WP10 - Training and Technical
support

© -

Deliverable D10.4 - Programmer’s Guide

WP10 - Training and Technical support : Deliverable D10.4 - Programmer’s Guide
by Pierre Morel, Jorge Real-Sdez, Ismael Ripoll, Patricia Balbastre, and Miguel Masmano-Tello

Published June 2003
Copyright © 2003 by Ocera

Table of Contents

Document presentation i
L. Overview i
L. OVOIVIBW .uviiiiiieee e ettt e e e eeeectt et e e e e e e eeeeetabaeeeeeeeeeeessssrssaeaaaeeeeeaanssssssaaaaeeeanans 1
2. INErOAUCEION ...ttt e e e e e e e e ee ettt rreeeeeeeeeenanaaes 2
2.1, OCETA OVEIVIEW ...ovvveieiieeeeiiiiiiieeeeeeeececiiitreeeeeeeeeeeersreseeeaeeeeessssrasseseseseenans 2
2.1.1. historical ChoICESccoecciiiiiiiieee e e e e 2

p B 7 13 s 1= - TN 2

2.1.2.1. Linux LiCeNnSINgG......ccovvvirririiiiiiineineeieieeiniesnseeeseeeeeeeeeeens 2

2.1.2.2. RTLIiNUX LiCeNSING......ccvvvrrrrririrerrreniniiiiiiieeeeseeseeeeeeaeeeens 2

2.1.2.3. Ocera LiCensSing........ccccceeeveuviiiieieeeeeeeccciiiireeeeeeeeeeeevnvneeeeens 2

2.1.3. Hard versus Soft real timeccceeeeeeeeiieciiiiiieee e 2

2.1.4. COMPONENTS....ccceeiiiiieiiiiiieieeieererrrrrrerereeeeeeeeeeasaseesseseeeeaaaeeeas 2

2.1.4.1. Schedulingccccvvveiiiiieieeee e 2

2.1.4.2. Fault Tolerance.........cccccoeeeevivireieeeeeeeccciireeeee e eeeeevvreeeens 3

2.1.4.3. Quality Of Service.......cccceeeeuvrriieiieeeeeecciireeee e 3

2.1.4.4. CommuUNICALIONvvveiiiieeeeiiiiieeeeee e eecrrree e e e e e eeearreeee s 3

2.2, INEEINALS....eiiiiiiiie e st 3
2.2.1. what we will see in this chapter...........ccccccvviiviiiiiiiineiiieeeeee, 3

2.2.2. BOOUING ..vvviiiiiiieiciieeeee e e ettt e e e e e e et re e e e e e eeesnnnnaraaaaeeeeeennns 3

2.2.3. TaKing controlcceeiiiiiiiiiiiiiiieiee e ree e e 3

2.2.4. Interrupt handling............coeeeeiiiiiiiiiiiiieceeee e 4

2.2.5. Schedulingccccciiiiiiiiiee e e e e e e 5

2.2.6. QuAlity Of SEIVICEvvveiieeiiiieeeciieee ettt et e e evre e e e 6

2.2.7. Fault tolerancec.ceeecuveieieciiiiee ettt eeveee e e reee e eaaee e e 6

2.2.8. SIMP SUDPOTL c.ccoeiiiiieiieeeeeeeeeecteeeeeee e eeeeeectrrereeeeeeeeeeeearrereeeeeeeeens 6

II. Development tools 7
S HATAWATE ...t e e e e e e e et a e e e e e e e eaaraaaaeeas 8
3.1. Supported HardWare..........ccccoeccuiiiiieeiiii ittt 8
L1 CPU et et e e e e e ettt e e e e e e e e e e anaans 8

B 0 R O < T U O UUUU SRR 8

3.1.1.2. POWEIPC ...ttt 8

3.1.1.3. Strong@ARMovviiiiiiiieeeceeee e 8

3.1.2. System BUSooiiiiiiiiee et 8

3.1.3. mMicro CONtrollerscoociviiiiiiiiieieeeccieee e e e 8

3.2. Hard Real Time supported hardware.............ccceeeevviiireeieeeieiciiiieeeee e, 8

3.3. Soft Real Time supported hardware............ccccceeeeeiriiiriiieieieiciireeeee e, 8
3.3.1. Standard Hardware..............ccceeeeieiieiiiiiiiiieeec e 8

3.3.2. Incompatibilitiesccceeeeeiiiiiiiiieie e e 8

4. Development t0OLS.......cuuiiiiieiciiiiieee e e e e e e et e e e e e e e e e ennnnans 9
4.1. Development environment.........cccccoeeecuiiiiieieeeeeseeciiireee e e e e eeceernreeeeeeeeeenns 9

4.2, COMPILETS ..ot e e et e e e e e e e ettt e e e e e e e e e anrrrrraaeaeeeaanns 9
4.2.1. Native Compilerscccceeeeeeeeiiiiiieieeeeeeecciirireee e eeeearrrree e e e e 9

4.2.2. Cross ComPilers........cccceeeeeeeeeciiiiiieeee e eeecciirrreeeeeeeeeeeenrrrreeeeeeseenns 9

4.3, LIDTATIES ...eiiiieiiiiee ettt ettt ettt ettt e e et e e e sbte e e s st ee e s s bteeessabeeas 9

7 B LY o 10 P = =) USRS 9

7S TN o 1 =) o SO PPPPRR 9

4.6. SUPETVISION T00LS ..veviiiiiiieiiiiiiiieeee ettt e e et e e e e e e s e seerrrreeeeeeeeenns 9
4.6.1. The /proc Filesystem entriesccccccceeeeveviiiiieeeeeeieeeciiiieeeee e 9

4.6.2. Setting POSIX tracesS......covviiieciiieeeeeiiieeeeciieeeeecieeeeseireeeeesvveeeeennns 9

4.6.3. Integrated Development environment..............ccceeeeecreeeeeecveeeennnns 9

II1. Hard Real Time Components 10
5. Accessing Hard Real time functionalitieS.........c.coooevirieeeeiiieieiiiiiiiieeeeeee e 11

1414

5.1. What is an OCERA Hard Realtime applicationcccccceereeecnnnnnnnnennn. 11

5.2. Building an application.........ccccccceeeiiieiiiiiiiiieiee e eeeciirree e 11
5.2.1. MaKefile...coooiiiiiiiiiiiiiieteeetee et 11
5.2.2. COMPILETSoeviiiiiiiiiiiieeeciieeeee et ee e e e e e e seearrree e e e e e e e seanennee 11
5.2.3. LDTATIES .eeeeioiiiiieiiiiieeeeiteee ettt ettt e st e s st e e s e e e s 11
5.2.4. Choosing the cOmMpPONents..........ccceccuvveeeecciieeeeeiiiee e eeiree e 11

5.2.4.1. BOOU eviiiuiiiiiiieiieeite ettt 11
5.2.4.2. FileSYStem......cccccvuiiiiieiiiieeeeiiee ettt vree e e 11
5.2.4.3. Schedulerccoviiiieciiiieceiieeeeceee e 11
B5.2.4.4. QOS ..o e e e et e e s e aae e e s ennes 11
B.2.4.5. TPC ...ttt ettt e et e et e e et e e e aaae e s e 11
5.2.4.6. SEIEAIMNS.....c.euvviiiiieeeeeeeeecccirteeee e e e eeeectrrre e e e e e e e e eeeraaeeeeeens 11
5.2.4.T. NEtWOTK ...ceuvviiiiiiiiiiiieecceeee et 12
5.2.4.8. RT NetWOTrKovvvviiiiiieiiiiiiieeee et 12
5.2.4.9. DiSK 8CCESS....cuuvvriiiiiieeeieiiiiiiiiieeee e e eeeeiirreeee e e e e e eeraraaeeeeas 12
5.2.4.10. USET SPACE....cceeeeerererrerrrrrrererererenrennnnnnnennnnaaeaaeeeaaaeens 12
5.2.4.11. CAN AriVer......uvviiiieeeeeeeiiiiiieeee e e eeeeitrree e e e e e eevvraree s 12
5.2.4.12. Other drivVersccccceeeeeeiiciiiiiieeee et 12
5.2.5. Developing a Real Time taskcccccovviiiiiiiiiiiiicciiiiieeee e 12
5.2.5.1. General consideration............cccccceeeeeecniiirieeeeeeeeeciineeeennn. 12
5.2.5.2. Hard Realtime API............cccccvvviiiiiiee e, 12
5.2.6. Developing ArivVersScccccviieeeeeeeeeiiiiiieeeeeeeeeeceirrrreeeeeeeeeeeaennnns 12
5.2.6.1. Streams AriVErsccccccccieeereiiieereiiieeeeeiieeeeeiieeesseeeeeeseanes 12
5.2.6.2. Streams modules and heads..........ccccoeeviiiiniiiiiiiniiiinninnns 13
5.2.6.3. Driver’s utilities.....cccoocvviiiiiiiieiiiiiieeieiieeceeee e 14
5.2.6.4. Limitations on drivers implementation..............c.cc.eeeeee... 14

L505 T B 0 o1 (o Y- 1o U3 V=PRI 14
5.3.1. Embedded SyStemscccvvvieiieiiieiiiieeeee e 14
5.3.2. HOStS SYSTEIMS ...vvviiiiiiiieeiiiieeeee ettt e eseirrree e e e e e e e ennennes 14

6. Scheduling components contributionccccceeeeeeiiiiiiiiieeeie e 15

6.1. Dynamic memory alloCator.........ccccceeeeeeiiiiiieiireeieeeiiirreee e eeeeeereeeee s 15
0 R TR D 1YY o T) o S UUUPPRRRRNt 15
B.1.2. USAZE ..eeiiiiieeeiiiiiiiieeeeeeeeeeiittteeeeeeeesssetrteeeeeeseeesssnanrrraeaaeeseensnnnnnes 15
6.1.3. Programming interface (API)........ccccceieeiiiiiieciiiieeeieee e 15
6.1.4. EXAMPLE....ccooiiiiriiiiieeeeeeeeciieeeeeee et eeeee e e e e e eeeeenaanes 16

6.2. POSIX SIZNALS ..uuvvriiiiieieeieeeiiiiieeeeeee ettt eeeeeeecrrrreeeeeeeeeeenrareseeeens 16
6.2.1. DESCIIPEION ...eviviiiiiiieeieeeeiiiiiteee e e e e ettt ee e e e e s essiarereeeeesssensnnnnnnns 16
6.2.2. TUSAZE cceeeeeeeeeeeeee e et ——————— 17
6.2.3. Programming interface (API)........ccccovvviiiiiiiiiiiiiiiiiieeee e 17
6.2.4. EXAMPIE...ciiiiciiiiiiieiiiii ettt ettt e e eire e e e e e e e eeate e e s eeaaaeesennes 18

6.3. POSIX THINETS.....uuviiiieeeeeieeeiiiiiteeeeeeeeeeeeiirtreeeeeeeeeeeeesarasseeseeeeeeesnnsssaseeeens 19
6.3.1. DeSCription ...cccceeeeeeeiiiicccecccc e 19
R T B P SN 19
6.3.3. Programming interface (API).........ccccooviiiiiiiiiiiiiiiiieeee e 19
6.3.4. EXAMPIE....ccccciiiiiiiieiii ettt e e e e e e e eaaaaaes 20

6.4, POSIX EraCing......uvvveeieiieeeiiiiiiiiiiieeeeeeeceeiiiireeeeeeeeeeesetaresseeeeaseesssnsssssaseseens 21
6.4.1. DeSCription ...cccceeeeeeeeiee e 21
6.4.2. Main ConcCePts ...ccoeeeeeeeeeeei e 21
6.4.3. DAta tYPES cooceeeviiiiiieiee e e e e et a e e e e e e e e ananaaes 21

6.4.3.1. Trace EVentccccoviiiviiiiiiiiieeeeeeeeee et 22
6.4.3.2. Trace Streamccccceeveeiiiieieiiiiieeeeiiee et 22
6.4.3.3. Processes Involved in the Tracing Activity............cuoee.e... 24
6.4.3.4. Trace Controller Process.........cccccceeveecnvivreeeeeeeeeeenireeeennn. 24
6.4.3.5. The Traced or Target Process.......ccceeeevuvvveveeeeeeeecccnnneenennn. 26
6.4.3.6. Trace Analyser Process.......cccccccceeeeveecciiiveeeeeeeeeeccnneeeenn. 27

OCERA. IST 35102 1)

6.4.4. Additional informationccceeereiiieiiniiiiiiiiiiee e
6.4.5. EXAMPILE....cccciiiiiiiiiiiie ettt ee et e e e e e e rre e e e e e e e e nnanaes
6.5. POSIX mMESSAZE QUEUESuuuvvriiieieeeeeeiiiiiiiiieeeeeeeeeesennrrereeeesesesssssssssseeeees
6.5.1. DESCIIPEION . .euviiiiiiiieeeeeeeciiiiieee e e e e eeeeitrreeee e e e e e essnerrreeeeeesseenssnnnnnns
B.5.2. USAZE .eeiiiiiiieiiiiiiitee e e ettt e e e e s e sttt e e e e e e e s e s stbrrraeaaeeeeensnnnnnes
6.5.3. Programming interface (API)........cccccceeeeiiiiiciiiiiiecieee e
6.6. AdQ SUPPOT ...ttt eeeeeecrree e e e e eeeeeerrraeeeeeeeeeenararareaeeas
6.6.1. DeSCriptionccceeeeeieiiiiiiiecicccceeeeeeeeeeeeeeeeeeeeeeeeeeee e
6.6.2. USAZE ceeieeeeeeeeeeee e ee et ———————
6.6.3. EXAMPLE....ccooiiiiiiiiiiiiiceeeieeeeee e e e e e e e
6.7. POSIX BAITIEIS ...cccoeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e e e e
6.7.1. DESCIIPEION ...eeiiiiiiiiieiieieeiiiitee e ettt e e e e e e e e e e e e e e s e saaenee
6. 7.2, USAZE ceieieeeeeeeeeee e e et ———————
6.7.3. Programming interface (API).........ccccooviiiiiiiiiiiiiciiieeeee e
6.7.4. EXAMPIE....cccoiiiiiiiiiiiei ettt e e e e et e e e e e e e e e eaaaaaes
6.8. Application-Defined Schedulerccccuvviieeiiiiiiiiiiiiieeee e,
6.8.1. DeSCriptioncccceeeeeeeiiciccccc e
6.8.2. USAZE coeieeeeeeeeeee e ———————
6.8.3. Programming interface (API).........cccccoviiiiiiiiiiiiiiiieeeee e
6.8.4. EXAMPIE....cccciiiiiiiiiiiie ettt e ettt e e e e e e e e eaeaaaes
6.9. Application-Defined Schedulerccccuvviiiiieiiiiiiiciieeeee e,
6.9.1. DeSCIiPtionuvviiiiiieeeieiiiiiiiieeee e e e eeeetrreee e e e e e e eeeebrrraeeeeeeeeeesneennns
6.9.2. USAZE ..eeiiiiieeeiiiieieeee e ettt e e e e e e et e e e e e e e e eatbbrra e e e e e e e e aannnaans
6.9.3. Programming interface (API).........cccccoviiiiiiiieiiiiirieeeee s
6.9.4. EXAMPIE....cccceiiiiiiiiiiei et e e e e e e e e e e e e e e e eanneaaes

IV. Soft Real Time Components

7. Accessing Soft Real time functionalities.........c.ccceeeeuviiieiiiiiiiiiiiieee e
7.1. What is an OCERA Soft Realtime applicationccccccceeveurrivieeeennnnnn.
7.2. Underlying Hard Real Time system........ccccccceeeeurririiiiieeiinriiiiieeeeeee e

7.2.1. Overview of functionalities..........cccccceeieeeiiiiiiieciieee e
7.2.2. DEPENAENCIES ...oeeeevrieeeeiiiieeeeciieeeeeieeeeeetteeeeesreeeeeerreeeeeenaeaeeseanns

7.3. Building an application..........cccceeeveciieieeiiieeeceieee e e e e e e
7.3. 1. MaKeIle...coooiiiiiiiiiiee ettt
7.3.2. COMPILETS ..ovvvveieeieiieeeiieeeee et eee et e e e e e e eaarereeaeas
70 T U5 o) - T SRS U PR
7.3.4. Choosing the components..........ccccveeeeeciieieiciiiee e
S R 20 R 5 7o o AN

7.3.4.2. FileSyStem......cccccviiiiieiiiiee ettt

7.3.4.3. Scheduler...........cccooeiiiiiiiiiiieeee e

T7.3.4.4. QOS...oeeeeeeee et ee et ee e ee e ee e s b aeesae e e

T.BAB. TPC ..ottt ettt et e e ta e e s b e e e e

T.3.4.6. SErEAIMNS.....cevviiiiieeeeeeeeeccctttee e e e e eeeeirar e e e e e e e e e eaararaseeeeas

T.3.4.T. NEtWOTK ...

7.3.4.8. RT NetWOrKoovvviiiiiiiiiiiiiieieee et

7.3.4.9. DiSK ACCESS....uuviiriiiiiiieeeiiiiitiiieeeeeeeeeeiirrrreee e e e e e e eeerrarareeaens

7.3.4.10. CAN driver......cuveeeeeeeeeiiiiiiiieeeeeeeeeeecitrre e e e e e e e e eeraraaaee s

7.3.4.11. Other driverscccccceeeeeeiiiiiiieee e eearreee e

7.4, DOWNIOAAINGvvviiiiiiieiiiiiieee ettt e e e e e et e e e e e e e e e e arrarareeeeeeeennes
7.4.1. Embedded SyStemscccceeeeieiiciiiiiiieee e
7.4.2. HOStS SYSEEIMS .oeeiiiiiciiiiiiiieee ettt e e e e eearaeeee s

8. Soft Real time APTooiiiiiiiiieeeee ettt st e e s

V. Using new hardware

9. DIIVEr FIrameEeWOTrKcoooiiiiiiiiiiiiiiieiiee ettt e e et e e e e e e eaaeeeeeeeenas
9.1. control command With CANooumiiiiiiiee e
9.2. control command With CANoouuiiiiiiiee e

OCERA. IST 35102

9.3. real time Ethernet ... 59

9.4. two real time level application...........cccccuiiiieiiiiiiiiiiciieeee e, 59

9.5. Streaming VIAEOcciiiiieeriiiiiiiiieee e e e eceiirteee e e e e e eesarrrreee e e e s e e snanraraaeaeens 59

10. Porting to new hardwWarecccccevviieeeiiiiiiieeece et eerrreee e e e e e 60
10.1. SUPPOTtiNG NEW PIrOCESSOTS ...veeeeeiurreeeeeirrreeeeirreeeesirreeeeasisreeeesssseeessssenes 60
10.1.1. The port of Linux and RTLinux exists..........cccceevvveeeeecrreeeeennnen. 60

10.1.2. The port of Linux exists, but not RTLIinuX.........cccccceeevveeeennneen. 60

10.2. Supporting NewW CardsS...........cooevvrvreieeeeeeeeeiiiiereeeeeeeeeeeecrerreeeeeeeeeeeennns 60
10.2.1. Interrupt ProCeSSINGcccevveeieeiiiiiiieeeeeeeeeeiiiireeeeeeesesseainreeeeeeas 60

10.2.2. PAtCh PrOCESS ..cciiiiiiiieeeeee e 60

VI. Man pages 62
11. Manuel pages for COMPONENntSccoueeiiiiiiiiieeeee e e e eeeeeiirreeeeee e e e e 63
12. Manuel pages RTLINUX.........cccciiiiiiiiiiiie ettt e e e e e eavrraeee e e e e e e 64
ANNEX 1: Component Managesccccvvveeeeeeieieiiiiiiiieeeeeeeeecciiireeeeeeeeeeeeenvvseeeeeeas 65
pthread_getappschedparam.............cccccoiiiiiiiiiiiiiiicec e 66
posix_appsched_actions_addactivatecccevveeeeeiiiiiiiiiiiiiieeeeeceeee, 66
posix_appsched_execute_actionsccccceeeeviiiiiiiiiieeeciciireee e 67
posix_appsched_invoke_scheduler.............cccccvvviiiiiiiiiiiiiciiieeee e, 68
pthread_appschedattr_seteventmaskcccccceeeeiiieiiiiiiiiieeee e, 69
pthread_attr_setappscheduler...........ccccccoooiiiiiiiiiiiiiieeee e, 70
pthread_attr_setappschedulerstate..........ccccovvviiiiiiiiiiiiiciiieee e, 70
pthread_getappschedparam.............ccccceeiiiiiiiiiiiiiie e 71
pthread_setspecific_for.........cooviiiiiiiiii e 72
pthread_sigmaskcoeiiiiiiiiiiiee e 73
3oy 0=3 0 Lo 11 0 VPR 74
e] o 1< 1 o IS PR 74

1700 0 L=y g &3 4 =0 1 7 < SRR 75

L0 00 0) s () L] 7 < PP 76

L0 0 00) L1711 1 4 o L= TP 77
Make JTNUX _taSK_ CDS_SEIVET ...uuiiiieiiiieeeeeeeeeeeee ettt e et eeaeeeeaans 78
pthread_attr_setinitbudget_np.......ccccccooeeiiiiiiiiiiieieee e 79
pthread_Initehs_ NPcicciiiiiiiiiceeciee e e rae e e 80
pthread_setinitbudget_NP.......ccceeeieeiiiiiieiieec e 80
OCERA. IST 35102 vl

List of Tables

1. Project Co-0Tdinatorceeieeiiiiiiiiiieieeeeeeeeeiiirreeeeeeeeeeeeeitareeeeeeeeeeeeetsarareeeseeeeeeeennrsseeees i
2. Participant LStccciiiiiiiiiiiiiieieee ettt e e e e e s s st ra e e e e e e e s ennanns i

Vil

Document presentation

Table 1. Project Co-ordinator

Organisation:

IUPVLC

Responsible person:

|Alfons Crespo

Address:

Camino Vera, 14. CP: 46022, Valencia, Spain

Phone:

+34 9877576

Fax:

+34 9877579

E-mail:

alfons@disca.upv.es

Table 2. Participant List

Role 1d. Name Acronym |Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore S. Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA CEA FR
CR 5 UNICONTROLS ucC CZ
CR 6 MNIS MNIS FR
CR 7 VISUAL TOOLS S.A. VT E

I. Overview
Table of Contents

1. Overview

2. Introduction

State of this part

This part is under development and must be considered as a draft.
Some chapter are left blank.

Chapter 1. Overview

This is the OCERA Programmer’s Guide. We will try through this document to help you
to develop hard or soft real time applications.

First we will make a brief presentation of the targets you may want to develop using
OCERA components for. Like Host Systems or and Embedded System.

We will then focus on the Development System with Compiler, Cross compiling, De-
bugger, Analyzers, and Supervision tools

After this is done, we can present the Hard real time API, the Soft real time API,
the way to develop drivers like streams drivers and modules or more basics drivers.

The last chapter will be an overview of the ways of porting to new hardware.

B This document is subject to change along the project, to reflect the up-to-date
project.

Chapter 2. Introduction

2.1. Ocera Overview

2.1.1. historical choices

2.1.2. License
2.1.2.1. Linux Licensing
2.1.2.2. RTLinux Licensing

2.1.2.3. Ocera Licensing

2.1.3. Hard versus Soft real time

image 1
Memory manager \\

Virtwal F5 Scheduler IPC
4— N A < r—\
\\
10 System Block 1O

Hetwrork

Streams

IRQ Handling

[RT FIFO || RT Streaps |

| RT Handler
RT Scheduler - :
IRQ Handling

2.1.4. components

Chapter 2. Introduction

2.1.4.1. Scheduling

image 2

r egend: | !
| Programmatic Scheduler Interface | Legend |
+ OIS Services | | |

| Mon- Kemel
Lawer I
Process Scheduler | |
Memory ¥ ¥ : ! I
Manager |u | : | System Eallﬁ:nterface | IPC : Kernel Sub.| |
l ¢ System | |
b I I
b Architecture Independent I | I
E Scheduler : I Madul |

odule
T : 2 't l Hetwork | | | |
- 5 . 4 X I I
File Systemja— Architecture Specific Scheduling Paliey | Wultinl |
i Schedulers | M;dl.ll'lje: I
Y | I
' |
Kernel| | — Depends oR— |
¥ ¥ I Data Floe—ge |
| CPU Hardware | | ..cortral Flowes |
e — =

Image 3 ci dessous

2.1.4.2. Fault Tolerance
2.1.4.3. Quality Of Service

2.1.4.4. Communication

2.2. Internals

For a detailed architecture presentation, you may also refer to the OCERA Architec-
ture document and to the. OCERA User’s Guide.

2.2.1. what we will see in this chapter
2.2.2. Booting

2.2.3. Taking control

RTLinux takes control over the Linux kernel as the rtlinux.o module is loaded. The
__init routine of the rtlinux.o module calls the "self explained" function arch_take_over.
A light version of this function is shown here under. In particular we do not detail SMP
architecture initialization or #define preprocessing here to simplify the presentation. Of
course, you can browse the source to see the details of the routine.

arch_takeover

rtl_hard_cli
rtl_global.flags = g_initialized
rtl_local.flags = I_ienable | I_idle

rtl_reschedule_handlers = default_reschedule_handler
patch_kernel

rtl_hard_sti

rtl_soft_sti

OCERA. IST 35102 3

Chapter 2. Introduction

As one can see, after clearing interrupts and doing some initialization, the routine ini-
tialize the reschedule_handler and then calls the once again "self explained" function
patch kernel routine.

patch_kernel
xdo_IRQ = pfunc[pf_do_IRQ].address (pfunc is a table of functions)
local_ret_from_intr = pfunc[pf_ret_from_intr].address
p=find_patch(pfunc[pf_do_IRQ].address
save_jump(p,pf_do_IRQ)
patch_jump(p,rtl_intercept)
pfunc[pf_rtl_emulate_iret] = rtl_soft_sti
IF LOCAL_APIC
save_jump(LOCALS_PATCHS)
zap_ack_apic
init_local_code
pre_patch_control=irg_control
irg_control.do_save_flags = rtl_soft_save_flags
irq_control.do_restore_flags = rtl_soft_restore_flags
...etc replace cli/sti local_irq_save,restore,disable and enable

for i < NB_IRQS
save_linux_irq_desc = h.handler
h.handler = rtl_generic_type

This functions setup the interrupt routine local_ret_from_intr to the address of
rtl_intercept it then patches the APIC subroutines if a APIC exists by calling
zap_ack_apic and init_local_code and initialize the irq_control which contains the
address of the routines that will replace the standard Linux routines:

» do_save_flags

» do_restore_flags
e cli

e sti
 local_irq_save

* local_irq_restore
 local_irq_enable
 local_irq_disable

2.2.4. Interrupt handling

The interrupts hare processed in 4 levels. These three levels are called whenever an
interrupt is called this is:

e rtl_intercept the real interrupt routine called when the interrupt arrives and respon-
sible for the APIC handling and interrupt acknowledge.

 dispatch_rtl_handler dispatch the interrupts to the Real Time handlers.
 dispatch_linux_irq dispatch the interrupts to the Linux interrupt handlers.

The main interrupt routine is detailed here under:
rtl_intercept
rtl_spin_lock(rtl_global.har_irg_controller_lock)
if rtl_irg_controller_get_irq
rtl_irq_controller_ack
if G_TEST_RTH (test if IRQ is for RTLinux)
rtl_spin_unlock
dispatch_rtl_handler
rtl_spin_lock
else
G_PEND (set IRQ as pending)
G_SET(g_pend_since_sti) (set flags IRQ pending)
if RUN_LINUX_HANDLER (irq enabled and RT not busy)
G_UNPENd
rtl_soft_cli
G_DISABLE
rtl_spin_unlock
rtl_hard_sti
dispatch_linux_irq

OCERA. IST 35102 4

Chapter 2. Introduction

RETURN_FROM_INTERRUPT_LINUX (simple return)
rtl_spin_unlock
RETURN_FROM_INTERRUPT (pop all and IRET)

The fourth level is the soft_irq level for linux. This is called whenever the RTLinux
scheduler has finished to dispatch the real time tasks. See the details on the real time

scheduling in the next section.
global flags:

g_rtl_started

g_pend_since_sti

g_initializing

g_initialized

Local flags:

|_busy 1 if RTLinux is scheduling a RT task

|_ienable 1 if soft sti emulation (cli/sti)

|_pend_since_sti 1 if irg pending since last sti
|_psc_active old flag for memory protection PSC module.

Macro:

G_PEND,G_UNPEND,G_ISPEND: 1 if global irq pending
G_ENABLE,G_DISABLE,G_ISENABLE: 1 if irq is globally soft enabled
G_SET_RTH,G_CLEAR_RTH,G_TEST_RTH: 1 if RT Handler set for irq
G_SET,G_CLEAR,G_TEST: 1 if global flag set

L_PEND,L_UNPEND,L_ISPEND: local version
L_SET,L_CLEAR,_L_TEST: local version
L_SET_RTH,L_CLEAR_RTH,L_TEST_RTH: local version

Structures:

rtl_global_handlers[irq] : table for RT Handlers

set: rtl_request_global_irq

clear: rtl_free_global_irq

used: rtl_intercept

activate: G_PEND(irq) and G_SET(g_pend_since_sti)

irgaction *

set: rtl_get_soft_irq (handler)
-> request_irq

-> setup_irq

activate: rtl_global_pend_irqg: G_PEND and G_SET(g_pend_since_sti)

LINUX:

do_IRQ

> handle_IRQ_event

> action->handler()

-> desc->handler->end()
> do_softirg()

The way RT_FIFO do it:

1) RTL2LIN:

a) setup a linux handler by calling rtl_get_soft_irq

b) set irq pending with: rtl_global_pend_irq

c) wait to be called by rtl_intercept....

d) call wakeup_interruptible from a safe place

2) LIN2RTL

a) setup a handler with RTF_HANDLER (call in fifo struct.)
to be called on synchronization with linux

on read/write

b) setup a RT handler with RT_RTF_HANDLER to be called
on synchronization with RTLinux tasks on put/get

OCERA. IST 35102 5

Chapter 2. Introduction

2.2.5. Scheduling

Every time a call is done to irq_control.do_sti (which replace the sti call), the
function do_soft_sti is called this function calls rtl_process_pending before to call the
rtl_soft_sti_no_emulation function to setup the local ienable.
rtl_process_pending
rtl_soft_cli
do
while get_Ipended_irq
soft_dispatch_local
while get_gpending_irq
soft_dispatch_global
while G_TEST(g_pend_since_sti | |_pend_since_sti
if softirq_active(cpu_id)
do_softirq [*kernel/softirg*/G

2.2.6. Quality of service
2.2.7. Fault tolerance

2.2.8. SMP support

OCERA. IST 35102 6

II. Development tools
Table of Contents

3. Hardware

4. Development tools

State of this part

This part is under development and must be considered as a draft.
Some chapter are left blank.

Chapter 3. Hardware

3.1. Supported Hardware

3.1.1. CPU
3.1.1.1. ix86
3.1.1.2. PowerPC

3.1.1.3. StrongARM
3.1.2. System BUS

3.1.3. micro controllers
3.2. Hard Real Time supported hardware

3.3. Soft Real Time supported hardware
3.3.1. Standard Hardware

3.3.2. Incompatibilities

Chapter 4. Development tools

4.1. Development environment

4.2. Compilers
4.2.1. Native Compilers

4.2.2. Cross Compilers

4.3. Libraries
4.4. Debugger
4.5. Analyzers

4.6. Supervision tools
4.6.1. The /proc Filesystem entries
4.6.2. Setting POSIX traces

4.6.3. Integrated Development environment

III. Hard Real Time
Components

Table of Contents

5. Accessing Hard Real time functionalities 11

6. Scheduling components contribution 15

State of this part

This part is under development and must be considered as a draft.
Some chapter are left blank.

A lot of the work, all the presentation of the scheduling components, has be done by
Patricia Balbastre from UPV.

Chapter 5. Accessing Hard Real time
functionalities

This chapter is intended for people who need to integrate a Hard Real Time application
in the OCERA framework.

Remember that OCERA propose a Framework for embedded Real Time applications.
We will see some more detailed aspects of how you can use this framework, but you will
need to refer to the Programmer’s guide if you need details on each functions.

5.1. What is an OCERA Hard Realtime application

Minmmal Linux
a» -

RT-Linux | Ocera

5.2. Building an application
5.2.1. Makefile

5.2.2. Compilers

5.2.3. Libraries

5.2.4. Choosing the components
5.2.4.1. Boot
5.2.4.2. Filesystem
5.2.4.3. Scheduler
5.2.4.4. QOS

5.2.4.5. IPC

11

Chapter 5. Accessing Hard Real time functionalities

5.2.4.6. Streams
5.2.4.7. Network
5.2.4.8. RT Network
5.2.4.9. Disk access
5.2.4.10. User space
5.2.4.11. CAN driver

5.2.4.12. Other drivers

5.2.5. Developing a Real Time task

5.2.5.1. General consideration

An important thing by developing Hard real time task is that you may never access data
structures from another realtime task without being sure that the other task protect its
data structures against possible context switch.

This is particularly true for Linux, which is a task from the point of view of RTLinux.
RTLinux is a dirty patch that work with all Linux drivers and modules and as this does
not protect every Linux data structures from real time context switch. To overcome this,
you will have to split your application in two part, one in the RTLinux context, making
a soft IRQ to start the second one in the Linux context.

5.2.5.2. Hard Realtime API

You may want to develop a Real Time Task to handle Hard Real Time Events. Typically,
events needing an answer better than 1ms need to be handle in a RTLinux thread or
even in a RTLinux driver. We will first see the primitives one can use by developing a

RTLinux thread.

» pthread_attr_init

» pthread_attr_setcpu_np

» pthread_attr_setschedparam
» pthread_create

5.2.6. Developing drivers

You can develop drivers as non standard drivers or as standard streams drivers.

The streams environment provides a framework to develop drivers and the interfaces to
hard real time tasks or to soft real time tasks within Linux Context.

One other important thing with drivers is to define what kind of drivers we develop. In
this document we will focus on RTLinux drivers, as oposition to Linux drivers.

The main difference between the two kind of drivers is that we cannot use the same
primitive to :

» reserve an interrupt vector

» wakeup associated threads or tasks

» protect our critical code or structures

We also have different duties relative to performance and quality of service.

OCERA. IST 35102 12

Chapter 5. Accessing Hard Real time functionalities

5.2.6.1. Streams drivers

As said above, we are working within Real Time Linux context. So we must use the
following primitives:

rtl_request_irq
rtl_free_irq
rtl_get_soft_irq
rtl_free_soft_irq
rtl_hard_enable_irq
rtl_global_pend_irq
rtl_critical
rtl_end_critical

5.2.6.2. Streams modules and heads
List of primitive to use:

ocs_module_init

This call is needed to obtain a stream structure pointer pointing to a new initialized
stream.

ocs_module_cleanup
This call is needed to free a stream structure .

ocs_bind
This call is needed to bind two streams structures together. This is called by the push
system call for example.

ocs_unbind

This call is needed to unbind two streams structures together. This is called by the
pop system call for example.

ocs_free_mbuf
This call is needed to free a message.

ocs_free_dbuf
This call is needed to free a message.

ocs_get_mbuf
This call is needed to free a message.

ocs_get_dbuf
This call is needed to free a message.

ocs_get_q
This call is needed to free a message.

ocs_put_q
This call is needed to free a message.

ocs_buf _count
This call is needed to free a message.

OCERA. IST 35102 13

Chapter 5. Accessing Hard Real time functionalities

5.2.6.3. Driver’s utilities

5.2.6.4. Limitations on drivers implementation

5.3. Downloading
5.3.1. Embedded systems

5.3.2. Hosts systems

OCERA. IST 35102 14

Chapter 6. Scheduling components
contribution

6.1. Dynamic memory allocator

6.1.1. Description

This component provides standard dynamic memory allocation, malloc and free func-
tions, with real-time performance.

6.1.2. Usage

The component is designed to work in three different targets: 1) as a Linux user level
library, 2) in the Linux kernel, and 3) in RTLinux.

[*|gqconf - [=]]
Eile Option Help
|o/@E] | Il E]
Option Option =
- Generic Kernel+O§S setup 1
Linux Kernel Configuration EDynamic Memory Management support in RT-Linux

-RT-Linux Configuration =-EPOSIX Signals in RT-Linux
—-OCERA Components Gonfigur POSIX Timers in RT-Linux

|Application defined scheduler in RT-Linux
POSIX Messages Queues in RT-Linux —
4) Maximum number of open message queue desc
2) Maximum number of message priorities

g---ﬁesuume Reservation
é---Fau\t-ToIerance
“-Networking

-08 Tree Configuration 2) Maximum number of message queues

--8nar 'N Pick Configuration 4 P ' . | Sathanahat _’ILI

Application defined scheduler in RT-Linux
{OC_APPSCHED)

POSIX-Compatible Application-defined scheduling is an
application program interface {API) that enables
applications to use application-defined scheduling
algorithms in a way compatible with the scheduling model
defined in POSIX. Several application-defined schedulers,
implemented as special user threads, can coexist in the
1| | || system in a predictable way. |
I I

The target dependent code is surrounded by conditional directives that automatically
compiles the final object file to the correct target depending on the set of defined macros:
RTL,_KERNEL_, etc.

When the bigphysarea patch is available in the kernel, the allocator will use this facility
by default. Therefore the maximum memory pool will be limited by the memory initially
(at boot time with the kernel parameter "mem") allocated by bigphysarea.

When the allocator is compiled as a kernel module (to by used from the Linux kernel or
by RTLinux applications), the name of the module is rtl_malloc.o; it can be loaded using
the rtlinux script:

rtlinux start
Scheme: (-) not loaded, (+) loaded
(+) mbuff
(+) rtl
(+) rtl_fifo
(+) rtl_malloc
(+) rtl_posixio
(+) rtl_sched
(+) rtl_time

The module accepts the parameter "max_size" which is the size of the initial memory
pool in Kbytes. If the parameter is not passed to the module then the default initial

memory pool size is 1Mbyte. In order to use more than 1Mb you have to manually load
the module.

15

Chapter 6. Scheduling components contribution

6.1.3. Programming interface (API)

In order to avoid naming conflicts, the API provided by DIDMA is non POSIX, it looks
like the API given by the ANSI "C" standard adding a rt_ prefix.

void *rt_malloc(size_t *size);

void rt_free(void *ptr);

void *rt_calloc(size_t nsize, size_t elem_size);

void *rt_realloc(void *p, size_t new_len);

And it also provides several macros which are equal than ANSI-C functions interface for dynamic memory allocation:
void *malloc(size_t *size);

void free(void *ptr);

void *calloc(size_t nsize, size_t elem_size);

void *realloc(void *p, size_t new_len);

6.1.4. Example

#include \<rtl_malloc.h\>
#include \<rtl.h\>
#include \<pthread.h\>

pthread_t thread;

void * start_routine(void *arg){
char *string;
char hello_world [] = "Hello world";

rtl_printf("Calling malloc... ");
/I DIDMA malloc
string = (char *) malloc (sizeof (char) * (strlen (hello_world) + 1));

if (string == NULL) {
rtl_printf("WRONG\n");
return (void *) O;
}
rtl_printf("Malloc OK\n");
strcpy (string, hello_world);
rtl_printf ("HELLO_WORLD: %s\n", hello_world);
rtl_printf ("HELLO_WORLD copy: %s\n", string);
rtl_printf("Calling free... ");

/I DIDMA free
free (string);

rtl_printf("'DONE\n");
return (void *)0;

}

int init_module(void){
return pthread_create (&thread, NULL, start_routine, 0);

}

void cleanup_module(void){
pthread_delete_np (thread);
}

6.2. POSIX Signals

6.2.1. Description

This component extends the signaling subsystem of RTLinux to provide user-defined
signals and the user signal handlers.

Signals are an integral part of multitasking in the UNIX/POSIX environment. Signals
are used for many purposes, including exception handling (bad pointer accesses, divide

OCERA. IST 35102 16

Chapter 6. Scheduling components contribution

by zero, etc.), process notification of asynchronous event occurrence (timer expiration,
I/0O completion, etc.), emulation of multitasking and interprocess communication.

A POSIX signal is the software equivalent of an interrupt or exception occurrence. When
a task receives a signal, it means that something has happened which requires the task
s attention. Because a thread can send a signal to another thread, signals can be used
for interprocess communication. Signals are not always the best interprocess communi-
cation mechanism; they are limited and can asynchronously interrupt a thread in ways
that require clumsy coding to deal with. Signals are mostly used for other purposes,
like the timer expiration and asynchronous I/O completion. There are legitimate rea-
sons for using signals to communicate between processes. First, signals are frequently
used in UNIX systems. Another reason is that signals offer an advantage that other
communication mechanisms do no support: signals are asynchronous. That is, a signal
can be delivered to a thread while the thread is doing something else. The advantages
of asynchrony is the immediacy of the notification and the concurrence.

This facility provides only regular UNIX(r) signaling infrastructure. Although realtime
POSIX extensions defines an advanced and powerful signal system, its complexity make
the implementation more complex and less predictable (since the standard requires that
signals can not lost and also delivered in the same order it were generated, then sig-
nals can not be internally implemented as bitmaps but lit must be handled as message
queues) .

6.2.2. Usage

This facility is optional and has to be selected in the configuration tool. This component
is integrated into the RTLinux scheduler module. The functionality is available once the
rtl_sched.o module is loaded.

[*|gqconf - [=]]
Eile Option Help
|o/@E] | Il E]
Option Option =
- Generic Kernel+O§S setup 1
Linux Kernel Configuration EDynamic Memory Management support in RT-Linux
-RT-Linux Configuration =-EPOSIX Signals in RT-Linux

—-OCERA Components Gonfigur EPOSIX Timers in RT-Linux

[ElApplication defined seheduler in RT-Linux
=-EIPOSIX Messages Queues in RT-Linux —

r-Fault-Tolerance -(64) Maximum number of open message queue desc
“-Networking i-(32) Maximum number of message priorities
-08 Tree Configuration (32) Maximum number of message queues .
--Snar 'N Pick Configuration 4 itace s ! : | Bothennbefand _’I_I

Application defined scheduler in RT-Linux
{OC_APPSCHED)

POSIX-Compatible Application-defined scheduling is an
application program interface {API) that enables

applications to use application-defined scheduling

algorithms in a way compatible with the scheduling model
defined in POSIX. Several application-defined schedulers,
implemented as special user threads, can coexist in the

1| | || system in a predictable way. |

6.2.3. Programming interface (API)

struct rtl_sigaction {
union {
void (*_sa_handler)(int);
void (*_sa_sigaction)(int, struct rtl_siginfo *, void *);
oy
int sa_flags;
unsigned long sa_focus;
rtl_sigset_t sa_mask;
h
/* Macros to manupulate POSIX signal sets.*/
rtl_sigaddset(sigset_t *set, sig);
rtl_sigdelset(sigset_t *set, sig);
rtl_sigismember(sigset_t *set, sig);

OCERA. IST 35102 17

Chapter 6. Scheduling components contribution

rtl_sigemptyset(sigset_t *set);

rtl_sigfillset(sigset_t *set);

/* Programing actions for signals ocurrences*/

int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);
/* Set the process s signal blockage mask */

int sigprocmask(int how, const rtl_sigset_t *set, rtl_sigset_t *oset);

int pthread_sigmask(int how, const rtl_sigset_t *set, rtl_sigset_t *oset);
/* Wait for a signal to arrive, setting the given mask */

int sigsuspend(const rtl_sigset_t *sigmask); int sigpending(rtl_sigset_t *set);
/* Send a signall to a thread */

int pthread_kill(pthread_t thread, int sig);

This is the standar POSIX API and it is used as the standard defines. Documentation
about how signals are programamed can be found in any book about UNIX program-

ming.

6.2.4. Example

/*
* POSIX.1 Signals test program

*

*

#include <rtl.h>
#include <rtl_sched.h>

#define MAX_TASKS 2
#define MY_SIGNAL RTL_SIGUSR2
static pthread_t thread[MAX_TASKS];

static void signal_handler(int sig){
rtl_printf(" >\n");
rtl_printf("Hello world! Signal handler called for signal:%d\n",sig);

}

static void * start_routine(void *arg) {
int i=0,err=0,signal;

struct sched_param p;

struct sigaction sa;

rtl_sigset_t set;

p.sched_priority = 1;
pthread_setschedparam (pthread_self(), SCHED_FIFO, &p);

signal=MY_SIGNAL+(unsigned) arg;
rtl_sigfillset(&set);

rtl_sigdelset(&set,signal);
pthread_sigmask(SIG_SETMASK,&set,NULL);

sa.sa_handler=signal_handler;
sa.sa_mask=0;
sa.sa_flags=0;
sa.sa_focus=0;

if ((err=sigaction(signal,&sa,NULL))<0)
rtl_printf("sigaction(%d,&sa,NULL) FAILING, err:%d, errno:%d.\n",
signal,err,errno);

pthread_make_periodic_np (pthread_self(), gethrtime(),
250000000LL+250000000LL * (unsigned) arg);

rtl_printf("I'm here; my arg is %x iter:%d\n",(unsigned) arg,i++);
rtl_printf("When i mod 5 -> pthread_kill(pthread_self(),%d)\n",signal);

while (i<=10) {
pthread_wait_np ();
if (1(i%5)) pthread_kill(pthread_self(),signal);
rtl_printf("I'm here; my arg is %x iter:%d\n",(unsigned) arg,i++);

}

rtl_printf("\n\n\n THREAD %d about to end\n\n\n",(unsigned) arg);
return O;

OCERA. IST 35102 18

Chapter 6. Scheduling components contribution

}

int init_module(void) {
int i,err=0;
for (i=0;i<MAX_TASKS;i++)
err=pthread_create (&thread[i], NULL, start_routine,(void *) i);
return err;

}

void cleanup_module(void) {
int i;
for (i=0;i<MAX_TASKS;i++)
pthread_delete_np (thread[i]);

6.3. POSIX Timers

6.3.1. Description
POSIX timers provides mechanisms to notify a thread when the time (measured by a
particular clock) has reached a specified value, or when a specified amount of time has
passed.
This component provides the functionality to work with several timers per thread. Timer
expiration is notified to the thread by mean of a POSIX signal.

6.3.2. Usage

Since a timer expiration causes a signal to be delivered, this facility depends on signal
support. To use POSIX timers first you have to select POSIX signals and then select
POSIX signals: OCERA Components Configuration -> Scheduling.

[qeont [[m)
File Option Help
[0z @[| Il E]
Option Option 12
Generic Kemel+0S setup)
4-Linux Kernel Configuration @Dynamic Memory Management support In RT-Linux
#-RT-Linux Configuration =-[MPOSIX Signals in RT-Linux
~~OCERA Components Configurati [EPOSIX Timers in AT-Linux
Scheduling OPOSIX Messages Queues in RT-Linux _
-Ri Reservation BIRT-Linux porting of ADA Run-Time
Fault-Tolerance [APOSIX Barriers in RT-Linux
Networking Dannlicatinn dsfinad erharilar in BT.1 i _H
4 | >
#-08 Tree C
Snar N Pick Configuration POSIX Timers in RT-Linux (QC_PTIMERS) e
POSIX timers allows a mechanism that can notify a thread
when the time as measured by a particular clock has reached or
passed a specified value, or when a specified amount of time
has passed. Facilties supported by POSIX timers that are
desirable for real-time operating systems
- Support for additional clocks,
- Allowance for greater time resalution (modern timers are _
capable of nanosecend resolution; the hardware should
support it
| | || - Ability to use POSIX Signals to indicate timer expiration. =l

This facility is included into the standard scheduler module (rtl_sched.o). Therefore,
once the scheduler compiled with timers support is generated and the module is loaded,
the user can use the new functions.

6.3.3. Programming interface (API)

Data structure used to specify which action will be performed upon timer expiration:

struct sigevent {

int sigev_notify; /* notification mechanism */
int sigev_signo; /* signal number */
union sigval sigev_value; /* signal data value */

}

OCERA. IST 35102 19

Chapter 6. Scheduling components contribution

Currently, only two values are defined for sigev_notify: SIGEV_SIGNAL means to send
the signal described by the remainder of the struct sigevent; and SIVEV_NONE which
means to send no notification at all upon timer expiration.

Next are the system calls to create and delete timers and for arming and consulting the
state of an armed timer.

/* Creating a timer. Timer created is returned in timer_id location */
int timer_create(clockid_t clockid,

struct sigevent *restrict evp,

timer_t *restrict timer_id);

/* Removing timer referenced by timer_id */

int timer_delete(timer_t *timer_id);

/* Setting timer referenced by location timer_id */

int timer_settime(timer_t timer_id, int flags,

const struct itimerspec *new_setting,

struct itimerspec *old_setting);

/* Getting time remainning until next expiration*/

int timer_gettime(timer_t timer_id, struct itimerspec *expires);
int timer_getoverrun(timer_t timer_id);

The API is fully compliant with POSIX standard. Supported clocks are
CLOCK_MONOTONIC and CLOCK_REALTIME. A complete description of POSIX
timers and usage examples can be found in chapter five of the Bill O. Gallmeister book:
"POSIX.4 Programming fro the Real World".

6.3.4. Example

#include <rtl.h>

#include <pthread.h>

#include <time.h>

#include <signal.h>

#define MY_SIGNAL RTL_SIGUSR1
pthread_t thread;

timer_t timer;

#define ONESEC 1000000000LL
#define MILISECS_PER_SEC 1000
hrtime_t start_time;

void timer_intr(int sig){
rtl_printf("Timer handler called for signal:%d\n",sig);
pthread_wakeup_np(pthread_self());

}

void *start_routine(void *arg){
struct sched_param p;
struct itimerspec new_setting,old_setting,current_timer_specs;
struct sigaction sa;
long long period= 120LL*ONESEC;
hrtime_t now;
int signal=MY_SIGNAL;

sa.sa_handler=timer_intr;
sa.sa_mask=0;

sa.sa_flags=0;
new_setting.it_interval.tv_sec= 1;
new_setting.it_interval.tv_nsec= 0;

new_setting.it_value.tv_sec=1;
new_setting.it_value.tv_nsec=start_time;

/* Install the signal handler */
sigaction(signal, &sa, NULL))

/* Arming the timer */
timer_settime(timer[param],0,&new_setting,&old_setting);

/* The period of this thread is 2 minutes!!! */

/* But till will be awaked by the TIMER every second */
pthread_make_periodic_np (pthread_self(), gethrtime(), period);

OCERA. IST 35102 20

Chapter 6. Scheduling components contribution

now=gethrtime();

while (1) {
last_expiration=now;
now=gethrtime();
timer_gettime(timer[param],¤t_timer_specs);
rtl_printf("time passed since last expiration:%d (in milis)\n",

(int)(now-last_expiration)/MILISECS_PER_SEC);

pthread_wait_np();

int init_module(void) {
sigevent_t signal,

/* Create the TIMER */
signal.sigev_notify=SIGEV_SIGNAL;
signal.sigev_signo=MY_SIGNAL;
timer_create(CLOCK_REALTIME,&signal,&(timer[i]));

start_time=ONEMILISEC;

/I Threads creation.
pthread_create (&thread), NULL, start_routine, (void *) 0);
return 0;

}

void cleanup_module(void) {
pthread_delete_np (thread);
timer_delete(timer);

}

6.4. POSIX tracing

6.4.1. Description

As realtime applications become bigger and more complex, the availability of event trac-
ing mechanisms becomes more important in order to perform debugging and runtime
monitoring. Recently, IEEE has incorporated tracing to the facilities defined by the
POSIX® standard. The result is called the POSIX Trace standard. Tracing can be de-
fined as the combination of two activities: the generation of tracing information by a run-
ning process, and the collection of this information in order to be analysed. The tracing
facility plays an important role in the OCERA architecture. Besides its primary use as
a debugging and tuning tool, the tracing component jointly with the application-defined
scheduler component constitute the key tools for building fault-tolerance mechanisms.
The POSIX trace standard was firstly approved as the amendment 1003.1q of the POSIX
1003.1-1996 standard, and then integrated in the most recent version of POSIX, called
1003.1-2001. Considering that the Trace standard is quite recent, the reader may not be
familiar with its concepts and terminology. The following sections provide an introduc-
tion to the concepts and the structure of the tracing system.

6.4.2. Main concepts

The POSIX Trace standard is founded on two main data types (trace event and trace
stream) and is also based on three different roles which are played during the tracing
activity: the trace controller process (the process who sets the tracing system up), the
traced or target process (the process which is actually being traced), and the trace anal-
yser process (the process who retrieves the tracing information in order to analyse it).
All these concepts are detailed in the following sections.

OCERA. IST 35102 21

Chapter 6. Scheduling components contribution

6.4.3. Data types

6.4.3.1. Trace Event

When a program needs to be traced, it has to generate some information each time it
reaches "a significant step" (certain instruction in the program s source code). In the
POSIX Trace standard terminology, this step is called a trace point, and the tracing in-
formation which is generated at that point is called a trace event. A program containing
one or more of this trace points is named instrumented application.

A trace event can be thus defined as a data object representing an action which is ex-
ecuted by either a running process or by the operating system. In this sense, there are
two classes of trace events: user trace events, which are explicitly generated by an in-
strumented application, and system trace events, which are generated by the operating
system1.

Any trace event, being either system or user, belongs to a certain trace event type (an in-
ternal identifier, of type trace_event_id_t) and it is associated with a trace event name (a
human-readable string). For system events, the definition of event types and the map-
ping between these types and their corresponding names is hard-coded in the imple-
mentation of the trace system. Therefore, this event types are common for all the in-
strumented applications and never change (they are always traced). The trace standard
predefines some event types, which are related to the trace system itself, and permits the
operating system designer to add some others which may be interesting to that system.
The definition of user event types is very different. When an instrumented application
wants to generate trace event of a particular type, it has first to create this type. This is
done by invoking a particular function (posix_trace_open()) that, given a new trace event
name, returns a new trace event type; then, events of this type can be generated from
that moment on. If the event name was already registered for that application, then the
previously associated identifier is returned. The mapping between user event types and
their names is private to each instrumented program and lasts while the program is
running.

The generation of a trace event is done internally by the trace system for a system
event and explicitly (by the application when invoking posix_trace_event()) for a user
trace event. In both cases, the standard defines that the trace system has to store some
information for each trace event being generated, including, at least, the following:

a. the trace event type identifier,

b. a timestamp,

c. the process identifier of the traced process (if the event is process-dependent),

d. the thread identifier (of the thread related to the event), if the event is process-
dependent and the O.S. supports threads,

e. the program address at which the event was generated,

f. any extra data that the system or the instrumented application wants to associate
with the event, along with the data size2.

6.4.3.2. Trace Stream

When the system or an application trace an event, all the information related to it has
to be stored somewhere before it can be retrieved, in order to be analyzed. This place
is a trace stream. Formally speaking, a trace stream is defined as a non-persistent,
internal (opaque) data object containing a sequence of trace events plus some internal
information to interpret those trace events. The standard does not define a stream as a
persisten object and thus it is assumed to be volatile, that is, to reside in main memory.
The standard establishes that, before any event can be stored for a process, a trace
stream has to be explicitly created to trace that particular process (the process pid is
one of the arguments of the stream creation function). In the most general case, the
relationship between streams and processes is many to many. On the one hand, many

OCERA. IST 35102 22

Chapter 6. Scheduling components contribution

processes can be traced in a single stream; in particular, this happens if the target pro-
cess forks after a stream has been created for the (parent) process. On the other hand,
the standard permits that many streams are created to trace the same process; if so,
each event generated by the process (or by the operating system) is registered in all
these streams.

Streams also support filtering. The application can define and apply a filter to a trace
stream. Basically, the filter establishes which event types the stream is accepting (and
hence storing) and which are not. Therefore, trace events corresponding to types which
are filtered out from a certain stream will not be stored in the stream. Each stream
in the system(even if associated with the same process) can potentially be applied a
different filter. This filter can be applied, removed or changed at any time.

The standard defines two classes of trace streams: active and pre-recorded, which are
described below.

a. Active trace stream. This is a stream that has been created for tracing events and
has not yet been shut down. This means that it is now accepting events to store. An
active trace stream can be of two different types, depending on whether it has been
created with or without a log. In a trace stream with log, the stream is created along
with a log.

Trace Controller
Process

Y}mmi

Trace Stream 1‘

Trace Analyzer
Process

retrieve
events

trace
events 7

Target or Traced
Process

Alog is a persistent object (that is, a file) in which the events stored in the stream are
saved each time the stream is flushed by the trace system. The trace controller pro-
cess can create such a stream by calling the function posix_trace_create_withlog().
Thus, events traced from the target process are stored in the stream until it is
flushed, either automatically by the trace system or when the trace controller pro-
cess invokes the posix_trace_flush() function. In either case, the flushing then frees
the resources previously occupied by the events just written to the log, making these
resources available for new events to be stored. This is shown in Figure 2-(a). In
streams with a log, events are never directly retrieved from the stream but from the
log (see Pre-recorded trace stream below), once the stream has been shut down. That
is, the log is not available for retrieving the events until the tracing of events is over.
In a trace stream without log (created by calling posix_trace_create()), trace events
are never written to any persistent media, but instead they remain in the stream
(in memory) until they are explicitly retrieved. Thus, the stream is accessed con-
currently for storing (target process) and retrieving (trace analyser process) events.
These accesses can be done only while the stream is active (that is, before it is shut
down) since, after that, all the stream resources are freed. Therefore, an active trace
stream without a log is used for on-line analysis of events, as shown in Figure 1.

OCERA. IST 35102 23

Chapter 6. Scheduling components contribution

The standard establishes that the trace analyzer process retrieves the events one by
one, with the trace system always reporting the oldest stored event first. When this
oldest event has been reported, the resources that it was using in the stream have
to be freed and then become available for new events to be traced.

Trace Controller
Process

Trace Stream ?

retrieve
evenls

Target or Traced

Trace Analyzer
Process

Process

If the rate at which events are being traced is higher than the rate at which the trace
analyser process is retrieving them from the stream, then the stream may become
full. If an active stream without log becomes full, it may either stop accepting events
or loop; this depends on the so called stream full policy, which is one of its attributes.
In the former case, the stream will start accepting events again when a certain
amount of events in the stream have been retrieved, hence freeing resources for the
new ones to be stored. In the latter (loop) case, when the stream is full, the oldest
recorded events in the stream are lost as new events are stored (that is, the oldest
events are overwritten).

b. Pre-recorded trace stream. A stream of this class is used for retrieving trace events
which were previously stored in a log. In particular, the log file is opened into a (pre-
recorded) stream from which events are then retrieved. Thus, off-line analysis of
events is performed in two steps: first, events are traced into an active stream with
log; second, after this stream is shut down, the log can be opened into a pre-recorded
stream from which the events are retrieved. This process is shown in Figure 2.

6.4.3.3. Processes Involved in the Tracing Activity

The standard defines that up to three different roles can be played in each tracing activ-
ity: trace controller process, traced (or target) process and trace analyzer process. In the
most general case, each of these roles is executed by a separate process. However, noth-
ing in the standard prevents from having two (or even the three) of these roles executed
by the same process. In a small, multi-threaded application, we can have, for example,
the three roles played by different threads inside the same process. These roles are now
explained in detail.

6.4.3.4. Trace Controller Process

The trace controller process is the process that sets the tracing system up in order to
trace a (target) process, which can be the same process or a different one. In particular,
this process is in charge of, at least, the following actions:

OCERA. IST 35102 24

Chapter 6. Scheduling components contribution

a. Creating a trace stream with its particular attributes (e.g, if the stream is with or
without a log, the stream full policy, etc.). This is further detailed below.

b. Starting and stopping tracing when necessary. This is done by -calling
posix_trace_start() and posix_trace_stop(), respectively. Each active stream can be
in two different states: running or suspended. These two states determine whether
or not the stream is accepting events to be stored. The trace controller process
can start and stop the stream as many times as it wants. If the stream full
policy is to trace until full (POSIX_TRACE_UNTIL_FULL), the trace system will
automatically stop the stream when full and start it again when some (or all) of its
stored events have been retrieved.

c. Filtering the types of events to be traced. Each stream is initially created with
an empty filter (that is, without filtering any event type). If this is not the
required behaviour, the trace controller process can build a set of event types
(trace_event_set_t), include the appropriate event types in it, and apply it as a
filter to the stream (by invoking posix_trace_set_filter()). After that, the stream will
reject any event whose type is in the filter set.

d. Shutting the stream down, when the tracing is over (posix_trace_shutdown()). The
standard requires that shutting a stream down must free all the stream resources.
That is, the stream is destroyed and no more operations can be done on it.

Among all these basic actions, the creation of the stream is the most complex one. This
action is done in two steps:

1. Create a stream attribute object (trace_attr_t) and set each of its attributes ap-
propriately. Since this type is also opaque to the user (that is, internal to the trace
system), the standard provides a function to initialize an attribute object and then
pairs of functions to get and set each of the individual attributes included in the ob-
ject. Some of these attributes are: the stream name, the stream minimum size, the
event data maximum size, the stream full policy, etc. This setting up is performed
before invoking the call to create the stream.

2. Create the stream (trace_id_t). There are two different functions to create an ac-
tive stream, depending on whether it has to be with or without a log. Respectively,
these functions are posix_trace_create_withlog() and posix_trace_create(). In either
case, the arguments of the creation function are the stream attribute object, previ-
ously initialised and set (see above), and the target process pid (process identifier).
The main implication of this is that the target process has to exist before the trace
controller process can create a stream to trace it. Besides, it has to have enough
privileges over the target to do it. The exact definition of this latter requirement
depends on the implementation of the trace system. The stream identifier returned
in this function can only be used by the process that has created the stream. Only
this process can thus directly access the stream in any way. This establishes some
limitations that will be commented below.

Optionally, the trace controller process can also perform other actions on the stream,
once the stream has been created:

Clearing the stream (posix_trace_clear()). This clears all the events that are now in the
stream, but leaves its behaviour (attributes) intact. Clearing the stream makes it exactly
in the same state that it was just after being created.

Flushing the stream (posix_trace_flush()). If the stream is created with a log, this action
produces an automatic flushing of all the events which are now in the stream to the log.
Otherwise, an error is returned.

Querying the stream attributes (posix_trace_get_attr()) and the stream current status
(posix_trace_get_status()). The stream status includes whether the stream is currently
running or suspended, whether or not an overrun has occurred, etc.

Retrieving the list of event types defined for the stream. The list is retrieved in order,
since the function posix_trace_eventtypelist_getnext_id() returns the first event type
when it is invoked for the first time, and the next event type in subsequent calls. At any

OCERA. IST 35102 25

Chapter 6. Scheduling components contribution

time, the retrieval of event types can be initialised by calling posix_trace_eventtypelist
rewind(). Actually, the standard establishes that the event types are not actually associ-
ated with a particular stream, but to a particular target process. In other words, the list
of event types is the same for all the streams which are tracing the same target.
Mapping event names to event types (posix_trace_trid_eventid_open()). This is normally
performed by the target process in order to create its own user event types. However,
the trace controller process can use the mapping function in the opposite way: given
a well-known user trace event name, the mapping function will return the event type
identifier; then, the trace controller process can use that identifier to set up a stream
filter, for example.

6.4.3.5. The Traced or Target Process

The traced or target process is the process that is being traced, that is, is the process for
which a trace stream has been created and set up. According to the standard, only two
functions can actually be called from a target process:

a. A function to register a new wuser event type for this process
(posix_trace_eventid_open()). The input argument of this function is the (new)
event type name. If this name has already being registered for that target,
then the previously mapped event type identifier is returned. If not, then a
new identifier is internally associated with this name and returned. If an
implementation defined maximum amount of user event types had already been
registered for that target process, then a predefined event type called POSIX
TRACE_UNNAMED_USEREVENT is returned. If successful, this registration is
valid for all the streams that have been created, or will be created, to trace
the target process (even if no stream has still been created for that target).
From the user viewpoint, therefore, the identification of user event types is done
in a per-name basis (instead of using integer values, for example). This allows
for a name space wide enough to avoid collisions when independent pieces of
instrumented code are linked together into a single application. This include, for
example, the case of linking an instrumented third-party library to our code, even
when we do not have the library s source code.

b. A function to trace an event (posix_trace_event()). This function has three input
arguments: the event type, which must have been previously registered (see above),
a pointer to any extra data that has to be stored along with the event, and the size of
this data3. The event is stored in all the streams created for that particular target
which are currently running and which do not have the event s type being filtered
out.

It is important to point out that neither of these functions accepts a stream identifier
as a parameter. That is, according to the standard philosophy, the target is programmed
to invoke these functions without being aware (and independently) of actually being
traced or not. The result is that calling the posix_trace_event() function has no effect
if no stream has been created for the target. In other words, an instrumented running
program does not actually become a target process until at least one stream has been
created for it. The case of the posix_trace_eventid_open() function is different since, as
explained above, the trace system will register any new event type for the program even
when no stream has been created for tracing the process.

This philosophy completely decouples the target from the trace controller process, with
many interesting advantages. For example, imagine an application that runs for long
periods of time without stop (a real-time application or a database, for instance). It may
be interesting to know, every once in a while, how this application is performing. There-
fore, this (instrumented) application can be the target of an inspector (trace controller)
program that, periodically, creates one or more streams to trace it, gets the resulting
events, and then destroys the stream(s). Depending on the application characteristics,

OCERA. IST 35102 26

Chapter 6. Scheduling components contribution

this occasional tracing may be good enough to check how the application is behaving,
and does not overload the system with a continuous tracing.

6.4.3.6. Trace Analyser Process

This process is in charge of retrieving the stored events in order to analyse them. The
standard defines three alternative retrieval functions to be used by the trace analyser
process:

a. posix_trace_getnext_event(). This function retrieves one event from the stream
whose identifier is provided as a parameter. If no event is immediately available,
the function blocks the invoking process (or thread) until an event is available.

b. posix_trace_timedgetnext_event(). This function works in a similar fashion than
the previous one, but, when no event is immediately available, it blocks the process
until either an event is available or an absolute timeout is reached (whatever of
both happens first). If the timeout is produced first, the invoking process gets the
corresponding error code.

c. posix_trace_trygetnext_event(). This function never blocks the invoking process:
it either return a retrieved event or an error code, if no event is available at the
moment.

If successful, any of these functions retrieve the oldest event stored in the stream which
has not still been reported. The age of each event is calculated according to the automatic
timestamp performed by the trace system when the event is recorded.

As explained above, the events can be only be retrieved from two different places: (1)
from an active stream without log; (2) from the log of a (previously destroyed) stream
with log, once this log has been opened into a (pre-recorded) trace stream. This defines
the two kinds of analysis that the standard supports:

a. a)On-line analysis. In this kind of analysis, the trace analyzer process retrieves
the events from an active trace stream (without log). As stated above, the retrieval
function (any of them) needs to provide the stream s identifier; however, according
to the standard, this identifier can only be used within the process that created the
stream. This forces that, in an on-line analysis, the trace analyzer process and the
trace controller process have to be the same one.

b. Off-line analysis. As explained in Trace Controller Process subsection, this analy-
sis is done in two steps: in the first step, events are recorded into an active trace
stream with log that, automatically or under request of the trace controller pro-
cess, flushes these events to the log (file). Once this step is over, the trace analyser
process opens the log into a private, pre-recorded stream (posix_trace_open()), from
which it can start retrieving the events. Only the first of the three retrieval func-
tions mentioned above can actually be used in a pre-recorded stream. Obviously, in
this case, this function will never make the trace analyser process to block, since
all the events are already stored in the stream. From a pre-recorded stream, events
are always reported in order (according to the recording timestamp) but they are
not erased from the stream after being retrieved. If necessary, the trace analyser
process can start retrieving the events again from the oldest one by rewinding the
stream (posix_trace_rewind()), without having to re-open the log.

In addition, the trace analyser process can also retrieve other information of the stream
(either active or pre-recorded), including the list of registered event types and its names,
the stream attribute object (and then each of its individual attributes), the stream cur-
rent status (for an active stream), etc. All this information is intended to make the trace
analyser process able to correctly interpret the trace events which it is retrieving.

6.4.4. Additional information

Since this part of the POSIX standard was published recently, there is still a lack of
documentation in the printed form (as fas as the authors know there is not a book that

OCERA. IST 35102 27

Chapter 6. Scheduling components contribution

covers this issues of the PSOXI standard), also the implementation done in OCERA
was one of the first implementations of the standard. For more information the reader
is referred to the online rationale and man pages available at the OpenGroup site:
http://www.opengroup.org/onlinepubs/007904975/.

6.4.5. Example

The following example creates three new user event types and a trace stream, and then
starts five RTLinux threads. Among them, three periodically execute and just consume
CPU, another one periodically wakes up and trace these events, and the last one waits
until a new event is available and then retrieves it and writes its contents to the console.

#include <rtl.h>
#include <time.h>
#include <pthread.h>
#include <rtl_sched.h>
#include <trace.h>
#include <rtl_ktrace.h>

static trace_id_t trid;
static trace_event_id_t ev_char, ev_int, ev_string;
static pthread_t thrl, thr2, thr3, thr4, thr5;

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

/ /
void *writer(void *dummy) {
int i, j, k;
char s[164] ="hello world!hello world!hello world'hello world!hello world!hello world!hello world!hello world!hello world!hello world!hell
char c;
void *data;

/I Create a new event type:

posix_trace_eventid_open ("user event string", &ev_string);
c = A}

k =0

pthread_wait_np();

for (i=0; i<10; i++) {
for (j=0; j<700000; j++);

pthread_mutex_lock(&mutex);

data = (void *) & c;
posix_trace_event(ev_char, data, sizeof(char));
data = (void *) & k;
posix_trace_event(ev_int, data, sizeof(int));

for (j=0; j<70000; j++);
posix_trace_event(ev_string, s, sizeof(s));

/I Values for next loop:
c += 1;
k += 1;

pthread_mutex_unlock(&mutex);
pthread_wait_np();

}

return (void *) O;

}

/ /
void *just_execute(void *loops) {
int i, j, nloops = (int) loops;

for (i=0; i<100; i++) {
for (j=0; j<nloops/4; j++);
pthread_mutex_lock(&mutex);
for (j=0; j<nloops/2; j++);

OCERA. IST 35102 28

Chapter 6. Scheduling components contribution

pthread_mutex_unlock(&mutex);
for (j=0; j<nloops/4; j++);

pthread_wait_np();

}
return (void *) O;
}
/ /
void *reader(void *loops) {
int error;
trace_attr_t trace_attr;
char st[TRACE_NAME_MAX];
struct posix_trace_event_info event;
char data[64];
size_t datalen;
int unavailable;
int *ent;
char *car;

trace_event_id_t evid;

error = posix_trace_get_attr(trid, &trace_attr);
rtl_printf("get attr (%d)\n", error);

error = posix_trace_attr_getgenversion(&trace_attr, str);
rtl_printf("get genversion (%d): %s\n", error, str);

posix_trace_eventtypelist_rewind(trid);
posix_trace_eventtypelist_getnext_id (trid, &evid, &unavailable);
while (! unavailable) {

posix_trace_eventid_get_name (trid, evid, str);

rtl_printf("Event %d name %s\n", evid, str);

posix_trace_eventtypelist_getnext_id (trid, &evid, &unavailable);

}
error = 0; unavailable = 0;
while (! error && ! unavailable) {

event.posix_event_id = 1024;
error = posix_trace_getnext_event(trid,
&event,
&data,
sizeof(data),
&datalen,
&unavailable);

if(error) {
rtl_printf("No more events (%d). Exiting\n", error);

} else if (unavailable) {
rtl_printf(" Event unavailable\n”);

} else {
posix_trace_eventid_get_name (trid, event.posix_event_id, str);

/I Now switch depending on the event type (name):
if (Istrcmp(str,"user event char")) {

car = (char *) data;

rtl_printf(" Time =%ld.%Id. Event %d (%s) with data=%c (size = %d)\n",
event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
event.posix_event_id, str, *car, datalen);
}
else if (Istrcmp(str,"user event int") {

ent = (int *) data;

rtl_printf(" Time =%ld.%ld. Event %d (%s) with data=%d (size = %d)\n",
event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
event.posix_event_id, str, *ent, datalen);

else if (!strcmp(str,"user event string")) {

rtl_printf(" Time =%Id.%ld. Event %d (%s) with data=%s (size = %d)\n",
event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
event.posix_event_id, str, (char *) data, datalen);
}
else {

rtl_printf(" Time =%ld.%ld. Event %d (%s) with data unknown\n",

OCERA. IST 35102 29

Chapter 6. Scheduling components contribution

event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
event.posix_event_id, str);

}

}

rtl_printf("Error = %d Unavailble = %d \n", error, unavailable);

return (void *) O;

!

int init_module(void) {

trace_attr_t attr;
pthread_attr_t thattr;
trace_event_set_t set;

int

error;

/I Start the automatic tracing of kernel events:
rtl_ktrace_start();

/I Create and set the trace attribute:

error

error
error
error
error

posix_trace_attr_init(&attr);

posix_trace_attr_setstreamfullpolicy (&attr, POSIX_TRACE_UNTIL_FULL);
posix_trace_attr_setname(&attr, TRACE_STREAM1_NAME);
posix_trace_attr_setmaxdatasize(&attr, 64);
posix_trace_attr_setstreamsize(&attr, 4096);

/I Create the stream:

error

posix_trace_create(0, &attr, &trid);

if (error) return -1;

/I Create new event types associated with this stream:

error
error

posix_trace_trid_eventid_open (trid,"user event char", &ev_char);
posix_trace_trid_eventid_open (trid,"user event int", &ev_int);

/I Set the stream filter to only record user events:
posix_trace_eventset_fill(&set, POSIX_TRACE_SYSTEM_EVENTS);

error

posix_trace_set_filter(trid, (const trace_event_set t *) &set,

POSIX_TRACE_SET_EVENTSET);

/I Start tracing:

error

posix_trace_start(trid);

if (error) return -1;

/I Create the 'writer’ task (the one which traces user events):
pthread_attr_init (&thattr);

pthread_create (&thrl, &thattr, writer, 0);
pthread_make_periodic_np(thrl, 0, (hrtime_t) 400000000);

/I Create other tasks which just consume cpu

/I This one awakes each 20 msec:

pthread_create (&thr2, &thattr, just_execute, (void *) 100000);
pthread_make_periodic_np(thr2, 0, (hrtime_t) 20000000);

/I This one awakes each 25 msec:
pthread_create (&thr3, &thattr, just_execute, (void *) 300000);
pthread_make_periodic_np(thr3, 0, (hrtime_t) 25000000);

/I This one awakes each 50 msec:
pthread_create (&thr4, &thattr, just_execute, (void *) 200000);
pthread_make_periodic_np(thr4, 0, (hrtime_t) 50000000);

/I Create the 'reader’ task (awakes only once):
pthread_create (&thr5, &thattr, reader, (void *) 200000);

return O;

/

void cleanup_module(void) {

OCERA. IST 35102

30

Chapter 6. Scheduling components contribution

rtl_printf("rtl_tasks: CLEANUP!I\n");

/I Stop and shutdown the stream:
posix_trace_shutdown(trid);

/I Delete the tasks:

pthread_delete_np(thrl);
pthread_delete_np(thr2);
pthread_delete_np(thr3);
pthread_delete_np(thr4);
pthread_delete_np(thr5);

/I Stop the tracing of kernel events:
rtl_ktrace_stop();

6.5. POSIX message queues

6.5.1. Description

This component implements POSIX message queues facility which can be used to send
messages between RTLinux threads.

UNIX systems offers several possibilities for interprocess communication: signals, pipes
and FIFO queues, shared memory, sockets, etc. In RTLinux, the most flexible one is
shared memory, but the programmer has to use alternative synchronisation mechanism
to build a safe communication mechanism between process or threads. On the other
hand, signals and pipes lack certain flexibility to establish communication channels be-
tween process. In order to cover some of these weaknesses, POSIX standard proposes a
message passing facility that offers:

Protected and synchronised access to the message queue. Access to data stored in the
message queue is properly protected against concurrent operations.

Prioritised messages. Processes can build several flows over the same queue, and it is
ensured that the receiver will pick up the oldest message from the most urgent flow.
Asynchronous and temporised operation. Threads have not to wait for operation to be
finish, i.e., they can send a message without having to wait for someone to read that
message. They also can wait an specified amount of time or nothing at all, if the message
queue is full or empty.

Asynchronous notification of message arrivals. A receiver thread can configure the mes-
sage queue to be notified on message arrivals. That thread can be working on something
else until the expected message arrives.

6.5.2. Usage

This component is compiled as a separate kernel module. In order to use this facility you
have to select it at the main configuration screen and the compile the RTLinux sources.
This facility depends on POSIX signals so you need to select POSIX signals in order to
enable the message queues selection box.

OCERA. IST 35102 31

Chapter 6. Scheduling components contribution

[x]gconf [44 [=]m]
File Option Help

|w|zE | Il E]

Option Optien =]
--Generic Kernel+OS setup =-EPOSIX Signals in RT-Linux

FIPOSIX Timers in RT-Linux
ssages Queues in RT-Linux

-Linux Kernel Configuration
RT-Linux Configuration
--OCERA Components Configurati

(64) Maximum number of open message queue descripto
i-(32) Maximum number of message priorities

i~Resource Reservation (32) Maximum number of message queues

i~Fault-Tolerance -(16) Maximum number of messages in the default messag
Networking *-(128) Maximum message size in the default message que
OS Tree Configuration A e | L'J

--8nar 'N Pick Configuration
POSIX Messages Queues in RT-Linux (0C_PMaQUEUE) =]

The message passing facility described in IEEE Std

1003.1-2001 allows processes and threads to communicate

through system-wide queues. These message queues are

accessed through names. A message queue can be opened for

use by multiple sending and/or multiple receiving processes -

Interprocess communication utilizing message passing is a
key facility for the construction of deterministic,

[| ||| high-perfermance realtime applications. k4|

6.5.3. Programming interface (API)

This components follows the POSIX API specification for message passing facility de-
fined in IEEE Std 1003.1-2001. This API also belongs to the Open Group Base Speci-
fications Issue 6. The following synopsis presents the list of supported message queue
functions:

/* Create and destroy message queues */

mqgd_t mg_open (const char *, int, ...);

int mg_unlink (const char *)

int mg_close (mqd_t); int mg_getattr (mqd_t, struct mq_attr *);

int mg_notify (mqgd_t, const struct sigevent *);

int mg_setattr (mgd_t, const struct mq_attr *, struct mq_attr *);

ssize_t mq_receive (mqd_t, char *, size_t, unsigned *);

int mg_send (mqd_t, const char * size_t, unsigned);

ssize_t mq_timedreceive (mqd_t, char * size_t, unsigned * const struct timespec *);
int mg_timedsend (mqd_t, const char *, size_t, unsigned, const struct timespec *);

6.6. Ada Support

6.6.1. Description

This component is a porting of the Gnat compiler run time support to the RTLinux
executive. With this porting it is possible to use the ADA language to program hard
realtime applications in RTLinux.

Ada is a standard programming language that was designed with a special emphasis
on real-time and embedded systems programming, also covering other parts of modern
programming such as distributed systems, systems programming, object oriented pro-
gramming or information systems.

6.6.2. Usage

The Gnat porting is a complex component that modifies the some scripts of the installed
Gnat compiler code. The ported Gnat run time support runs on top of the RTLinux, and
use the RTLinux API as a "normal" RTLinux application. That is, it neither modifies the
OCERA-RTLinux code nor add any new file. For this reason it has not been integrated
into the OCERA framework but has to be installed separately.

Although not necessary, it is convenient to have experience using Gnat the compiler
before installing RTLGnat.

OCERA. IST 35102 32

Chapter 6. Scheduling components contribution

Next are the installation steps to install RTLGnat (Version 1.0) in the Gnat system
(assuming that the running Linux kernel and RTLinux executive are the one of the
OCERA framework):

1.Please, be sure that you have the original GNAT compiler distributed by ACT (ftp://cs.nyu.edu/pub/gnat/), and REMOVE any other

2.Select, at least, the following options in the main OCERA config tool:
1.RTLinux Configuration -> Priority inheritance (POSIX Priority Protection)
2.RTLinux Configuration -> Floating point support

3.0CERA Component Conf. -> Scheduling -> Dynamic memory manager...
4.0CERA Component Conf. -> Scheduling -> POSIX Signals ...

5.0CERA Component Conf. -> Scheduling -> POSIX Trace (recommended)

3.Edit the (RTLGnat)/Makefile and modify the path variables to point to the right directories. Among others, the GNAT_PATH variabl

4.Make sure that the proper version of gnat is at the beginning of the PATH variable, for example: export PATH=/usr/gnat/bin:$PA

5.You may need root privileges (write access to the GNAT directory) to compile RTLGnat because it will add some files to the sta

6.Compile RTLGnat by running "make" from the (RTLGnat) directory.

7.Now RTLGnat has been installed and compiled jointly with the standard Gnat distribution. You can find the RTLGnat examples in
RTLGnat will be installed in the directory where GNAT is already installed. The modi-

fications to the GNAT installation will include a directory called rts-rtlinux, where the
needed libraries will be located, and the executables rtlgnatmake, rtload and rtunload.

The "rtlgnatmake" script is the equivalent to "gnatmake" in GNAT for Linux. Simply
run:

rtignatmake my_app.adb
to obtain the application module "my_app"

Once you have created your application object module, RTLinux needs to be loaded in
order to run your application:

rtlinux start

Now you should start up your application by doing:

rtload my_app

To terminate and remove your running application just run:

rtunload my_app

6.6.3. Example

Following example makes use of the POSIX trace component to with Ada.Real_Time;

use Ada.Real_Time;
with RTL_Pt1;
use RTL_Pt1;

procedure Tasks is

task type Std_Task (Id : Integer) is
pragma Priority(ld);
entry Call;

end Std_Task;

task body Std_Task is
Next_Time : Time;
Period : Time_Span := Microseconds (100);
Next_While : Time;
Period_While : Time_Span := Microseconds (10);
begin
accept Call;

OCERA. IST 35102 33

Chapter 6. Scheduling components contribution

Next_Time := Clock + Period;
loop
Put ("I am "); Put (Id); New_Line;
Next_While := Clock + Period_While;
while Next_While > Clock loop
null;
end loop;
delay until Next_Time;
Next_Time := Clock + Period;
end loop;
end Std_Task;

Std_Taskl : Std_Task(1);
Std_Task2 : Std_Task(2);
dev : Integer;

begin

Std_Task1.Call;

dev := Integer(rtl_ktrace_start);
Std_Task1.Call;
Std_Task2.Call;

delay 0.005;

dev := Integer(rtl_ktrace_stop);
Std_Task2.Call;

end Tasks;

6.7. Posix Barriers

6.7.1. Description

Barriers, are defined in the advanced real-time POSIX (IEEE Std 1003.1-2001), as part
of the advanced real-time threads extensions. A barrier is a simple and efficient syn-
chronisation utility.

These are the steps to create and to use a barrier

1.

2.

4.

The barrier attributes are initialized . This is accomplished trough the function
pthread_barrierattr_init

2.The barrier is initialized, only once, by calling the function pthread_barrier_init.
This function set the attributes of the barrier (specified in the previous step, or it
takes a default attribute object) and the parameter count, which specifies the num-
ber of threads that are going to synchronise at the barrier.
Although standard posix recommends that the value specified by count must be
greater than zero, if count is 1, the barrier will not take effect, since no blocking
would be produced. Therefore, in this implementation, a value of count less or equal
than 1 is not valid. Otherwise, EINVAL is returned.

When a thread wants to synchronise at the barrier, it calls the function
pthread_barrier_wait .
At this point, the thread will wait until all the rest of the threads have reached the
same function call. Threads will continue its execution when the last thread reaches
the pthread_barrier_wait function.

Finally, both the barrier and the attributes have to be destroyed
(pthreadd_barrierattr_destroy and pthread_barrier_destroy).

If there are threads waiting on the barrier, the function pthread_barrier_destroy does
not destroy the barrier, but exits with error EBUSY.

OCERA. IST 35102 34

Chapter 6. Scheduling components contribution

6.7.2. Usage

To activate the component just mark the option "Posix Barriers in RT-Linux" inside of
"Ocera Components Configuration -> Scheduling" in the configuration tool (Figure 3).

[*|gqconf - [=]]
Eile Option Help
|o/@E] | Il E]
Option Option =
- Generic Kernel+O§S setup 1
Linux Kernel Configuration EDynamic Memory Management support in RT-Linux
-RT-Linux Configuration =-EPOSIX Signals in RT-Linux

—-OCERA Components Gonfigur POSIX Timers in RT-Linux

ng
esource Reservation EPOSIX Messages Queues in RT-Linux —

[ElApplication defined seheduler in RT-Linux

r-Fault-Tolerance -(64) Maximum number of open message queue desc
“-Networking i-(32) Maximum number of message priorities
-08 Tree Configuration (32) Maximum number of message queues

--8nar 'N Pick Configuration 4 Pt ' . | Sathanahat _’ILI

Application defined scheduler in RT-Linux
{OC_APPSCHED)

POSIX-Compatible Application-defined scheduling is an
application program interface {API) that enables
applications to use application-defined scheduling
algorithms in a way compatible with the scheduling model
defined in POSIX. Several application-defined schedulers,
implemented as special user threads, can coexist in the
1| | || system in a predictable way. |

This component has no dependencies with other Ocera components or RTLinux fa-
cilities. Posix Barriers are a high level RTLinux component, since it does not mod-
ify the RTLinux source code, but adds new features. Barriers are not implemented
as a module, it is only necessary to insert the scheduler module (rtl_schedule.o). Bar-
rier functionalities are implemented in two files: rtlinux/schedulers/rtl_barrier.c and
rtlinux/include/rtl_barrier.h.

6.7.3. Programming interface (API)

The API is defined by the POSIX standard. Here is a list of the functions that have been
implemented.

int pthread_barrierattr_destroy(pthread_barrierattr_t * attr);

The pthread_barrierattr_destroy() function shall destroy a barrier attributes object. A destroyed attr attributes object can be reinitializec
int pthread_barrierattr_init(pthread_barrierattr_t * attr);

The pthread_barrierattr_init() function shall initialize a barrier attributes object attr with the default value for all of the attributes define
Results are undefined if pthread_barrierattr_init() is called specifying an already initialized attr attributes object.

int pthread_barrier_init(pthread_barrier_t * barrier, const pthread_barrierattr_t *attr, unsigned int count);

The pthread_barrier_init() function shall allocate any resources required to use the barrier referenced by barrier and shall initialize th
int pthread_barrier_destroy(pthread_barrier_t * barrier);

The pthread_barrier_destroy() function shall destroy the barrier referenced by barrier and release any resources used by the barrier.
int pthread_barrier_wait(pthread_barrier_t * barrier);

The pthread_barrier_wait() function shall synchronize participating threads at the barrier referenced by barrier. The calling thread shal
When the required number of threads have called pthread_barrier_wait() specifying the barrier, the constant PTHREAD_BARRIER_SE
int pthread_barrierattr_getpshared(const pthread_barrierattr_t * attr int * pshared);

The pthread_barrierattr_getpshared() function shall obtain the value of the process-shared attribute from the attributes object r
int pthread_barrier_wait(pthread_barrier_t * barrier);

The pthread_barrier_wait() function shall synchronize participating threads at the barrier referenced by barrier. The calling thread shal
When the required number of threads have called pthread_barrier_wait() specifying the barrier, the constant PTHREAD_BARRIER_SE

6.7.4. Example

A barrier can be used to force periodic threads to execute its first activation at the first
time. This example, in this case, will consist of one barrier. Three threads block on the
barrier before becoming periodic. When the last thread arrives to the barrier, then all
threads are allowed to continue execution (see Figure 4).

OCERA. IST 35102 35

Chapter 6. Scheduling components contribution

pthread barrier create(&barrier, NULL, 3)

o
-

pthread barrier wait (&barrier)

Threads

-

Time

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <rtl_sched.h>
#include <rtl_barrier.h>
#include <rtl.h>

#include <rtl_time.h>

#define NTASKS 3

pthread_t tasks[NTASKS];
hrtime_t now;

pthread_attr_t attrib;
struct {

int id;

int compute;

int period;
} sched_attrib[NTASKS];

pthread_barrierattr_t barrier_attr;
pthread_barrier_t my_barrier;

void * fun(void *arg) {
int id = (int)arg;
pthread_barrier_wait(&my_barrier);
pthread_make_periodic_np(pthread_self(), now, sched_attrib[id].period);

while (1){
rtl_delay(sched_attrib[id].compute);
pthread_wait_np();
fin--;

}

pthread_exit(0);
return (void *)0;

int init_module(void)
{

int x;

sched_attrib[0].compute=1000;
sched_attrib[0].period=100000;
sched_attrib[1].compute=1900;
sched_attrib[1].period=170000;
sched_attrib[2].compute=25000;
sched_attrib[2].period=200000;

now = gethrtime();

/lInitialize the barrier

OCERA. IST 35102 36

Chapter 6. Scheduling components contribution

pthread_barrierattr_init(&barrier_attr);
pthread_barrier_init(&my_barrier, &barrier_attr, NTASKS);
/Ipthread_barrierattr_destroy(&barrier_attr);
for (x=0; x<NTASKS; x++) {

pthread_attr_init(&attrib);

pthread_create(&(tasks[x]), &attrib , fun, (void *)x);

}

return O;

void cleanup_module(void)

{
int x;
for (int x=0; x<NTASKS; x++){
pthread_cancel(tasks[x]);
pthread_join(tasks[x],NULL);
pthread_barrier_destroy(&my_barrier);
}

6.8. Application-Defined Scheduler

6.8.1. Description

POSIX-Compatible Application-defined scheduling (ADS) is an application program in-
terface (API) that enables applications to use application-defined scheduling algorithms
in a way compatible with the scheduling model defined in POSIX. Several application-
defined schedulers, implemented as special user threads, can coexist in the system in a
predictable way. This way, users can implement their own scheduling algorithms that
can be ported inmediately to other POSIX compliant RTOS.

6.8.2. Usage

This facility depends on POSIX signals and POSIX Timers, so you need to select them
in order to enable the ADS selection box (Figure 6).

[*|gqconf - [=]]
Eile Option Help
|o/@E] | Il E]
Option Option =
- Generic Kernel+O§S setup 1
Linux Kernel Configuration EDynamic Memory Management support in RT-Linux
-RT-Linux Configuration =-EPOSIX Signals in RT-Linux

—-OCERA Components Gonfigur Z-EPOSIX Timers in RT-Linux
H [ElApplication defined seheduler in RT-Linux
~Resource Reservation --EPOSIX Messages Queues in RT-Linux —

r-Fault-Tolerance -(64) Maximum number of open message queue desc
“-Networking i-(32) Maximum number of message priorities
-08 Tree Configuration (32) Maximum number of message queues .
--Snar 'N Pick Configuration 4 itace s ! : | Bothennbefand _’I_I

Application defined scheduler in RT-Linux
{OC_APPSCHED)

POSIX-Compatible Application-defined scheduling is an
application program interface {API) that enables
applications to use application-defined scheduling
algorithms in a way compatible with the scheduling model
defined in POSIX. Several application-defined schedulers,
implemented as special user threads, can coexist in the
1| | || system in a predictable way. |

Once the sources have been compiled you can create the sources of your scheduling
algorithm. This sources will be compiled as a separate kernel module.

OCERA. IST 35102 37

Chapter 6. Scheduling components contribution

6.8.3. Programming interface (API)

The application defined scheduler facility API is a little more complex than "normal" op-
erating systems services like file management since the ADS has to provide two different
APT’s. One API for the application scheduler thread and another API for the application
scheduled thread. ADS API has been designed to be included in the POSIX standard.
Following is the list of functions that can be used by scheduler threads:

Program scheduling actions (suspending or activating threads)

int posix_appsched_actions_addactivate (posix_appsched_actions_t * sched_actions, pthread_t thread)

int posix_appsched_actions_addsuspend (posix_appsched_actions_t * sched_actions, pthread_t thread)

int posix_appsched_actions_addlock (posix_appsched_actions_t * sched_actions, pthread_t thread,const pthread_mutex_t *mutex)
Execute Scheduling Actions

int posix_appsched_execute_actions (const posix_appsched_actions_t * sched_actions, const sigset_t * set, const struct timespec *
Getting and setting application scheduled thread’s data

int pthread_remote_setspecific (pthread_key t key, pthread_t th, void * value)

void * pthread_remote_getspecific (pthread_key_t key, pthread_t th)

Set and get mutex-specific data

int posix_appsched_mutex_setspecific(pthread_mutex_t * mutex, void * value)

int posix_appsched_mutex_getspecific (const pthread_mutex_t * mutex, void ** data)

Scheduling events sets manipulation

int posix_appsched_emptyset (posix_appsched_eventset_t * set, int posix_appsched_fillset posix_appsched_eventset_t * set)

int posix_appsched_addset(posix_appsched_eventset_t * set, int appsched_event)

int posix_appsched_delset(posix_appsched_eventset_t * set ,int appsched_event)

int posix_appsched_ismember(const posix_appsched_eventset_t * set, int appsched_event)

int posix_appsched_seteventmask (const posix_appsched_eventset t * set, int posix_appsched_geteventmask,
posix_appsched_eventset_t * set)

While in the application scheduled thread’s side the API is:

Explicit scheduler invocation

int posix_appsched_invoke_scheduler(void * msg, size_t msg_size)

Manipulate application scheduled threads attributes

int pthread_attr_setthread_type (pthread_attr_t * attr, int type, int pthread_attr_setappscheduler, pthread_attr_t * attr, pthread_t sche

int pthread_attr_setappsched_param(pthread_attr t * attr, void * param, int size)

int pthread_attr_getappscheduler (pthread_attr_t * attr, pthread_t sched)

int pthread_getappsched_param (pthread_attr_t * attr, pthread_t * sched, void * param, int * size)

Application-defined Mutex Protocol

int pthread_mutexattr_setappscheduler (pthread_mutexattr_t * attr, struct rtl_thread_struct * appscheduler)

int pthread_mutexattr_getappscheduler (const pthread_mutexattr_t * attr, struct rtl_thread_struct * appscheduler)

int pthread_mutexattr_setappschedparam (pthread_mutexattr_t * attr, const struct pthread_mutex_schedparam * sched_param)

int pthread_mutexattr_getappschedparam (const pthread_mutexattr_t * attr, struct pthread_mutex_schedparam * sched_param)

int pthread_mutex_setappschedparam (pthread_mutex_t * mutex, const struct pthread_mutex_schedparam * sched_param)

int pthread_mutex_getappschedparam (const pthread_mutex_t * mutex, struct pthread_mutex_schedparam * sched_param)

6.8.4. Example

This example creates a scheduler thread and two scheduled threads. The scheduler
thread controls the execution of its scheduled threads following a Earliest Deadline First
priority assignation. That is, in this example it is implemented the EDF scheduling al-
gorithm. The scheduled threads are periodic with deadline equal to period. For each
scheduled thread a periodic timer is programmed which spires each time the release
time is reached. Threads are created in the file edf threads.c. This is the source that
will be compiled and inserted as a module. The algorithm is implemented in the files
edf_sched.c and edf_sched.h.

/* edf_sched.h*/
#include "../misc/compat.h"
#include <rtl_debug.h>

#include <time.h>

struct edf_sched_param {
struct timespec period;

I8

#define ERROR(s) {perror (s); rtl_printf("\n"); exit (-1);}
/l#define ERROR(s) {perror (s); set_break_point_here; exit (-1);}

void *edf_scheduler (void *arg);

OCERA. IST 35102 38

Chapter 6. Scheduling components contribution

#define MAX_TASKS 10
extern timer_t timer_ids[MAX_TASKS];
extern pthread_t tasks[MAX_TASKS];

extern long loops_per_second ;

Ix
* eat
*

* Executes during the interval of time 'For_Seconds

*/
extern inline void eat (float for_seconds)
{
long num_loop = (long)(loops_per_second * (float)for_seconds);
long j = 1,
long i;
for (i=1; i<=num_loop; i++) {
j++s
if (j<i) {
j=
} else {
i =i
}
}
}
extern inline long subtract (struct timespec *a, struct timespec *b)
{
long result, nanos;
result = (a->tv_sec - b->tv_sec)*1000000;
nanos = (a->tv_nsec - b->tv_nsec)/1000;
return (result+nanos);
}
/*
* adjust

*

* Measures the CPU speed (to be called before any call to ’eat’)
*/
extern inline void adjust (void)
{
struct timespec initial_time, final_time;
long interval;
int number_of_tries =0;
long adjust_time = 1000000;
int max_tries = 6;

do {
clock_gettime (CLOCK_REALTIME, &initial_time);
eat(((float)adjust_time)/1000000.0);
clock_gettime (CLOCK_REALTIME, &final_time);
interval = subtract(&final_time,&initial_time);
loops_per_second = (long)(

(float)loops_per_second*(float)adjust_time/(float)interval);

number_of_tries++;

} while (number_of_tries<=max_tries &&

labs(interval-adjust_time)>=adjust_time/50);

[*edf_sched.c*/

#include "edf_sched.h"

#include "../misc/timespec_operations.h"
#include "../misc/generic_lists.h"
#include "../misc/generic_lists_order.h"

typedef enum {ACTIVE, BLOCKED, TIMED} th_state_t;
/* Thread-specific data */
typedef struct thread_data {

struct thread_data * next;
th_state_t th_state;

OCERA. IST 35102 39

Chapter 6. Scheduling components contribution

struct timespec period;
struct timespec next_deadline; /* absolute time */
int id;
timer_t timer_id;
pthread_t thread_id;
} thread_data_t;

thread_data_t th_datalMAX_TASKS];

#define free(ptr) do {} while(0)

/* Scheduling algorithm data */

list_t RQ = NULL;

int threads_count = 0O; // to assign a different id to each thread
thread_data_t *current_thread = NULL; // thread currently chosen to execute
pthread_key_t edf key=0;

/*

* more_urgent_than

*/

int more_urgent_than (void *left, void *right)

{

return smaller_timespec (&((thread_data_t *)left)->next_deadline,

&((thread_data_t *)right)->next_deadline);

}

/*

* schedule_next

*/

void schedule_next (posix_appsched_actions_t *actions)

thread_data_t *most_urgent_thread = head (RQ);
if (most_urgent_thread != current_thread) {

if (most_urgent_thread != NULL) {
/I Activate next thread
printf (" Activate:%d ptr:%d\n", most_urgent_thread->id,most_urgent_thread->thread_id);
if (posix_appsched_actions_addactivate (actions,
most_urgent_thread->thread_id))
ERROR ("posix_appsched_actions_addactivate");
}

if (current_thread !'= NULL && current_thread->th_state != BLOCKED) {
/I Suspend "old" current thread
printf (* Suspend:%d ptr:%d\n", current_thread->id,current_thread->thread_id);
if (posix_appsched_actions_addsuspend (actions,
current_thread->thread_id))
perror ("posix_appsched_actions_addsuspend");

current_thread = most_urgent_thread;

}
}

/*

* add_to_list_of_threads

*/

void add_to_list_of threads (pthread_t thread_id,

const struct timespec *now)

{
struct edf_sched_param param;
thread_data_t *t_data;
struct itimerspec timer_prog;

if (pthread_getappschedparam (thread_id,(void *)¶m,NULL))
ERROR ("pthread_getschedparam™);

t_data = &th_data[threads_count];

t_data->period = param.period;

t_data->th_state = ACTIVE;

t_data->id = threads_count++;

add_timespec (&t_data->next_deadline, now, &t_data->period);

t_data->thread_id = thread_id;

t_data->timer_id =timer_ids[t_data->id];

/I Add to ready queue
enqueue_in_order (t_data, &RQ, more_urgent_than);

OCERA. IST 35102 40

Chapter 6. Scheduling components contribution

/I Assign thread-specific data
if (pthread_remote_setspecific (edf_key, thread_id, t_data))
ERROR (“"pthread_remote_setspecific");

/I Program periodic timer (period = t_data->period)

timer_prog.it_value = t_data->next_deadline;

timer_prog.it_interval = t_data->period;

if (timer_settime (t_data->timer_id, TIMER_ABSTIME, &timer_prog, NULL))
ERROR (“timer_settime");

printf (" Add new thread:%d, period:%ds%dns\n", t_data->id,
t_data->period.tv_sec, t_data->period.tv_nsec);

}
/*
* eliminate_from_list_of_threads
*/
void eliminate_from_list_of_threads (pthread_t thread_id)
{

thread_data_t *t_data;

struct itimerspec null_ts={{0, 0}{0, 0}};

/I get thread-specific data

if ({(t_data = pthread_remote_getspecific (edf_key, thread_id)))
ERROR (“"pthread_remote_getspecific");

/I disarm timer.

timer_settime(t_data->timer_id,0,&null_ts,NULL);

/I Remove from scheduling algorithm lists
if (t_data->th_state == ACTIVE)
dequeue (t_data, &RQ);
/I Free used memory
free (t_data);

}

/*
* make_ready
*/
void make_ready (pthread_t thread_id, const struct timespec *now)
{
thread_data_t *t_data;
struct itimerspec timer_prog;
/I get thread-specific data
if (I(t_data = pthread_remote_getspecific (edf_key, thread_id)))
ERROR (“"pthread_remote_getspecific");

t_data->th_state = ACTIVE;
add_timespec (&t_data->next_deadline, now, &t data->period);

/I Program periodic timer

timer_prog.it_value = t_data->next_deadline;

timer_prog.it_interval = t_data->period;

timer_settime (t_data->timer_id, TIMER_ABSTIME, &timer_prog, NULL);
}

/*
* make_blocked
*/
void make_blocked (pthread_t thread_id)
{
thread_data_t *t_data;
struct itimerspec null_timer_prog = {{0, 0},{0, O}};
/I get thread-specific data
if (I(t_data = pthread_remote_getspecific (edf_key, thread_id)))
ERROR ("pthread_remote_getspecific");

t_data->th_state = BLOCKED;
timer_settime (t_data->timer_id, 0, &null_timer_prog, NULL);

}

/*
* reached_activation_time
*/
void reached_activation_time (thread_data_t *t_data)
{
switch (t_data->th_state) {
case TIMED:

OCERA. IST 35102 41

Chapter 6. Scheduling components contribution

t_data->th_state = ACTIVE;

enqueue_in_order (t_data, &RQ, more_urgent_than);
incr_timespec (&t_data->next_deadline, &t_data->period);
break;

case BLOCKED:

break;

case ACTIVE:

/I Deadline missed

printf (* Deadline missed in thread:%d !"\n", t_data->id);
incr_timespec (&t_data->next_deadline, &t_data->period);
break;

default:

}

printf (" Invalid state:%d in thread:%d !\n", t_data->th_state, t_data->id);

/I This is only, for debbuging purposes in RTLinux.
rt_print_edf_request(events,t_data,FIFO);

}

1*

* make_timed

*

void make_timed (pthread_t thread_id)

{

thread_data_t *t_data;
/I get thread-specific data
if (I(t_data = pthread_remote_getspecific (edf_key, thread_id)))

ERROR ("pthread_remote_getspecific");

t_data->th_state = TIMED;

/I remove the thread from the ready queue
dequeue (t_data, &RQ);

}

1*

* EDF scheduler thread

*/

void *edf_scheduler (void *arg)

{

posix_appsched_actions_t actions;
struct posix_appsched_event event;
sigset_t waited_signal_set;

struct timespec now;

int i;

/I Initialize the 'waited_signal_set’
sigemptyset (&waited_signal_set);
for (i=0;i<MAX_TASKS;i++)

sigaddset (&waited_signal_set, (SIGUSR1+i));

/I Create a thread-specific data key
if (pthread_key create (&edf key, NULL))

ERROR (“pthread_create_key");

/I Initialize actions object
if (posix_appsched_actions_init (&actions))

ERROR ("posix_appsched_actions_init");

while (1) {

/* Actions of activation and suspension of threads */
schedule_next (&actions);

/* Execute scheduling actions */
if (posix_appsched_execute_actions (&actions,&waited_signal_set,

NULL, &now, &event))
ERROR ("posix_appsched_execute_actions");

OCERA. IST 35102

/* Initialize actions object */

if (posix_appsched_actions_destroy (&actions))
ERROR ("posix_appsched_actions_destroy");

if (posix_appsched_actions_init (&actions))
ERROR ("posix_appsched_actions_init");

/* Process scheduling events */
printf ("\nEvent: %d\n", event.event_code);
switch (event.event_code) {

42

Chapter 6. Scheduling components contribution

case POSIX_APPSCHED_NEW:
add_to_list_of_threads (event.thread, &now);
break;

case POSIX_APPSCHED_TERMINATE:
eliminate_from_list_of_threads (event.thread);
break;

case POSIX_APPSCHED_READY:
make_ready (event.thread, &now);
break;

case POSIX_APPSCHED_BLOCK:
make_blocked (event.thread);
break;

case POSIX_APPSCHED_EXPLICIT_CALL:
rtl_printf("EXPLICIT_CALL: %d ptr:%d\n",event.thread->user[0]-2,event.thread);
/I The thread has done all its work for the present activation
make_timed (event.thread);
break;

case POSIX_APPSCHED_SIGNAL:
rtl_printf("SIGNAL %d\n",event.event_info.siginfo.si_signo-SIGUSR1);
/I This is a ftrick, since in RTLinux we don't have REAL TIME SIGNALS, yet.
reached_activation_time(&th_data[event.event_info.siginfo.si_signo-SIGUSR1]);
}
}

return NULL;

[*edf_threads.c*/

#include "edf_sched.h"
#include <pthread.h>

#define NTASKS 2

timer_t timer_ids[MAX_TASKS];
pthread_t sched, tasks[MAX_TASKS];
#define MAIN_PRIO MAX_TASKS

long loops_per_second = 30000;

/* Scheduled thread */

void * periodic (void * arg)

{
float amount_of_work = *(float *) arg;
int count=0;

posix_appsched_invoke_scheduler (NULL, 0);

while (count++<10000) {
/* do useful work */
rtl_printf("l am here id:%d, iter:%d\n",pthread_self()->user[0]-2,count);
eat (amount_of_work);

rtl_printf(“th :%d about to invoke_scheduler\n",pthread_self()->user[0]-2,count);
posix_appsched_invoke_scheduler (NULL, 0);

int init_module(void)
{
pthread_attr_t attr;
struct edf_sched_param user_param;
struct sched_param param;
float loadl, load2;
struct sigevent evp;
int ret=0;

adjust ();

OCERA. IST 35102 43

Chapter 6. Scheduling components contribution

/* Creation of the scheduler thread */
pthread_attr_init (&attr);
param.sched_priority = MAIN_PRIO - 1;
if ((ret=pthread_attr_setappschedulerstate(&attr, P THREAD_APPSCHEDULER))<0)
printk("error while pthread_attr_setappschedulerstate(&attr, P THREAD_APPSCHEDULER)\n");
if (pthread_attr_setschedparam (&attr, ¶m))
ERROR ("pthread_attr_setschedparam scheduler");
if (pthread_create (&sched, &attr, edf scheduler, NULL))
ERROR (“pthread_create scheduler");

/* Set main task base priority */

param.sched_priority = MAIN_PRIO;

if (pthread_setschedparam (sched, SCHED_FIFO, ¶m))
perror ("pthread_setschedparam");

pthread_attr_destroy(&attr);

/* Creation of one scheduled thread */

pthread_attr_init (&attr);

attr.initial_state=0;

pthread_attr_setfp_np(&attr, 1);

param.sched_priority = MAIN_PRIO - 3;
user_param.period.tv_sec = 0;

user_param.period.tv_nsec = 20*1000*1000; // period = 20 ms
loadl = 0.001; // load = 1 ms

/*
param.posix_appscheduler = sched,;
param.posix_appsched_param = (void *) &user_param;
param.posix_appsched_paramsize = sizeof (struct edf_sched_param);

*/

evp.sigev_notify = SIGEV_SIGNAL;

evp.sigev_signo = SIGUSR1,;

if (timer_create (CLOCK_REALTIME, &evp,&timer_ids[evp.sigev_signo-SIGUSRL1]))
ERROR ("timer_create");

if ((ret=pthread_attr_setappschedulerstate(&attr, P THREAD_REGULAR))<0)
printk("error while pthread_attr_setappschedulerstate\n");

if ((ret=pthread_attr_setappschedparam(&attr,(void *) &user_param,sizeof(user_param))<0))
printk("error while pthread_attr_setappschedparam\n");

if (pthread_attr_setappscheduler (&attr, sched))
ERROR (“pthread_attr_setappscheduler 1%);

if (pthread_attr_setschedparam (&attr, ¶m))
ERROR ("pthread_attr_setschedparam 1");

if (pthread_create (&tasks[0], &attr, periodic, &loadl))
ERROR (“pthread_create 1");

/* Creation of other scheduled thread */

pthread_attr_init (&attr);

attr.initial_state=0;

pthread_attr_setfp_np(&attr, 1);

param.sched_priority = MAIN_PRIO - 1;

user_param.period.tv_sec = 0;

user_param.period.tv_nsec = 50*1000*1000;// period = 50 ms

load2 = 0.005; // load = 5 ms

/*
param.posix_appsched_param = (void *) &user_param;
param.posix_appsched_paramsize = sizeof (struct edf_sched_param);

*

evp.sigev_notify = SIGEV_SIGNAL;

evp.sigev_signo = SIGUSR1+1;

if (timer_create (CLOCK_REALTIME, &evp,&timer_ids[evp.sigev_signo-SIGUSR1]))
ERROR ("timer_create");

if ((ret=pthread_attr_setappschedulerstate(&attr, P THREAD_REGULAR))<0)
printk("error while pthread_attr_setappschedulerstate\n");

if ((ret=pthread_attr_setappschedparam(&attr,(void *) &user_param,sizeof(user_param))<0))
ERROR (“pthread_attr_setappschedparam 2");

if (pthread_attr_setappscheduler (&attr, sched))

OCERA. IST 35102 44

Chapter 6. Scheduling components contribution

ERROR ("pthread_attr_setappscheduler 2");

if (pthread_attr_setschedparam (&attr, ¶m))
ERROR ("pthread_attr_setschedparam 2");

if (pthread_create (&tasks[1], &attr, periodic, &load?2))
ERROR ("pthread_create 2");

return 0;

}

void cleanup_module(void){
int i;
/I Remove scheduled threads.
for (i=0;i<NTASKS;i++){
timer_delete(timer_idsl[i]);
pthread_delete_np(tasksi]);
}

/I Remove Application scheduler thread.
pthread_delete_np(sched);

6.9. Application-Defined Scheduler

6.9.1. Description

POSIX-Compatible Application-defined scheduling (ADS) is an application program in-
terface (API) that enables applications to use application-defined scheduling algorithms
in a way compatible with the scheduling model defined in POSIX. Several application-
defined schedulers, implemented as special user threads, can coexist in the system in a
predictable way. This way, users can implement their own scheduling algorithms that
can be ported inmediately to other POSIX compliant RTOS.

6.9.2. Usage

This facility depends on POSIX signals and POSIX Timers, so you need to select them
in order to enable the ADS selection box (Figure 6).

[*]qcontf [[a]m]

Eile Option Help

|ozE&] | I E]

Option Option 1=
Generic Kernel+0S setup ..
-Linux Kernel Configuration - Dynamic Memory Management support in RT-Linux
-RT-Linux Configuration —-MPOSIX Signals in RT-Linux

~-OCERA Components Gonfigur POSIX Timers in RT-Linux

[Scheduling |Application defined scheduler in RT-Linux

-Resource Reservation --EPOSIX Messages Queues in RT-Linux -
-Fault-Tolerance i-(64) Maximum number of open message queue desc
“~Networking

-0S Tree Configuration i~(32) Maximum number of message queues

Snar 'N Pick Configuration A : . . | e _'lLI

Application defined scheduler in RT-Linux
(OC_APPSCHED)

(32) Maximum number of message priorities

|»

POSIX-Compatible Application-defined scheduling is an

application program interface (API) that enables

applications to use application-defined scheduling

algorithms in a way compatible with the scheduling model

defined in POSIX. Several application-defined schedulers,

implemented as special user threads, can coexist in the

4 | 2 || system in a predictable way. =
I

Once the sources have been compiled you can create the sources of your scheduling
algorithm. This sources will be compiled as a separate kernel module.

OCERA. IST 35102 45

Chapter 6. Scheduling components contribution

6.9.3. Programming interface (API)

The application defined scheduler facility API is a little more complex than "normal" op-
erating systems services like file management since the ADS has to provide two different
APT’s. One API for the application scheduler thread and another API for the application
scheduled thread. ADS API has been designed to be included in the POSIX standard.
Following is the list of functions that can be used by scheduler threads:

Program scheduling actions (suspending or activating threads)

int posix_appsched_actions_addactivate (posix_appsched_actions_t * sched_actions, pthread_t thread)

int posix_appsched_actions_addsuspend (posix_appsched_actions_t * sched_actions, pthread_t thread)

int posix_appsched_actions_addlock (posix_appsched_actions_t * sched_actions, pthread_t thread,const pthread_mutex_t *mutex)
Execute Scheduling Actions

int posix_appsched_execute_actions (const posix_appsched_actions_t * sched_actions, const sigset_t * set, const struct timespec *
Getting and setting application scheduled thread’s data

int pthread_remote_setspecific (pthread_key t key, pthread_t th, void * value)

void * pthread_remote_getspecific (pthread_key_t key, pthread_t th)

Set and get mutex-specific data

int posix_appsched_mutex_setspecific(pthread_mutex_t * mutex, void * value)

int posix_appsched_mutex_getspecific (const pthread_mutex_t * mutex, void ** data)

Scheduling events sets manipulation

int posix_appsched_emptyset (posix_appsched_eventset_t * set, int posix_appsched_fillset posix_appsched_eventset_t * set)

int posix_appsched_addset(posix_appsched_eventset_t * set, int appsched_event)

int posix_appsched_delset(posix_appsched_eventset_t * set ,int appsched_event)

int posix_appsched_ismember(const posix_appsched_eventset_t * set, int appsched_event)

int posix_appsched_seteventmask (const posix_appsched_eventset t * set, int posix_appsched_geteventmask,
posix_appsched_eventset_t * set)

While in the application scheduled thread’s side the API is:

Explicit scheduler invocation

int posix_appsched_invoke_scheduler(void * msg, size_t msg_size)

Manipulate application scheduled threads attributes

int pthread_attr_setthread_type (pthread_attr_t * attr, int type, int pthread_attr_setappscheduler, pthread_attr_t * attr, pthread_t sche

int pthread_attr_setappsched_param(pthread_attr t * attr, void * param, int size)

int pthread_attr_getappscheduler (pthread_attr_t * attr, pthread_t sched)

int pthread_getappsched_param (pthread_attr_t * attr, pthread_t * sched, void * param, int * size)

Application-defined Mutex Protocol

int pthread_mutexattr_setappscheduler (pthread_mutexattr_t * attr, struct rtl_thread_struct * appscheduler)

int pthread_mutexattr_getappscheduler (const pthread_mutexattr_t * attr, struct rtl_thread_struct * appscheduler)

int pthread_mutexattr_setappschedparam (pthread_mutexattr_t * attr, const struct pthread_mutex_schedparam * sched_param)

int pthread_mutexattr_getappschedparam (const pthread_mutexattr_t * attr, struct pthread_mutex_schedparam * sched_param)

int pthread_mutex_setappschedparam (pthread_mutex_t * mutex, const struct pthread_mutex_schedparam * sched_param)

int pthread_mutex_getappschedparam (const pthread_mutex_t * mutex, struct pthread_mutex_schedparam * sched_param)

6.9.4. Example

This example creates a scheduler thread and two scheduled threads. The scheduler
thread controls the execution of its scheduled threads following a Earliest Deadline First
priority assignation. That is, in this example it is implemented the EDF scheduling al-
gorithm. The scheduled threads are periodic with deadline equal to period. For each
scheduled thread a periodic timer is programmed which spires each time the release
time is reached. Threads are created in the file edf threads.c. This is the source that
will be compiled and inserted as a module. The algorithm is implemented in the files
edf_sched.c and edf_sched.h.

/* edf_sched.h*/
#include "../misc/compat.h"
#include <rtl_debug.h>

#include <time.h>

struct edf_sched_param {
struct timespec period;

I8

#define ERROR(s) {perror (s); rtl_printf("\n"); exit (-1);}
/l#define ERROR(s) {perror (s); set_break_point_here; exit (-1);}

void *edf_scheduler (void *arg);

OCERA. IST 35102 46

Chapter 6. Scheduling components contribution

#define MAX_TASKS 10
extern timer_t timer_ids[MAX_TASKS];
extern pthread_t tasks[MAX_TASKS];

extern long loops_per_second ;

Ix
* eat
*

* Executes during the interval of time 'For_Seconds

*/
extern inline void eat (float for_seconds)
{
long num_loop = (long)(loops_per_second * (float)for_seconds);
long j = 1,
long i;
for (i=1; i<=num_loop; i++) {
j++s
if (j<i) {
j=
} else {
i =i
}
}
}
extern inline long subtract (struct timespec *a, struct timespec *b)
{
long result, nanos;
result = (a->tv_sec - b->tv_sec)*1000000;
nanos = (a->tv_nsec - b->tv_nsec)/1000;
return (result+nanos);
}
/*
* adjust

*

* Measures the CPU speed (to be called before any call to ’eat’)
*/
extern inline void adjust (void)
{
struct timespec initial_time, final_time;
long interval;
int number_of_tries =0;
long adjust_time = 1000000;
int max_tries = 6;

do {
clock_gettime (CLOCK_REALTIME, &initial_time);
eat(((float)adjust_time)/1000000.0);
clock_gettime (CLOCK_REALTIME, &final_time);
interval = subtract(&final_time,&initial_time);
loops_per_second = (long)(

(float)loops_per_second*(float)adjust_time/(float)interval);

number_of_tries++;

} while (number_of_tries<=max_tries &&

labs(interval-adjust_time)>=adjust_time/50);

[*edf_sched.c*/

#include "edf_sched.h"

#include "../misc/timespec_operations.h"
#include "../misc/generic_lists.h"
#include "../misc/generic_lists_order.h"

typedef enum {ACTIVE, BLOCKED, TIMED} th_state_t;
/* Thread-specific data */
typedef struct thread_data {

struct thread_data * next;
th_state_t th_state;

OCERA. IST 35102 47

Chapter 6. Scheduling components contribution

struct timespec period;
struct timespec next_deadline; /* absolute time */
int id;
timer_t timer_id;
pthread_t thread_id;
} thread_data_t;

thread_data_t th_datalMAX_TASKS];

#define free(ptr) do {} while(0)

/* Scheduling algorithm data */

list_t RQ = NULL;

int threads_count = 0O; // to assign a different id to each thread
thread_data_t *current_thread = NULL; // thread currently chosen to execute
pthread_key_t edf key=0;

/*

* more_urgent_than

*/

int more_urgent_than (void *left, void *right)

{

return smaller_timespec (&((thread_data_t *)left)->next_deadline,

&((thread_data_t *)right)->next_deadline);

}

/*

* schedule_next

*/

void schedule_next (posix_appsched_actions_t *actions)

thread_data_t *most_urgent_thread = head (RQ);
if (most_urgent_thread != current_thread) {

if (most_urgent_thread != NULL) {
/I Activate next thread
printf (" Activate:%d ptr:%d\n", most_urgent_thread->id,most_urgent_thread->thread_id);
if (posix_appsched_actions_addactivate (actions,
most_urgent_thread->thread_id))
ERROR ("posix_appsched_actions_addactivate");
}

if (current_thread !'= NULL && current_thread->th_state != BLOCKED) {
/I Suspend "old" current thread
printf (* Suspend:%d ptr:%d\n", current_thread->id,current_thread->thread_id);
if (posix_appsched_actions_addsuspend (actions,
current_thread->thread_id))
perror ("posix_appsched_actions_addsuspend");

current_thread = most_urgent_thread;

}
}

/*

* add_to_list_of_threads

*/

void add_to_list_of threads (pthread_t thread_id,

const struct timespec *now)

{
struct edf_sched_param param;
thread_data_t *t_data;
struct itimerspec timer_prog;

if (pthread_getappschedparam (thread_id,(void *)¶m,NULL))
ERROR ("pthread_getschedparam™);

t_data = &th_data[threads_count];

t_data->period = param.period;

t_data->th_state = ACTIVE;

t_data->id = threads_count++;

add_timespec (&t_data->next_deadline, now, &t_data->period);

t_data->thread_id = thread_id;

t_data->timer_id =timer_ids[t_data->id];

/I Add to ready queue
enqueue_in_order (t_data, &RQ, more_urgent_than);

OCERA. IST 35102 48

Chapter 6. Scheduling components contribution

/I Assign thread-specific data
if (pthread_remote_setspecific (edf_key, thread_id, t_data))
ERROR (“"pthread_remote_setspecific");

/I Program periodic timer (period = t_data->period)

timer_prog.it_value = t_data->next_deadline;

timer_prog.it_interval = t_data->period;

if (timer_settime (t_data->timer_id, TIMER_ABSTIME, &timer_prog, NULL))
ERROR (“timer_settime");

printf (" Add new thread:%d, period:%ds%dns\n", t_data->id,
t_data->period.tv_sec, t_data->period.tv_nsec);

}
/*
* eliminate_from_list_of_threads
*/
void eliminate_from_list_of_threads (pthread_t thread_id)
{

thread_data_t *t_data;

struct itimerspec null_ts={{0, 0}{0, 0}};

/I get thread-specific data

if ({(t_data = pthread_remote_getspecific (edf_key, thread_id)))
ERROR (“"pthread_remote_getspecific");

/I disarm timer.

timer_settime(t_data->timer_id,0,&null_ts,NULL);

/I Remove from scheduling algorithm lists
if (t_data->th_state == ACTIVE)
dequeue (t_data, &RQ);
/I Free used memory
free (t_data);

}

/*
* make_ready
*/
void make_ready (pthread_t thread_id, const struct timespec *now)
{
thread_data_t *t_data;
struct itimerspec timer_prog;
/I get thread-specific data
if (I(t_data = pthread_remote_getspecific (edf_key, thread_id)))
ERROR (“"pthread_remote_getspecific");

t_data->th_state = ACTIVE;
add_timespec (&t_data->next_deadline, now, &t data->period);

/I Program periodic timer

timer_prog.it_value = t_data->next_deadline;

timer_prog.it_interval = t_data->period;

timer_settime (t_data->timer_id, TIMER_ABSTIME, &timer_prog, NULL);
}

/*
* make_blocked
*/
void make_blocked (pthread_t thread_id)
{
thread_data_t *t_data;
struct itimerspec null_timer_prog = {{0, 0},{0, O}};
/I get thread-specific data
if (I(t_data = pthread_remote_getspecific (edf_key, thread_id)))
ERROR ("pthread_remote_getspecific");

t_data->th_state = BLOCKED;
timer_settime (t_data->timer_id, 0, &null_timer_prog, NULL);

}

/*
* reached_activation_time
*/
void reached_activation_time (thread_data_t *t_data)
{
switch (t_data->th_state) {
case TIMED:

OCERA. IST 35102 49

Chapter 6. Scheduling components contribution

t_data->th_state = ACTIVE;

enqueue_in_order (t_data, &RQ, more_urgent_than);
incr_timespec (&t_data->next_deadline, &t_data->period);
break;

case BLOCKED:

break;

case ACTIVE:

/I Deadline missed

printf (* Deadline missed in thread:%d !"\n", t_data->id);
incr_timespec (&t_data->next_deadline, &t_data->period);
break;

default:

}

printf (" Invalid state:%d in thread:%d !\n", t_data->th_state, t_data->id);

/I This is only, for debbuging purposes in RTLinux.
rt_print_edf_request(events,t_data,FIFO);

}

1*

* make_timed

*

void make_timed (pthread_t thread_id)

{

thread_data_t *t_data;
/I get thread-specific data
if (I(t_data = pthread_remote_getspecific (edf_key, thread_id)))

ERROR ("pthread_remote_getspecific");

t_data->th_state = TIMED;

/I remove the thread from the ready queue
dequeue (t_data, &RQ);

}

1*

* EDF scheduler thread

*/

void *edf_scheduler (void *arg)

{

posix_appsched_actions_t actions;
struct posix_appsched_event event;
sigset_t waited_signal_set;

struct timespec now;

int i;

/I Initialize the 'waited_signal_set’
sigemptyset (&waited_signal_set);
for (i=0;i<MAX_TASKS;i++)

sigaddset (&waited_signal_set, (SIGUSR1+i));

/I Create a thread-specific data key
if (pthread_key create (&edf key, NULL))

ERROR (“pthread_create_key");

/I Initialize actions object
if (posix_appsched_actions_init (&actions))

ERROR ("posix_appsched_actions_init");

while (1) {

/* Actions of activation and suspension of threads */
schedule_next (&actions);

/* Execute scheduling actions */
if (posix_appsched_execute_actions (&actions,&waited_signal_set,

NULL, &now, &event))
ERROR ("posix_appsched_execute_actions");

OCERA. IST 35102

/* Initialize actions object */

if (posix_appsched_actions_destroy (&actions))
ERROR ("posix_appsched_actions_destroy");

if (posix_appsched_actions_init (&actions))
ERROR ("posix_appsched_actions_init");

/* Process scheduling events */
printf ("\nEvent: %d\n", event.event_code);
switch (event.event_code) {

50

Chapter 6. Scheduling components contribution

case POSIX_APPSCHED_NEW:
add_to_list_of_threads (event.thread, &now);
break;

case POSIX_APPSCHED_TERMINATE:
eliminate_from_list_of_threads (event.thread);
break;

case POSIX_APPSCHED_READY:
make_ready (event.thread, &now);
break;

case POSIX_APPSCHED_BLOCK:
make_blocked (event.thread);
break;

case POSIX_APPSCHED_EXPLICIT_CALL:
rtl_printf("EXPLICIT_CALL: %d ptr:%d\n",event.thread->user[0]-2,event.thread);
/I The thread has done all its work for the present activation
make_timed (event.thread);
break;

case POSIX_APPSCHED_SIGNAL:
rtl_printf("SIGNAL %d\n",event.event_info.siginfo.si_signo-SIGUSR1);
/I This is a ftrick, since in RTLinux we don't have REAL TIME SIGNALS, yet.
reached_activation_time(&th_data[event.event_info.siginfo.si_signo-SIGUSR1]);
}
}

return NULL;

[*edf_threads.c*/

#include "edf_sched.h"
#include <pthread.h>

#define NTASKS 2

timer_t timer_ids[MAX_TASKS];
pthread_t sched, tasks[MAX_TASKS];
#define MAIN_PRIO MAX_TASKS

long loops_per_second = 30000;

/* Scheduled thread */

void * periodic (void * arg)

{
float amount_of_work = *(float *) arg;
int count=0;

posix_appsched_invoke_scheduler (NULL, 0);

while (count++<10000) {
/* do useful work */
rtl_printf("l am here id:%d, iter:%d\n",pthread_self()->user[0]-2,count);
eat (amount_of_work);

rtl_printf(“th :%d about to invoke_scheduler\n",pthread_self()->user[0]-2,count);
posix_appsched_invoke_scheduler (NULL, 0);

int init_module(void)
{
pthread_attr_t attr;
struct edf_sched_param user_param;
struct sched_param param;
float loadl, load2;
struct sigevent evp;
int ret=0;

adjust ();

OCERA. IST 35102 51

Chapter 6. Scheduling components contribution

/* Creation of the scheduler thread */
pthread_attr_init (&attr);
param.sched_priority = MAIN_PRIO - 1;
if ((ret=pthread_attr_setappschedulerstate(&attr, P THREAD_APPSCHEDULER))<0)
printk("error while pthread_attr_setappschedulerstate(&attr, P THREAD_APPSCHEDULER)\n");
if (pthread_attr_setschedparam (&attr, ¶m))
ERROR ("pthread_attr_setschedparam scheduler");
if (pthread_create (&sched, &attr, edf scheduler, NULL))
ERROR (“pthread_create scheduler");

/* Set main task base priority */

param.sched_priority = MAIN_PRIO;

if (pthread_setschedparam (sched, SCHED_FIFO, ¶m))
perror ("pthread_setschedparam");

pthread_attr_destroy(&attr);

/* Creation of one scheduled thread */

pthread_attr_init (&attr);

attr.initial_state=0;

pthread_attr_setfp_np(&attr, 1);

param.sched_priority = MAIN_PRIO - 3;
user_param.period.tv_sec = 0;

user_param.period.tv_nsec = 20*1000*1000; // period = 20 ms
loadl = 0.001; // load = 1 ms

/*
param.posix_appscheduler = sched,;
param.posix_appsched_param = (void *) &user_param;
param.posix_appsched_paramsize = sizeof (struct edf_sched_param);

*/

evp.sigev_notify = SIGEV_SIGNAL;

evp.sigev_signo = SIGUSR1,;

if (timer_create (CLOCK_REALTIME, &evp,&timer_ids[evp.sigev_signo-SIGUSRL1]))
ERROR ("timer_create");

if ((ret=pthread_attr_setappschedulerstate(&attr, P THREAD_REGULAR))<0)
printk("error while pthread_attr_setappschedulerstate\n");

if ((ret=pthread_attr_setappschedparam(&attr,(void *) &user_param,sizeof(user_param))<0))
printk("error while pthread_attr_setappschedparam\n");

if (pthread_attr_setappscheduler (&attr, sched))
ERROR (“pthread_attr_setappscheduler 1%);

if (pthread_attr_setschedparam (&attr, ¶m))
ERROR ("pthread_attr_setschedparam 1");

if (pthread_create (&tasks[0], &attr, periodic, &loadl))
ERROR (“pthread_create 1");

/* Creation of other scheduled thread */

pthread_attr_init (&attr);

attr.initial_state=0;

pthread_attr_setfp_np(&attr, 1);

param.sched_priority = MAIN_PRIO - 1;

user_param.period.tv_sec = 0;

user_param.period.tv_nsec = 50*1000*1000;// period = 50 ms

load2 = 0.005; // load = 5 ms

/*
param.posix_appsched_param = (void *) &user_param;
param.posix_appsched_paramsize = sizeof (struct edf_sched_param);

*

evp.sigev_notify = SIGEV_SIGNAL;

evp.sigev_signo = SIGUSR1+1;

if (timer_create (CLOCK_REALTIME, &evp,&timer_ids[evp.sigev_signo-SIGUSR1]))
ERROR ("timer_create");

if ((ret=pthread_attr_setappschedulerstate(&attr, P THREAD_REGULAR))<0)
printk("error while pthread_attr_setappschedulerstate\n");

if ((ret=pthread_attr_setappschedparam(&attr,(void *) &user_param,sizeof(user_param))<0))
ERROR (“pthread_attr_setappschedparam 2");

if (pthread_attr_setappscheduler (&attr, sched))

OCERA. IST 35102 52

Chapter 6. Scheduling components contribution

ERROR ("pthread_attr_setappscheduler 2");

if (pthread_attr_setschedparam (&attr, ¶m))
ERROR ("pthread_attr_setschedparam 2");

if (pthread_create (&tasks[1], &attr, periodic, &load?2))
ERROR ("pthread_create 2");

return 0;

}

void cleanup_module(void){

int i;

/I Remove scheduled threads.

for (i=0;i<NTASKS;i++){
timer_delete(timer_idsl[i]);
pthread_delete_np(tasksi]);

}

/I Remove Application scheduler thread.

pthread_delete_np(sched);

OCERA. IST 35102

53

IV. Soft Real Time Components
Table of Contents

7. Accessing Soft Real time functionalities 55
8. Soft Real time API 57

State of this part

This part is under development and must be considered as a draft.
Some chapter are left blank.

Chapter 7. Accessing Soft Real time
functionalities

This chapter is intended for people who need to integrate a Soft Real Time application
in the OCERA framework.

Remember that OCERA propose a Framework for embedded Real Time applications.
We will see some more detailed aspects of how you can use this framework, but you will
need to refer to the Programmer’s guide if you need details on each functions.

7.1. What is an OCERA Soft Realtime application

C R

7.2. Underlying Hard Real Time system

7.2.1. Overview of functionalities

-) -

Mimmal Linux

oa» -

ET-L iIll.l}{ o eta

55

Chapter 7. Accessing Soft Real time functionalities

7.2.2. Dependencies

7.3. Building an application
7.3.1. Makefile

7.3.2. Compilers

7.3.3. Libraries

7.3.4. Choosing the components
7.3.4.1. Boot
7.3.4.2. Filesystem
7.3.4.3. Scheduler
7.3.4.4. QOS
7.3.4.5. IPC
7.3.4.6. Streams
7.3.4.7. Network
7.3.4.8. RT Network
7.3.4.9. Disk access
7.3.4.10. CAN driver

7.3.4.11. Other drivers

7.4. Downloading
7.4.1. Embedded systems

7.4.2. Hosts systems

OCERA. IST 35102 56

Chapter 8. Soft Real time API

This chapter is intended for people who need to integrate a Soft Real Time application
in the OCERA framework.

57

V. Using new hardware
Table of Contents

9. Driver Framework

10. Porting to new hardware

State of this part

This part is under development and must be considered as a draft.
Some chapter are left blank.

59
60

Chapter 9. Driver Framework

9.1. control command with CAN
9.2. control command with CAN
9.3. real time Ethernet

9.4. two real time level application

9.5. streaming video

59

Chapter 10. Porting to new hardware

Even if porting to new hardware is not the goal of this document, we give here a light
overview of the main drawbacks.

10.1. Supporting new processors

To support a new processor, i.e. one not supported by OCERA you will need to do a
specific work depending on what already exists for this processor

10.1.1. The port of Linux and RTLinux exists

You will need to rewrite part of some of the OCERA components, like preemption patch,
the ADA port, QOS.

10.1.2. The port of Linux exists, but not RTLinux

You will need to port RTLinux and OCERA extensions for this processor.

10.2. Supporting new Cards

Like every port to a new hardware, you will need to modify some code of the original
OCERA software to achieve the work.

The first thing to do is to find the nearest architecture family , actually, OCERA support
three architecture family: Intel, StrongARM and PowerPC. The different pieces of soft-
ware you need to change for a specific board is referenced as the BSP (Board Support
Package), examples are often provided by the hardware vendor. When you choose the
family your system belongs (look in the linux source tree ./arch/), you will see if your
board is already supported. then you will have to verify and certainly to change the
following items from the Linux port:

 the bootstrap program (arch/xxx/boot)

» the memory management (arch/xxx/mm)

» Math emulation if any(arch/xxx/math-emu)

¢ May be some of the core library routines (arch/xxx/1ib/)

 Interrupt processing and PIC programming(arch/xxx/kernel/)

* drivers for the host bus bridges of the board (drivers/pci)

e drivers for the new devices (drivers/xxx)

Of course some of them may be available and used as is.

When supporting new cards for which processor the port of OCERA has been done, you
will need to rewrite some of the major components of RTLinux and/or Linux. In this
document we will assume that the Linux port have already been done. And we will
concentrate on the RTLinux and OCERA component port for which you will need to
rewrite the following things:

 the linux patch (main/xxx/arch.h)

» May be some of the core library routines (main/xxx/arch.h)

* Interrupt processing and PIC programming(main/xxx/arch.h)
« drivers for the new devices (drivers/xxx)

10.2.1. Interrupt processing

May be the main work will be here: writing new IRQ routine for the new processor and
the new PIC. You will also need to change the way RTLinux dynamically patches the
kernel on start. Take a look at the main /arch subdirectory of the RTLinux tree.

60

Chapter 10. Porting to new hardware

10.2.2. patch process
Manufacturer’s BSP will of course help you rewriting interrupts control routine, and
you will need it to rewrite major components of Linux and/or RTLinux if the port has
not been completed for you board.
In this case this mean you will have to rewrite memory management or IO programming
for Linux, RTLinux and OCERA components, and this may be a hard task.

OCERA. IST 35102 61

VI. Man pages

Table of Contents

11. Manuel pages for components 63
12. Manuel pages RTLinux 64
ANNEX 1: Component Manages 65

State of this part

This part is under development and must be considered as a draft.
Some chapter are left blank.
A lot of work(quite all) has be done by J. Vidal from UPV.

Chapter 11. Manuel pages for components

63

Chapter 12. Manuel pages RTLinux

64

ANNEX 1: Component Manages

pthread_getappschedparam

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

pthread_mutexattr_setappscheduler ,

pthread_mutexattr_getappscheduler ,

pthread_mutexattr_setappschedparam ,
pthread_mutexattr_getappschedparam

pthread_mutex_setappschedparam , pthread_mutex_getappschedparam |,
posix_appsched_mutex_setspecific,

posix_appsched _mutex_getspecific — Application-scheduled mutexes.

Synopsis

#include <pthread.h>

DESCRIPTION

The POSIX-Compatible Application-defined scheduling API allows creating mutexes
whose synchronization protocol is defined by the application scheduler. To allow this
functionality a set of functions similar to those used with regular threads is avail-
able. These special mutexes are created like any other POSIX mutex but specifying the
value PTHREAD_APPSCHED_PROTOCOL for their protocol attribute. For this kind of
mutexes two new attributes has been added: the appscheduler attribute and the app-
schedparam attribute. The appscheduler attribute identifies the scheduler thread the
mutex is attached to. The optional appschedparam attribute can be used for passing
application-defined mutex scheduling attributes to the scheduler.

As for the application-scheduled threads, it is also important for the scheduler to have
simple mechanism to attach and retrieve the scheduling specific data associated with
an application-scheduled mutex. With this purpose the interface introduces a new func-
tionality not defined in POSIX: the mutex-specific data, and two functions to get and set
the value currently bound to a mutex.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

posix_appsched_execute_actions

posix_appsched_actions_addactivate

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

posix_appsched_actions_addactivate,
posix_appsched_actions_addsuspend, posix_appsched_actions_addlock —
Program scheduling actions.

66

ANNEX 1: Component Manages

Synopsis

#include <pthread.h>

int posix_appsched_actions_addactivate (posix_appsched_actions_t *sched_actions , pthread_t
thread);

int posix_appsched_actions_addsuspend (posix_appsched_actions_t *sched_actions , pthread_t
thread);

int posix_appsched_actions_addlock (posix_appsched_actions_t *sched_actions , pthread_t
thread , pthread_mutex_t *mutex);

DESCRIPTION

These functions allows applications schedulers to program scheduling actions by adding
them to the actions queue referenced by locator actions. These actions will be executed
when function posix_appsched_execute_actions is called. The actions that can
be added are the following:

. Activate or suspend an application scheduled thread

with posix_appsched_actions_addactivate and
posix_appsched_actions_addsuspend respectively.

. Grant the lock of an application-scheduled mutex with

posix_appsched_actions_addlock

RETURN VALUE

If the call succeeds this functions shall return 0 and add a new action to the actions
queue referenced by location actions.

ERRORS

This functions returns 0 after successfully completion or a value distinct of O if the
actions queue is exhausted.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

posix_appsched_execute_actions

posix_appsched_execute_actions

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

posix_appsched_execute_actions — Execute scheduling actions.
Synopsis

#include <pthread.h>

int posix_appsched_execute_actions (const posix_appsched_actions_t *sched_actions , const
sigset_t *set , const struct timespec *timeout , struct timespec *current_time , struct

posix_appsched_event *event);

OCERA. IST 35102 67

ANNEX 1: Component Manages

DESCRIPTION

Allows the applications scheduler to execute a list of scheduling actions and the it sus-
pends waiting for the next scheduling event. If desired, a timeout can be set as an ad-
ditional return condition which will occur when there is no scheduling event available
but the timeout expires. The system time measured immediately before the function
returns will be placed in current_time parameter, if no NULL. In addition to previ-
ously described return conditions, posix_appsched_execute_actions can be pro-
grammed to return when a POSIX signal is generated for the thread. This possibility
eases the use of POSIX timers.

RETURN VALUE

If the call succeeds this functions shall return 0 and update the location referenced by
event with next event to be processed. If there are no more events to process the NULL
event is returned (event_code = -1).

ERRORS

This functions returns 0 after successfully completion. Otherwise returns:

o [EPERM]: The scheduled thread is trying to lock a no valid mutex for this tread.
+ [EBUSY]I: The scheduled thread is trying to lock a mutex that is already owned.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

posix_appsched_actions_addactivate
posix_appsched_explicit_call

posix_appsched_invoke_scheduler

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

posix_appsched_invoke scheduler — Application scheduler invocation.
Synopsis

#include <pthread.h>

int posix_appsched_invoke_scheduler (char *msg , size_t size);
DESCRIPTION

This function allows applications scheduled threads to explicitly call its scheduler
thread. This could be necessary in some scheduling algorithms, for example as
a mechanism to inform the scheduler a thread has finished its work for the
current activation. Calling this function will cause a scheduling event of type
POSIX_APPSCHED_EXPLICIT_CALL to be generated. Right now, no message can be
attached to the event (this function is expected to change in new API release).

OCERA. IST 35102 68

ANNEX 1: Component Manages

RETURN VALUE

If the call succeeds this functions shall return 0 and add a new event shall be generated.

ERRORS

If this function is called from a non regular thread (those scheduled by an application
scheduler)or alternatively the scheduler thread event’s queue is full, no event is gener-
ated and -1 is returned. With o without error the system scheduler always is called.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

posix_appsched_execute_actions

pthread_appschedattr_seteventmask

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

pthread_appschedattr_seteventmask ,

pthread_appschedattr_geteventmask , posix_appsched _emptyset ,

posix_appsched fillset , posix_appsched_addset |,

posix_appsched_delset , posix_appsched_ismember — Scheduling events
sets manipulation

Synopsis

#include <pthread.h>

int pthread_appschedattr_seteventmask (posix_appsched_eventset_t *set);
int pthread_appschedattr_geteventmask (posix_appsched_eventset_t *set);
int posix_appsched_emptyset (posix_appsched_eventset_t *set);

int posix_appsched_fillset (posix_appsched_eventset_t *set);

int posix_appsched_addset (posix_appsched_eventset_t *set , int event);
int posix_appsched_delset (posix_appsched_eventset_t *set , int event);
DESCRIPTION

In some scheduling algorithms could be interesting to discard all events but the rele-
vant for the algorithm. This can be achieved thorough the use of events masks to filter
some events in a way similar to posix signals mask manipulation. In to other things
these functions allows you to set the mask of filtered events, get the filtered events
of an application-defined scheduler thread, and manipulate the filtered events mask
(add/remove events to be filtered, ask if an event is filtered, etc...).

ERRORS

No errors are defined.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

OCERA. IST 35102 69

ANNEX 1: Component Manages

SEE ALSO

posix_appsched_execute_actions

pthread_attr_setappscheduler

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

pthread_attr_setappscheduler, pthread_attr _getappscheduler — Set/get
application-scheduled thread scheduler.

Synopsis

#include <pthread.h>

int pthread_attr_setappscheduler (pthread_attr_t attr , pthread_t sched);
int pthread_attr_getappscheduler (pthread_attr_t attr , pthread_t *sched);
DESCRIPTION

These function allows to set/get the application-defined scheduler of an application-
scheduled thread (also known as regular threads). Application-scheduled threads are
threads scheduled by the operating system, but before they can be scheduled, they need
to be activated by their application-defined scheduler.

RETURN VALUE

These functions always return 0.

ERRORS

No errors are defined.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

pthread_attr_setappschedulerstate

pthread_attr_setappschedulerstate

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

pthread_attr_setappschedulerstate — Set thread state (regular thread or
application-defined scheduler).

OCERA. IST 35102 70

ANNEX 1: Component Manages

Synopsis

#include <pthread.h>
int pthread_attr_setappschedulerstate (pthread_attr_t attr , int *type);

DESCRIPTION

According to the way a thread is scheduled, threads can be categorized into:

» System-scheduled threads: those scheduled directly by the operating system, without
intervention of a scheduler thread.

» Application-scheduled threads: these threads are also scheduled by the operating sys-
tem, but before they can be scheduled, they need to be activated by their application-
defined scheduler.

This function allows to distinguish between system-scheduled threads
and application-defined scheduling threads by setting type parameter to:
PTHREAD_REGULAR (application-scheduled thread), PTHREAD_APPSCHEDULER
(application-defined scheduler thread). By default, without calling this function a
thread is supposed to be system-scheduled.

RETURN VALUE

If the call succeeds shall returns 0.

ERRORS

No errors are defined.

AUTHOR

Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

pthread_attr_setappscheduler

pthread_getappschedparam

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

pthread_getappschedparam, pthread_attr_setappschedparam — Get/set
application scheduled task specific parameters.

Synopsis

#include <pthread.h>

int pthread_getappschedparam (pthread_t thread , void *param , int *size);

int pthread_attr_setappschedparam (pthread_attr_t attr , void “*param , int *size);

OCERA. IST 35102 71

ANNEX 1: Component Manages

DESCRIPTION

In addition to the system priority, application-scheduled tasks have application schedul-
ing parameters that are used to schedule that task contending with the other tasks
attached to the same application scheduler.

With pthread_getappschedparam function application scheduling specific param-
eters can be retrieved. While with pthread_attr_setappschedparam function can
be set.

RETURN VALUE

If the call succeeds pthread_getappschedparam function shall return 0 and copy
into the locations referenced by param and size the thread’s specific application-defined
scheduling parameters and its size.

If the call succeeds pthread_attr_setappschedparam function shall return 0 and
copy into the location referenced by attr the application scheduling parameters refer-
enced by param.

ERRORS

No errors are defined.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

posix_appsched_execute_actions

pthread_setspecific_for

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

pthread_setspecific_for, pthread_getspecific_from — Set thread state
(regular thread or application-defined scheduler).

Synopsis

#include <pthread.h>

int pthread_setspecific_for (pthread_key_t key , pthread_t thread , void *param);

int pthread_getspecific_from (pthread_key_t key , pthread_t thread , void **param , int *size);
DESCRIPTION

When a scheduler is processing an event, the scheduling actions to execute will depend
on the current scheduling status of its scheduled threads and particularly on the status
of the thread which caused that event. It would be very interesting to have a mechanism
for obtaining that information in a straightforward and efficient way.

The POSIX-compatible application-defined scheduling API defines two functions
that extends POSIX "thread-specific data" functionality: pthread_setspecific_for,
pthread_getspecific_from. Those functions permit setting and getting thread-specific
data from a thread different from th owner. The scheduler thread can use those
functions for attaching and retrieving the scheduling status of its scheduled threads.

OCERA. IST 35102 72

ANNEX 1: Component Manages

RETURN VALUE

If the call succeeds shall return 0.

ERRORS

No errors are defined.

AUTHOR

Josep Vidal < jvidal@disca.upv.es>

SEE ALSO
pthread_getappschedparam

pthread_sigmask

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name
pthread_sigmask — examine and change blocked signals

Synopsis

#include <signal.h>
int pthread_sigmask (int how, const sigset_t *restrict set , sigset_t *restrict oset);

DESCRIPTION

This is the RTLinux version of pthread_sigmask. The posix function used to examine or
change (or both) the calling thread’s signal mask. The argument how, indicates the way
in which the mask is changed (SIG_SETMASK, SIG_BLOCK, SIG_UNBLOCK). For a
detailed discussion see UNIX spec sigaction, UNIX spec pthread_sigmask(3)

RETURN VALUE

Upon successful completion pthread_sigmask() returns 0; otherwise, it returns -1 and
sets the corresponding error number (EFAULT or EINVAL).

ERRORS
The pthread_sigmask() and sigprocmask() functions shall fail if:

« [EINVAL] The value of the how argument is not equal to one of the defined values.
e The pthread_sigmask() function shall not return an error code of [EINTR]

AUTHOR

Josep Vidal < jvidal@disca.upv.es>

RATIONALE

See pthread_Kkill(3rtl) for a discussion of the requirement on delivery of signals.

OCERA. IST 35102 73

ANNEX 1: Component Manages

SEE ALSO

sigaction(2rtl)
sigsuspend(3rtl)
sigpending(3rtl)

sigpending

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

sigpending — examine pending signals.
Synopsis

#include <signal.h>

int int sigpending (const rtl_sigset_t * set);
DESCRIPTION

This is the RTLinux version of the POSIX function sigpending . This function requests
the set of signals that are blocked for delivery to the calling thread. For further discus-
sion see UNIX spec sigaction, UNIX spec sigpending(3)

RETURN VALUE

Upon successful completion, sigpending() shall returns 0; otherwise, -1 is returned and
errno is set to indicate the error.

ERRORS

No errors are defined.

AUTHOR

Josep Vidal < jvidal@disca.upv.es>

sigsuspend

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name
sigsuspend — wait for a signal

Synopsis

#include <signal.h>
int sigsuspend (const rtl_sigset_t * sigmask);

OCERA. IST 35102 74

ANNEX 1: Component Manages

DESCRIPTION

This is the RTLinux version of the POSIX function used to suspend the calling thread
until delivery of a non-blocked signal whose action is to execute a signal-catching func-
tion. For further discussion see UNIX spec sigaction, UNIX spec sigsuspend(3)

RETURN VALUE

Since sigsuspend() suspends thread execution indefinitely, there is no successful com-
pletion return value. If a return occurs, -1 shall be returned and

ERRORS
The sigsuspend() function shall fail if:

« [EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>
SEE ALSO
Signal Concepts, See pause , pause , sigaction , sSigaddset , sigdelset ,
sigemptyset , sidfillset
timer_create
<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

timer_create — create a per RTLinux process timer.

Synopsis

#include <signal.h>

int timer_create (clockid_t clockid , struct sigevent * restrict evp , timer_t * restrict

timerid);

DESCRIPTION

This is a RTLinux version of the POSIX function timer_create() . The

timer_create() function creates a per RTLinux process timer using the specified clock,
clock_id, as the timing base. For further details see UNIX spec sigaction, UNIX spec
timer_create

NOTES

In RTLinux timer_create should be called from init_module. A timer created from the
RTLinux process, is available to all its threads. RTLinux Timers implementation sup-
ports both CLOCK_REALTIME and CLOCK_MONOTONIC.

OCERA. IST 35102 75

ANNEX 1: Component Manages

RETURN VALUE

If the call succeeds, timer_create() shall return zero and update the location referenced
by timerid to a timer_t, which can be passed to the per-process timer calls. If an error
occurs, the function shall return a value of -1 and set errno to indicate the error. The
value of timerid is undefined if an error occurs.

ERRORS

The timer_create() function shall fail if:

o« [EAGAIN]: timer_create isn’t called from Linux thread (init_module).
« [EINVAL]: The specified clock ID is not defined.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

clock_getres
timer_delete
timer_getoverrun

timer_delete

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

timer_delete — delete a per RTLinux process timer.

Synopsis

#include <signal.h>
int timer_delete (timer_t * restrict timerid);

DESCRIPTION

This is the RTLinux version of the POSIX function timer_delete . The
timer_delete() function deletes the specified timer, timerid, previously created by the
timer_create() function. For further details see UNIX spec sigaction, UNIX spec
timer_delete

NOTES

In RTLinux timer_delete should be called from the Linux thread (init_module,
cleanup_module).

RETURN VALUE

If successful, the timer_delete() function shall return a value of zero. Otherwise, the
function shall return a value of -1 and set errno to indicate the error.

OCERA. IST 35102 76

ANNEX 1: Component Manages

ERRORS

The timer_delete() function fails if:

e [EINVAL]: The timer ID specified by timerid is not a valid timer ID.
o [EINVAL]: If timer_delete isn’t called from Linux thread.

AUTHOR

Josep Vidal < jvidal@disca.upv.es>

SEE ALSO

timer_create

timer_settime

<jvidal@disca.upv.es >

dJ. Vidal2002-12-12

Name

timer_gettime,timer_settime — per RTLinux process timers.

Synopsis

#include <signal.h>

int timer_gettime (timer_t timerid , struct itimerspec * value);

int timer_settime (timer_t timerid , int flags , const struct itimerspec * restrict value

struct itimerspec * restrict ovalue);

DESCRIPTION

This are the RTLinux versions for the POSIX functions timer_gettime()
timer_settime() used for requesting the time remaining until next expiration

and for arming/disarming a timer, respectively. For further details see, UNIX spec
sigaction, UNIX spec timer_gettime & UNIX spec sigaction, UNIX spec timer_settime

RETURN VALUE

If the timer_gettime() or timer_settime() functions succeed, a value of 0 shall be re-
turned.

If an error occurs for any of these functions, the value -1 shall be returned, and errno
set to indicate the error.

ERRORS

The timer_gettime(), and timer_settime() functions shall fail if:

« [EINVAL]: The timerid argument does not correspond to an ID returned by
timer_create() but not yet deleted by timer_delete().

The timer_settime() function shall fail if:

« [EINVAL] A value structure specified a nanosecond value less than zero or greater
than or equal to 1000 million, and the it_value member of that structure did not spec-
ify zero seconds and nanoseconds.

AUTHOR
Josep Vidal < jvidal@disca.upv.es>

OCERA. IST 35102 77

ANNEX 1: Component Manages

SEE ALSO

clock_getres(3rtl)
timer_create(3rtl)

make_linux_task_cbs_server

<patbalbe@disca.upv.es >

P. Balbastre2002-11-06

Name

make_linux_task_cbs_server — Change linux task parameters to execute it with
CBS scheduling policy.

Synopsis

#include <rtl_sched.h>
extern void make_linux_task_cbs_server (hrtime_t start , hrtime_t initbudget , hrtime_t
deadline , hrtime_t period , int priority);

DESCRIPTION

make_linux_task_cbs_server Change linux task parameters to execute it with
SCHED_CBS_NEcheduling policy.

SCHED_CBS_NBcheduling policy efficiently handle soft real-time requests with a vari-
able or unknown execution behavior under SCHED EDF_NRcheduling policy. To avoid
unpredictable delays on hard real-time tasks, soft tasks are isolated through a band-
width reservation mechanism, according to which each soft task is assigned a deadline,
computed as a function of the reserved bandwidth and its actual requests. If a thread
requires to execute more than its expected computation time, its deadline is postponed
so that its reserved bandwidth is not exceeded.

This function allows linux task to serve aperiodic events. This way, when an aperiodic
event arrives, the linux task "inherits" the properties of the CBS thread by means of the
make_linux_task_cbs_server function.

SCHED_EDF_NRs a scheduling policy that combines both static and dynamic priority
scheduling. Threads are ordered by priority, and among the same static priority threads
with closer deadline first. Each thread has two scheduling attributes: priority and dead-
line. It is a Rate Monotonic policy and an EDF policy at each priority level.

RETURN VALUE

No value returned.

ERRORS

Parameter checking is not performed. Incorrect parameters may result in random er-
rors.

AUTHOR

Patricia Balbastre <Patricia@disca.upv.es>
Pau Mendoza <pabmench@disca.upv.es>

OCERA. IST 35102 78

ANNEX 1: Component Manages

SEE ALSO

pthread_setinitbudget_np(3rtl) . pthread_attr_setinitbudget _np(3rtl)
pthread_initcbs_np(3rtl)

pthread_attr_setinitbudget_np

<patbalbe@disca.upv.es >

P. Balbastre2002-11-06

Name

pthread_attr_setinitbudget _np, pthread_attr _getinitbudget _np —
examine and change the initbudget thread attribute

Synopsis

#include <rtl_sched.h>

int pthread_attr_setinitbudget_np (pthread_attr_t *thread , hrtime_t initbudget);

int pthread_attr_getinitbudget_np (pthread_attr_t *thread , hrtime_t * initbudget);
DESCRIPTION

This function is a non-portable Real-Time Linux extension.
pthread_attr_setinitbudget _np() and pthread_attr_getinitbudget _np()

function set and get the initbudget parameter of attr structure. Before calling
these functions, structure pointed by attr must be initialized by calling
pthread_attr_init()

The initbudget parameter is defined for those threads whose scheduling policy is
SCHED_CBS_NP

SCHED_CBS_NRBcheduling policy efficiently handle soft real-time requests with a vari-
able or unknown execution behaviour under EDF (SCHED_EDF_NPscheduling policy.
To avoid unpredictable delays on hard real-time tasks, soft tasks are isolated through a
bandwidth reservation mechanism, according to which each soft task is assigned a dead-
line, computed as a function of the reserved bandwidth and its actual requests. If a task
requires to execute more than its expected computation time, its deadline is postponed
so that its reserved bandwidth is not exceeded.

SCHED_EDF_NRs a scheduling policy that combines both static and dynamic priority
scheduling. Threads are ordered by priority, and among the same static priority threads
with closer deadline first. Each thread has two scheduling attributes: priority and dead-
line. It is a Rate Monotonic policy and an EDF policy at each priority level.

On initializing attr, the attribute initbudget takes the value 0.

RETURN VALUE

Both functions returns zero.

ERRORS

Parameter checking is not performed. Incorrect parameters may result in random er-
rors.

AUTHOR

Patricia Balbastre <patricia@disca.upv.es>
Pau Mendoza <pabmench@disca.upv.es>

OCERA. IST 35102 79

ANNEX 1: Component Manages

SEE ALSO
pthread_setinitbudget_np(3rtl) . pthread_initcbs_np(3rtl)

pthread_initcbs_np

<patbalbe@disca.upv.es >

P. Balbastre2002-11-06

Name
pthread_initcbs_np — Initializes a thread with SCHED_CBS_NREcheduling policy.

Synopsis

#include <rtl_sched.h>
int pthread_initcbs_np (pthread_t thread , hrtime_t period);

DESCRIPTION
This function is a non-portable Real-Time Linux extension.
pthread_initcbs_np initializes a thread with SCHED_CBS_NERcheduling policy.

For those threads with SCHED_CBS_NBcheduling policy the period of the thread must
be defined calling this function. For periodic threads with other scheduling policies it
must be used the pthread_make_periodic_np function.

SCHED_CBS_NBcheduling policy efficiently handle soft real-time requests with a vari-
able or unknown execution behaviour under SCHED_EDF_NRBcheduling policy. To avoid
unpredictable delays on hard real-time tasks, soft tasks are isolated through a band-
width reservation mechanism, according to which each soft task is assigned a deadline,
computed as a function of the reserved bandwidth and its actual requests. If a thread
requires to execute more than its expected computation time, its deadline is postponed
so that its reserved bandwidth is not exceeded.

SCHED_EDF_NRs a scheduling policy that combines both static and dynamic priority
scheduling. Threads are ordered by priority, and among the same static priority threads
with closer deadline first. Each thread has two scheduling attributes: priority and dead-
line. It is a Rate Monotonic policy and an EDF policy at each priority level.

RETURN VALUE

Returns zero.

ERRORS

Parameter checking is not performed. Incorrect parameters may result in random er-
rors.

AUTHOR

Patricia Balbastre <patricia@disca.upv.es>
Pau Mendoza <pabmench@disca.upv.es>

SEE ALSO
pthread_setinitbudget_np(3rtl) . pthread_attr_setinitbudget _np(3rtl)

OCERA. IST 35102 80

ANNEX 1: Component Manages

pthread_setinitbudget_np

<patbalbe@disca.upv.es >

P. Balbastre2002-11-06

Name

pthread_setinitbudget_np, pthread_getinitbudget_np — set get the initial
budget of a thread

Synopsis

#include <rtl_sched.h>

int pthread_setinitbudget_np (pthread_t thread , hrtime_t initbudget);

int pthread_getinitbudget_np (pthread_t thread , hrtime_t * initbudget);

DESCRIPTION

This function is a non-portable Real-Time Linux extension.

pthread_setinitbudget_np() and pthread_getinitbudget_np() function

set and get the initbudget parameter of thread. The scheduling policy of a thread
is automatically set to SCHED_CBS NPwhen an initial budget is assigned with
pthread_setinitbudget_np()

SCHED_CBS_NRcheduling policy efficiently handle soft real-time requests with a vari-
able or unknown execution behaviour under EDF (SCHED_ EDF_NPscheduling policy.
To avoid unpredictable delays on hard real-time tasks, soft tasks are isolated through a
bandwidth reservation mechanism, according to which each soft task is assigned a dead-
line, computed as a function of the reserved bandwidth and its actual requests. If a task
requires to execute more than its expected computation time, its deadline is postponed
so that its reserved bandwidth is not exceeded.

SCHED_EDF_NRs a scheduling policy that combines both static and dynamic priority
scheduling. Threads are ordered by priority, and among the same static priority threads
with closer deadline first. Each thread has two scheduling attributes: priority and dead-
line. It is a Rate Monotonic policy and an EDF policy at each priority level.
SCHED_FIFQ SCHED_RRnd SCHED_EDF_NRre static priority policies, the difference is
the way that each policy cope with threads of the same priority: SCHED_FIFOthreads in
a first in first out order; SCHED_RRhread are time sliced; and SCHED_EDF_NPRhreads
are ordered by absolute deadline (closer absolute deadline are executed first). If all
threads have different priorities, the three policies will execute threads in the same

order.

There are two ways to set the initbudget value of a thread: by calling
pthread_setinitbudget_np() to set the initbudget of an already
created thread; or before it is created at the thread creation attributes (see
pthread_attr_setinitdeadline_np(3rtl)).

RETURN VALUE

Both always functions returns zero.

ERRORS

Parameter checking is not performed. Incorrect parameters may result in random er-
rors.

OCERA. IST 35102 81

ANNEX 1: Component Manages

AUTHOR

Patricia Balbastre <patricia@disca.upv.es>
Pau Mendoza <pabmench@disca.upv.es>

SEE ALSO
pthread_attr_setinitbudget_np(3rtl) , pthread_initcbs_np(3rtl)

ki

OCERA. IST 35102 82

