes, once by Fill_Server() and repeatedly on each interrupt by ISR_Server() (both
listed in Figure 3-13). Notice that C

S
, the computation time of ISR_Server() , is con-

sidered. Further H has to be prolonged by C
FS

, the computation time of the function
Fill_Server() (see Figure 3-14).

Figure 3-15 shows the time diagram when IRQ1 occurred twice within computation
Comp1 . Suppose system containing two sources of interrupts (IRQ1 and IRQ2) with
the following computation times: C

Comp1
=21 , C

FS
=4 , C

S
=4 , C

ISR1
=4 , C

ISR2
=7

and MaxSC1=17 . The routine Fill server is executed at the beginning of Comp1 at
time 0 . This routine sets the server capacity SC to the value MaxSC1 and it checks
if this value is sufficient for handling all interrupt service routines. Interrupt request
IRQ1 occurs at time 9, execution of Comp1 is interrupted and execution of ISR_Server()
routine is started. This routine decreases server capacity SC by computation time of
interrupt server C

S
and by computation time of interrupt service routine C

ISR1
. Then it

starts interrupt service routine ISR1 and then it checks if the remaining server capacity
SC is sufficient for next interrupt request handling. Since this is not the case of IRQ2
(SC=9 < C

S
+C

ISR2
=11), the IRQ2 is disabled. Then the execution of Comp1 continues

until it is again interrupted by the second occurrence of IRQ1 at time 25 . After this
interrupt handling, the remaining server capacity SC is only 1 that is not sufficient
for handling any interrupt. Therefore both interrupt requests are disabled. The server
capacity SC is replenished with the new value MaxSC2 by routine Fill server at the
beginning of next computation Comp2 at time 41 . Notice that the function ISR_Server()
supposes that the hardware does not support nested interrupts (ISR_Server() cannot be
interrupted by another interrupt).

..... ...

Interrupt Server

Scheduler

Pn
ISRnISR1

ISR_
Server

HW
IRQ1

IRQn

...

SC
ISR_

Server

-
-

+

P1

+

INT1 INTnDI1 DIn

Figure 3-12. System architecture with interrupt server

OCERA. IST 35102 54

Chapter 3. Verification

Fill_Server (MaxSC)
{
 Disable_INT
 SC :=MaxSC
 Check for all IRQ
 if (SC – CISR - CS) < 0
 Disable IRQ
 else
 Enable IRQ
 Enable_INT
}

ISR_Server ()
{
 SC := SC – CISR - CS
 call ISR
 Check for all IRQ
 if (SC – CISR - CS) < 0
 Disable IRQ
 else
 Enable IRQ
}

Figure 3-13. Interrupt server routines

Comp1
w<=H1 + CFS + MaxSC1

Schedule?

w:=0

w>=L1 + CFS

Deschedule!

Figure 3-14. Computation location considering interrupts

Fill
server

Comp1
ISR

server
ISR1 Comp1

ISR
server

ISR1 Comp1
Fill

server
Comp2

MaxSC1

CISR1

IRQ2 OK

IRQ1 OK

Disable IRQ2

MaxSC2

IRQ1 IRQ1

F_Comp1 L1 + CFS, H1 + CFS + MaxSC1

Mask of IRQ1
Enable

Disable

Enable

Disable

Disable IRQ1

SC

CISR2

CISR1 CISR1
CFS

CS

CS CS

time

time

time

time

Gantt
diagram

0
Disable IRQ2

4 9 13 17 25 29 33 41 45

17

9

Mask of IRQ2

CISR1

CS

CISR1

CS

CS

CISR2

CS

CISR1

CS

IRQ1 OK

CISR1

IRQ2 OK

CISR2

CS CS

IRQ1 OK

Figure 3-15. Time diagram of ISR execution within interrupt server

Choice of MaxCS value for different locations depends on application requirements
and it is specified at the design stage. Section 3.2.6, Examples section shows an ex-
ample application with one IRQ, two processes of different priority and one semaphore
(semaphore is discussed in Section 3.2.4.3.1, Semaphore).

3.2.4.3. Inter process communication primitives
Very important part of each multitasking application (and source of many possible er-
rors) is communication between processes and their synchronisation. Operating system
usually provides many facilities to manage inter process communication. It is not in-
tention of this paper to introduce models of all possible kinds of inter process commu-
nication. We only show on example of semaphore how to extend the proposed model of
scheduler and application. The context switch time is not considered for simplification
in this section.

OCERA. IST 35102 55

Chapter 3. Verification

3.2.4.3.1. Semaphore

The semaphore is the primitive used mostly for synchronisation and mutual access to
resources. It can be taken or given by process using the system calls Take() or Give()
. When the semaphore is given, its value is increased. When the semaphore is taken,
its value is decreased. When the value of the semaphore is zero, it cannot be taken
and the process attempting to take it is blocked until the semaphore is given by other
process. This blocking time can be bounded by timeout. When more than one processes
are blocked on one semaphore, they are waiting in priority queue or FIFO (First In First
Out) queue. This basic behaviour of semaphore can be modified according to the purpose
it is dedicated to. We suppose the semaphore being of counting type with value ranging
from zero to MaxCount .

In this section we introduce model of the process using semaphore. In addition it is
needed to extend the scheduler model. Example of application process model is depicted
in Figure 3-16. The process attempts to take the semaphore by synchronisation Take! .
Then it waits in location WaitSem until the semaphore is taken (synchronisation Taken?
) or until timeout expires (synchronisation TOut!). The synchronisation Give! is used
to give the semaphore. Notice that giving the semaphore is not blocking operation and
therefore the semaphore is given on the transition entering the Computation location.
On the other hand taking semaphore is blocking operation and therefore transitions
with Taken? and TOut! lead to the location WaitProc where the process waits for the
processor. Notice also that all synchronisations Take! , Taken? , TOut! and Give! corre-
spond to only one semaphore. (Another name of the synchronisations should be used for
the next semaphore in the application.).

Comp1
w<C1Hi

Comp2
w<C2Hi

Comp3
w<C3Hi

WaitTimer
t<=Period

WaitProc1 WaitProc2WaitSem
w<=TimeOut

WaitProc3
Comp4

w<C4Hi
Yield

w>C1Lo
Take!

w:=0

w>C2Lo
Give!

t>=Period

t:=0

Signal!

Schedule?

w:=0

Schedule?

w:=0

w>C3Lo

Block!

Taken?

w>=TimeOut
TOut!

Schedule?

w:=0

w>C4Lo
Deschedule!

Schedule?
w:=0

Fnc_Process1
{

while (TRUE)
{

Comp1

Result := Take (Sem, TimeOut)
if (Result == TOut)
{

Comp4
Yield()

}
else
{

Comp2
Give (Sem)

}
Comp3
Wait_End _of_Period

}
}

Figure 3-16. Model of process containing Take and Give one semaphore

Scheduler model for application with one semaphore is depicted in Figure 3-17. The
scheduler of executed process is asked for taking the semaphore by synchronisation
Take? . If the semaphore is empty (Sem==0), the processor is relinquished (Free:=1), ID
of the process is written to the queue of the semaphore (SemQ) and the queue (FIFO
or priority) is reordered by synchronisation wSemQch! . The scheduler and the process
then wait the in location WaitSem until the semaphore is given by another process or
until its time-out expires.

If the semaphore is not empty (Sem>0) its value is decreased and the synchronisation
Taken! is immediately followed by synchronisation Schedule! to move the process to the
next computation location. The processor is not relinquished in this case.

OCERA. IST 35102 56

Chapter 3. Verification

Ready Execute

PendedTimer

PendedSem

Free:=1

Block?Signal?

Free==1, Q[rQ]==ID

Free:=0, nQ:=nQ-1, rQ:=(rQ<sizeQ-1 ? rQ+1 : 0)

Schedule!

Q[wQ]:=ID

wQch! Deschedule?

Free:=1

Q[wQ]:=ID

wQch!

wQch!

Q[wQ]:=ID

wQch!

Q[wQ]:=ID

Sem>0, SemQ[rSemQ]==ID
Taken!

Sem:=Sem-1, nSemQ:=nSemQ-1,

TOut?

Sem==0
wSemQch!

SemQ[wSemQ]:=ID, Free:=1

Take?

Sem>0
Taken!

Sem:=Sem-1

Schedule!

Give?
Sem:=(Sem<MaxCount ? Sem+1 : MaxCount)

ExCh!

ExV:=ID

Figure 3-17. Scheduler model containing Take and Give of one semaphore
(extension of Figure 3-11)

The queue of the processes waiting for the semaphore (SemQ) can be FIFO or priority
queue. When the queue is priority queue, its elements (ID s of processes in this case)
must be reordered according to priorities when the next process issues Take on empty
semaphore. The only difference is the name of the queue (SemQ , wSemQch , nSemQ
, rSemQ , wSemQ). Reordering is not necessary when FIFO is used. For compatibility
with scheduler automaton in Figure 3-17 the automaton wFifoQueue depicted in Figure
3-18 is used.

nQ<sizeQ
wQch?

nQ:=nQ+1, wQ:=(wQ<sizeQ-1 ? wQ+1 : 0)

Figure 3-18. Automaton wFifoQueue providing writing to the FIFO queue

3.2.4.4. Conclusion and future work
The cooperative scheduling approach given in this chapter avoids preemption modelling
by hybrid automata. Model of the application processes and cooperative scheduler is
based on timed automata, for which model checking of TCTL property problem is decid-
able (opposite to hybrid automata). Interrupts and inter-process comunication - the most
important aspect of real time embedded applications - are taken into consideration in
proposed model. With respect to the processor utilisation and reaction time the system
conceived in this chapter is not the most efficient one, but due to simplicity reasons many
embedded applications are often based on similar cooperative scheduling mechanisms
handling interrupts separately, so this approach is not just an academic idea.

Existing approaches for design and analysis of real-time applications, like Rate Mono-
tonic Analysis (using preemptive scheduling based on priority assignment respecting
the rate of periodic processes), use very elegant way of deciding whether the application
is schedulable or not. Another approach based on timed automata with asynchronous
processes [Fersman02] is suited for schedulability analysis of aperiodic processes. But
both of these approaches do not consider internal process structure. As a consequence
they provide too pessimistic results, especially when the application uses inter-process
communication. Beside of that with respect to RMA it is needed to mention, that the
model checking approach provides a room for verifying more complex properties (e.g.
detection of deadlocks in communication, specification of buffer size,...). Model check-
ing provides also room for modelling of more complex time behaviour of the controlled
system, running truly in parallel with the control system (modelled as separate automa-
ton).

Moreover this approach offers a frame work to combine verification of RTOS and CAN
communication network (see CAN model by timed automata /Petri Nets component)

OCERA. IST 35102 57

Chapter 3. Verification

with verification of fault-tolerant applications (see work package 6 - Fault Tolerant com-
ponent). In order to reach full compatibility with RT Linux it is needed to study the
Kernel intervals and to use different tools (e.g. Hytech) so that the preemptive can be
modelled.

3.2.5. Tests
Not applicable.

3.2.6. Examples

3.2.6.1. Example of system with interrupt
Consider application depicted in Figure 3-19. It consists of two processes scheduled by
cooperative scheduling (model of scheduler automaton is not depicted here because it
is identical to automaton in Figure 3-17). First process Proc_Period is periodically ex-
ecuted with low priority (Figure 3-24). The second process Proc_Int with high prior-
ity is intended for handling external aperiodic events (Figure 3-23). It is waiting for
semaphore that is given within interrupt service routine. Interrupt requests (IRQ) are
generated by model of Environment (Figure 3-20). If the interrupt request is enabled
(EN>0), hardware interrupt controller InterruptCtrl (Figure 3-21) generates interrupt
(INT). Than it waits until interrupt service routine is finished (signaled by channel iRet
). All other IRQ are ignored before iRet . Interrupt (INT) invokes ISR_Server (Figure
3-22). The integer variable SC represents capacity of the interrupt server. After each
interrupt, SC is decreased by constant C_ISR representing computation time of inter-
rupt service routine plus ISR_Server routine. If remaining SC is not sufficient for next
interrupt (SC-C_ISR<0), the interrupt is disabled (EN:=0).

Environment
Interrupt Ctrl

(HW)
ISR_Server

Proc_Int

Proc_Period

INTIRQ

EN SCSem

Figure 3-19. Interconnection of sample automata

t<=PH

t>=PL
t:=0

IRQ!

Figure 3-20. Model of Environment generating IRQ

EN>0
IRQ?

INT!

EN==0
IRQ?

IRQ?

iRet?

Figure 3-21. Model of hardware interrupt controller

ISR_Comp
w<=C_ISR

INT?

w:=0, SC:=SC-C_ISR,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>=C_ISR

Sem:=(Sem<MaxCount ? Sem+1 : MaxCount)

iRet!

Figure 3-22. ISR_Server model

OCERA. IST 35102 58

Chapter 3. Verification

Computation1
w<H1+FS+S1

Computation2
w<H2+FS+S2Yield WaitProc

WaitSem

w>L1+FS
Take!

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Taken?Signal!

Deschedule!
w>L2+FS

Figure 3-23. Model of high-priority process Proc_Int

Computation1
w<H1+FS+S1

Computation2
w<H2+FS+S2 Computation3

w<H3+FS+S3

WaitTimer
t<=Period

WaitProc
Yield1 Yield2

w>L1+FS
Deschedule!

w>L2+FS
Deschedule!

t>=Period

t:=0

Signal!

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

Schedule?

w:=0, SC:=S1,
EN:=((SC-C_ISR)>=0 ? 1 : 0)

w>L3+FS
Block!

Figure 3-24. Model of low-priority periodic process Proc_Period

Bibliography
[Katoen99] Joost-Pieter Katoen, , and , 1998/1999, Concepts, Algorithms, and Tools for

Model Checking.: Lecture Notes of the Course "Mechanised Validation of Parallel
Systems" (course number 10359).

[Clarke96] Edmund M. Clarke, Jeannette M. Wing, and , 1996, Formal methods: state of
the art and future directions.: Vol. 28, no 4, pp 623-643.

[Alur93] R. Alur, C. Courcoubetis, and D. Dill, 1993, Model-checking in dense real-time.
Information and Computation: 104(1): 2-34.

[Alur94] R. Alur, D. Dill, and , 1994, A theory of timed automata: Theoretical Computer
Science 126:183-235.

[Alur91] R. Alur, T. Henzinger, and , 1991, Logics and Models of Real Time: A Survey. In
Real-Time: Theory in Practice: REX Workshop, LNCS 600, pp. 74-106.

[David] A. David, , and , , Uppaal2k: Small Tutorial. Documentation to the verification
tool Uppaal2k: http://www.docs.uu.se/docs/rtmv/uppaal/.

[Buttazzo97] Giorgio Buttazzo, , and , 1997, Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications: .

[Sha91] Lui Sha, M. Klein, and J. Goodenough, 1991, Rate Monotonic Analysis for Real-
Time Systems.: 129-155. Foundations of Real-Time Computing: Scheduling and Re-
source Management. Boston, MA.

[Graham69] R. Graham, , and , 1969, Bounds on multiprocessing timing anomalies:
SIAM J. Appl. Math., 17 (1969), pp. 416-429.

[Larsen95] Kim G. Larsen, Paul Pettersson, and Wang Yi, 1995, Model-Checking for
Real-Time Systems: In Proceedings of the 10th International Conference on Fun-
damentals of Computation Theory, Dresden, Germany, 22-25 August, 1995. LNCS
965, pages 62-88, Horst Reichel (Ed.).

[Liu2000] Liu, W.S. Jane, and , 2000, Real-time systems: ISBN 0-13-099651-3.

[Shaw89] A. Shaw, , and , 1989, Reasoning about time in higher-level language software:
IEEE Transactions on Software Engineering, vol. 15.

OCERA. IST 35102 59

Chapter 3. Verification

[Corbett96] J. C. Corbett, , and , 1996, Timing analysis of Ada tasking programs: IEEE
Transactions on Software Engineering., 22(7), pp. 461-483.

[Cassez2000] F. Cassez , K. Larsen, and , 2000, The Impressive Power of Stopwatches:
In Proceedings of CONCUR 2000 - Concurrency Theory, 11th International Confer-
ence, University Park, PA, USA, August 2000 CONCUR\’2000. LNCS 1877, p. 138
ff., .

[Bouyer2000] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit, 2000, Are Timed Automata
Updatable ?: In Proc. 12th Int. Conf. Computer Aided Verification (CAV\’00), LNCS,
Vol.1855, pp. 464-479.

[Amnell01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexan-
dre David, Ansgar Fehnker, Thomas S. Hune, Bertrand Jeannet, Kim Larsen, M.
Olivier Möller, Paul Pettersson, Carsten Weise, and Wang Yi, 2001, UPPAAL - Now,
Next, and Future: MOVEP’2k, LNCS Tutorial 2067.

[Fersman02] Elena Fersman, Paul Pettersson, and Wang Yi, 2002, Timed Automata with
Asynchronous Processes: Schedulability and Decidability: In Proceedings of 8th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2002, Grenoble, France, April 8-12, 2002, pp.67-82, Springer-
Verlag, 2002. Lecture Notes in Computer Science, Vol.2280.

[Holzmann91] Gerard J. Holzmann, 1991, Design and Validation of Computer Protocols:
512 pgs. ISBN 0-13-539925-4 hardcover (USA), ISBN 0-13-539834-7 paperback (in-
ternational edition).

OCERA. IST 35102 60

	
	Communication components
	Table of Contents
	List of Figures
	Communication components
	Chapter 1. CAN/CANopen
	1.1. Virtual CAN API (VCA)
	1.1.1. Summary
	1.1.2. Description
	1.1.3. API / Compatibility
	struct canmsgt
	Synopsis
	Members
	Header

	vcah2log
	Synopsis
	Arguments
	Header
	Return Value

	vcaopenhandle
	Synopsis
	Arguments
	Header
	Return Value

	vcaclosehandle
	Synopsis
	Arguments
	Header
	Return Value

	vcasendmsgseq
	Synopsis
	Arguments
	Header
	Return Value

	vcarecmsgseq
	Synopsis
	Arguments
	Header
	Return Value

	vcawait
	Synopsis
	Arguments
	Header
	Return Value

	vcalog
	Synopsis
	Arguments
	Description
	Note

	vcalogredir
	Synopsis
	Arguments

	1.1.4. Implementation issues
	1.1.5. Tests
	1.1.6. Examples
	1.1.7. Installation instructions

	1.2. CAN monitor
	1.2.1. Summary
	1.2.2. Description
	1.2.2.1. canmond CAN/CANopen proxy
	1.2.2.2. testclient
	1.2.2.3. CanMonitor

	1.2.3. API / Compatibility
	1.2.3.1. canmond
	1.2.3.2. testclient
	1.2.3.3. CanMonitor

	1.2.4. Implementation issues
	1.2.4.1. canmond

	1.2.5. Tests
	1.2.6. Examples
	1.2.7. Installation instructions

	1.3. CAN device
	1.3.1. Summary
	1.3.2. Description
	1.3.3. API / Compatibility
	1.3.3.1. SDO FSM API

	struct vcasdofsmt
	Synopsis
	Members

	vcasdoerrormsg
	Synopsis
	Arguments

	vcasdoinitfsm
	Synopsis
	Arguments
	Return Value

	vcasdodestroyfsm
	Synopsis
	Arguments

	vcasdorun
	Synopsis
	Arguments
	Return Value

	vcasdofsmtastemsg
	Synopsis
	Arguments
	Return Value

	vcasdoabortmsg
	Synopsis
	Arguments
	Header

	1.3.4. Implementation issues
	1.3.4.1. Architecture overview
	CANopen device components description

	1.3.4.2. RTCANopen device in the Soft real time space
	1.3.4.3. RTCANopen device in the Hard real time space

	1.3.5. Tests
	1.3.6. Examples
	1.3.7. Installation instructions

	Chapter 2. ORTE OCERA RealTime Ethernet
	2.1. ORTE
	2.1.1. Sumary
	2.1.2. Description
	2.1.3. API / Compatibility
	struct ORTERcvInfo
	Synopsis
	Members
	Description

	struct ORTEPublStatus
	Synopsis
	Members

	struct ORTESubsStatus
	Synopsis
	Members
	Description

	struct ORTESubsProp
	Synopsis
	Members
	ORTERELIABILITYBESTEFFORTS
	ORTERELIABILITYSTRICT

	struct ORTEPublProp
	Synopsis
	Members

	ORTEAppCreate
	Synopsis
	Arguments
	Description

	ORTEAppDestroy
	Synopsis
	Arguments
	Description

	ORTEAppPublAdd
	Synopsis
	Arguments
	Description

	ORTEAppPublRemove
	Synopsis
	Arguments
	Description

	ORTEAppPublSend
	Synopsis
	Arguments
	Description

	ORTEAppPublPropGet
	Synopsis
	Arguments
	Description

	ORTEAppPublPropSet
	Synopsis
	Arguments
	Description

	ORTEAppPublWaitForSubs
	Synopsis
	Arguments
	Description

	ORTEAppPublGetStatus
	Synopsis
	Arguments
	Description

	ORTEAppSubsAdd
	Synopsis
	Arguments
	Description

	ORTEAppSubsRemove
	Synopsis
	Arguments
	Description

	ORTEAppSubsPropGet
	Synopsis
	Arguments

	ORTEAppSubsPropSet
	Synopsis
	Arguments
	Description

	ORTEAppSubsWaitForPubl
	Synopsis
	Arguments
	Description

	ORTEAppSubsGetStatus
	Synopsis
	Arguments
	Description

	ORTEVerbositySet
	Synopsis
	Arguments

	ORTESleepMs
	Synopsis
	Arguments

	NtpTimeAssembFromMs
	Synopsis
	Arguments

	NtpTimeDisAssembToMs
	Synopsis
	Arguments

	NtpTimeAssembFromUs
	Synopsis
	Arguments

	NtpTimeDisAssembToUs
	Synopsis
	Arguments

	2.1.4. Implementation issues
	2.1.5. Tests
	2.1.6. Examples
	2.1.7. Installation instructions

	2.2. Real Time Ethernet analyzer
	2.2.1. Sumary
	2.2.2. Description
	2.2.3. API / Compatibility
	2.2.4. Implementation issues
	2.2.5. Tests
	2.2.6. Examples
	2.2.7. Installation instructions

	Chapter 3. Verification
	3.1. CAN model by timed automata /Petri Nets
	3.1.1. Summary
	3.1.2. Description
	3.1.2.1. Problem statement
	3.1.2.2. CAN bus description
	3.1.2.2.1. Realtime data transmission
	3.1.2.2.2. Message frame formats
	3.1.2.2.3. Detecting and signaling errors

	3.1.3. API/Compatibility
	3.1.4. Implementation issues
	3.1.4.1. Model of bitwise arbitration
	3.1.4.2. MAC arbiter implementation

	3.1.5. Tests
	3.1.6. Examples
	3.1.6.1. Implementation of process

	3.1.7. Installation instructions
	Bibliography

	3.2. Verification of cooperative scheduling and interrupt handlers
	3.2.1. Summary
	3.2.2. Description
	3.2.3. API/Compatibility
	3.2.4. Implementation issues
	3.2.4.1. Cooperative scheduling
	3.2.4.2. Interrupts
	3.2.4.3. Inter process communication primitives
	3.2.4.3.1. Semaphore

	3.2.4.4. Conclusion and future work

	3.2.5. Tests
	3.2.6. Examples
	3.2.6.1. Example of system with interrupt
	Bibliography

