
WP9 - Validation on platform
�

Deliverable D9rb.1 - Robotic Application
Requirements and Platform Analysis

WP9 – Validation on platform : Deliverable D9rb.1 – Robotic application requirements and
platform analysis
by F. Russotto and J. Brisset
Published February 2003
Copyright © 2003 by OCERA

Table of Contents
� *(1(5$/ ��� �

� 5(48,5(0(176��� �

2.1 FUNCTIONAL REQUIREMENTS... 5
2.2 HARDWARE REQUIREMENTS .. 5

����� $UFKLWHFWXUH�� �
����� 5HTXLUHPHQWV�� �

2.3 SOFTWARE REQUIREMENTS.. 8
����� $UFKLWHFWXUH�� �
����� 5HTXLUHPHQWV�� �
����� 3HUIRUPDQFHV ��� ��

�� *HQHUDO�

The application we will develop is a servo-control application of an haptic device used into an
Interactive and immersive system of virtual remote manipulation. This system allows
manipulation by a human operator of virtual objects located into a virtual environment
through an haptic device. The operator is immersed into the virtual environment using high
screen projection and stereoscopic glasses and can interact with the virtual objects using the
haptic device. The following figure shows an outline of the overall system :

)LJXUH�����,QWHUDFWLYH�DQG�LPPHUVLYH�V\VWHP�RI��YLUWXDO�UHPRWH�PDQLSXODWLRQ�

The haptic device used to manipulate virtual objects is a six-axis robot arm integrating six
motors, six position sensors and a six-axis force sensor. It is controlled in position and force
to give the operator force feedback computed from the interaction with the virtual
environment.

The system involves three computers to operate : one computer for 3D virtual environment
real-time rendering, one computer for virtual environment real-time dynamic simulation and
one computer (also called Embedded Controller) for the servo-control robotic application of
the haptic device.

The system is now operational and implements an Embedded Controller running the robotic
application under VxWorks. We will first port the robotic application from the VxWorks OS
to RTLinux-Ocera. Then, if the required performances of the robotic application can be
fulfilled, we will port the virtual environment dynamic simulator to RTLinux-Ocera and try to
run it on the Embedded Controller.

�� 5HTXLUHPHQWV�
The following chapter describes the requirements relative to the embedded robotic application
that will run on the Embedded Controller. This includes : functional requirements, hardware
requirements and software requirements.

����)XQFWLRQDO�UHTXLUHPHQWV�

Four main functions can be identified from the functional analysis. The robotic application
should provide :

- Cartesian control of the haptic device in position and force.
- Coupling interface to interact with the virtual environment.
- Virtual environment simulation (optional).
- User interface for Controller configuration and settings.

���� +DUGZDUH�UHTXLUHPHQWV�
������ $UFKLWHFWXUH�

The following figure shows an outline of the general hardware architecture (computer used
for 3D rendering not shown) :

)LJXUH�����*HQHUDO�KDUGZDUH�DUFKLWHFWXUH�RYHUYLHZ�

The following paragraphs gives the detailed architecture of the main parts of the Embedded
Controller.

��������0DLQ�ERDUG�
The main board is a CPU NEXCOM 562 card. It is based on a x86 architecture (i440BX),
supporting Intel Socket 370 CPU up to 1000 MHz. It integrates an onboard fast Ethernet
10/100 Mbps adapter and a PC104 (ISA) bus.

)LJXUH�����0DLQ�ERDUG�

The CPU is an Intel Pentium III running at 733 MHz.

��������$[LV�FDUGV�
Axis cards are intelligent Analog to Digital and Digital to Analog PC104 cards. These cards
implement a TMS320F240 micro controller and a shared memory of 255 16 bits words.

Shared memory is accessible from both the DSP and the CPU through the PC104 bus. The
following figure shows the general architecture of the card.

)LJXUH�����$UFKLWHFWXUH�RI�DQ�$[LV�&DUG�

The Axis cards are used to read angular position inputs of the haptic device and to write motor
commands outputs.

��������'$&�FDUG�
The DAC card is a standard PC104 card and is used to read from a 6D force sensor which is
located on the terminal axis of the haptic device.

��������/RJLFDO�,�2�FDUG�
This card is a standard PC104 logical I/O card in charge of input / output logical (binary) data.

��������3RZHU�6XSSO\�
The Embedded Controller integrate a standard ATX power supply for the computer and a
stabilized power supply MEANWELL SP500-48 for the Axis cards.

������ 5HTXLUHPHQWV�
The hardware requirements of the application are summarized hereafter :

- &HQWUDO�8QLW�
The central unit should integrate a Socket 370 i786 architecture with a Pentium III
processor running at 733 MHz or higher.

- ,QSXW�RXWSXW�FDUGV�
The Controller should provide two Axis I/O cards (described above), an ADC Input
card and a logical I/O card (as described above).

- &RPPXQLFDWLRQ�
The Embedded Controller should provide a standard fast Ethernet 10/100 Mbps
adapter.

- 3RZHU�VXSSO\�
The Embedded Controller should provide a standard ATX power supply and a
stabilized MEANWELL SP500-48 power supply.

���� 6RIWZDUH�UHTXLUHPHQWV�
������ $UFKLWHFWXUH�

The following figure shows the general architecture of the application:

)LJXUH�����5RERWLF�DSSOLFDWLRQ�JHQHUDO�DUFKLWHFWXUH�

The description of the job performed by each task is the following:

��������6HUYR�&RQWURO�

This is the main task of the overall application. This task performs servo-control of the haptic
device in position and force. It is divided into six subtasks that are executed sequentially:

- Reading position and force from the haptic device sensors
- Receiving position and speed of the coupled virtual object from the Controller

interface task
- Computing commands to be applied to the device motors
- Computing force to be applied to the coupled virtual object
- Writing commands to the motors
- Sending force to be applied to the coupled virtual object to the Controller interface

task

This task is executed periodically (T = 1 ms) released by the Watchdog task using a
synchronization semaphore.

��������:DWFKGRJ�

This task is executed periodically (T = 1 ms) released by the system timer. The role of this
task is to release the Servo Control task and to check that its execution time be in a 800 µs
delay. If a deadline miss is detected by the Watchdog, it can stop and rerun the Servo Control
task (signal not represented on figure).

��������&RQWUROOHU�LQWHUIDFH�

This task is the coupling interface of the embedded controller. It opens a communication
channel through a socket (protocol based on UDP/IP) and serves as an access point to
remotely control the embedded controller. It communicates with the Servo Control task
through shared memory.

In a first phase, this task will exchange information with the Physical engine task that will run
on a remote computer connected through an Ethernet adapter. In a second phase, the Physical
engine will run on the embedded controller and information will be exchanged through
message queues (see figure).

��������3K\VLFDO�HQJLQH��RSWLRQDO��

This task performs a dynamic simulation of the virtual environment. One virtual object of the
environment is dynamically coupled with the haptic device and the task exchange necessary
coupling information through the Controller interface task.

In a first phase, this task will run on a remote computer (under Windows 2000). This phase
will validate the application performances keeping the architecture that is now running under
VxWorks. In a second phase, we will port this task to RTLinux-Ocera and will try to run it
directly on the embedded computer as a soft real-time task (as represented on figure). We will
then be able to evaluate application behavior (and so RTLinux-Ocera robustness) regarding
the involved CPU load increase.

��������&RQILJXUDWLRQ�DQG�VHWWLQJV�LQWHUIDFH�

This task allows to remotely configure and set the controller parameters and characteristics. It
also offer a mean to remotely trace internal variables changes and events of the controller. It
communicates with other tasks through shared memory (only the communication with Servo
Control is shown on figure).

������ 5HTXLUHPHQWV�

The software requirements of the application regarding the Real-Time Operating System are
the following. They have been arbitrarily divided into the following four categories :

��������6FKHGXOHU�
- /RZ�ODWHQF\��FRQWH[W�VZDS�WLPH�������V��

A low latency is mandatory for the RTOS. Data acquisitions phase performed in the
Servo Control task should start at a very precise time each period; a 15 µs delay is
acceptable.

-)L[HG�SULRULW\�SROLF\�RU�EHWWHU�
The application now runs under VxWorks (which involves a fixed priority policy)
with a good performance level. The scheduling policy could be different from the
fixed priority one but the hard real-time tasks behavior should not be significantly
impacted by the new policy; in short, no deadline miss is allowed to hard real-time
tasks.

- 2SWLPL]HG�&38�XVDJH�IRU�VRIW�UHDO�WLPH�WDVNV�
During the second phase of the project, the Physical engine will be implemented on
the embedded controller. Even if soft real-time, this task is very CPU hungry and
requires from the RTOS as much CPU resource as possible.

- 0LQLPL]HG�SULRULW\�LQYHUVLRQ�
The soft real-time Controller interface task will share many resources with other tasks
(including hard real-time ones). This could result in priority inversion problems. The
RTOS should offer a mechanism to minimize such issue.

��������5HDO�7LPH�IDFLOLWLHV�
- 7DVNV�PDQDJHPHQW�

Common tasks management functions are required: task creation (periodic or one-
shot), kill, lock and unlock.

- +LJK�UHVROXWLRQ�WLPHUV�
The acquisition phase requires a very precise clock top. A 1 µs resolution for the timer
is required.

- 6HPDSKRUHV���%DUULHUV�
Mutex semaphores and synchronization semaphores are used in the application to
protect shared memory accesses and synchronize tasks. The RTOS should provide
mechanisms satisfying these requirements.

- 0HVVDJH�TXHXHV�
Message queues will be used to communicate between tasks.

- :DWFKGRJV�
A common watchdog facility or equivalent mechanism should be provided.

��������3URJUDPPLQJ�IDFLOLWLHV�
- '\QDPLF�PHPRU\�DOORFDWLRQ�

Dynamic memory allocation is required for soft real-time tasks in such way real-time
performances of the task is not degraded.

- 0HPRU\�SURWHFWLRQ�
Because OS may run several tasks that could crash at any time, the robotic tasks
(especially the hard real-time ones) memory should be protected from alteration by

these potential faulty tasks. A corrupted Servo-control task memory could involve
physical injury and should be avoided.

- +DUG�UHDO�WLPH�WDVNV�LQ�XVHU�VSDFH�
Debugging is very hard in kernel space. The RTOS should provide a mechanism to be
able to run a hard real-time task into user space, at least for debugging phase. When
performance loss involved is acceptable, running a hard real-time task into user space
should even be preferable all the time.

��������7RROV�
- 'ULYHU�GHYHORSPHQW�JXLGHOLQHV�DQG�KHOS�WRROV�

Robotics applications constantly require development of new drivers. Tools and/or
development rules to make new drivers suitable to RT environment is required.

- 'HEXJJLQJ�DQG�WUDFLQJ�WRROV�
Debugging is very hard in kernel space. The RTOS should provide mechanisms to
help debug and trace tasks.

������ 3HUIRUPDQFHV�

The required performances for the overall application are the following :

- 6HUYR�FRQWURO��KDUG�UHDO�WLPH��
This task is released by the Watchdog task each millisecond. Its execution time should
not exceed 600 µs in order for the computed motor commands to be valid. No missed
deadline is allowed for this task

- :DWFKGRJ��KDUG�UHDO�WLPH��
This task is a periodic task launched by timer. It should start at the latest 15 µs after
timer top. No missed deadline is allowed for this task.

- &RQWUROOHU�LQWHUIDFH��VRIW�UHDO�WLPH��
This task is continuously running, released by events coming from a socket. The task
should be released at the latest 500 µs after a socket event. 10 % mean missed
deadlines and 66 % peak missed deadlines are allowed for this task.

- &RQILJXUDWLRQ�DQG�VHWWLQJV�LQWHUIDFH��VRIW�UHDO�WLPH��
This task is continuously running, released by events coming from a socket. The task
should be released at the latest 100 ms after a socket event. A 1 s deadline miss is
allowed.

- :DWFKGRJ�
This task is a periodic task launched by timer. It should start at the latest 15 µs after
timer top. No missed deadline is allowed for this task.

