
WP4 – Resource Management
Components

Deliverable D4.3
Definition of new RM functionalities

WP4 – Resource Management Components : Deliverable 4.3 – Definition of new RM
functionalities
by Giuseppe Lipari

Published July 2003
Copyright © 2003 by OCERA Consortium

Table of Contents
1 Introduction ..1

1.1 Resource Reservation scheduling components..1
1.2 Resource Management component ...1

2 Problems with CBS and GRUB..2
2.1 A new scheduling algorithm..4
2.2Implementation in OCERA..8

3 Feedback Scheduler ..9
3.1 The feedback controller...9
3.2 Scheduler model..9
3.3 The feedback controller algorithm...11
3.4 Improvements of the algorithm..11

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 15/01/2003 First release

1 Introduction

1.1 Resource Reservation scheduling components

Until now, we have developed two schedulers (CBS [Abe98] and GRUB [Lip00]), a
resource manager (the feedback scheduler), a user library and monitoring tools. The two
schedulers are able to provide temporal isolation and real-time guarantees to soft real-
time tasks as well as to legacy Linux processes. In addition, the GRUB scheduler is able
to reclaim unused bandwidth. The reclaimed bandwidth can be used for two purpouses:

• to give more bandwidth to processes that need to execute more

• to save energy by reducing the frequency of the processor.

However, both schedulers suffer some problem in certain situation. When using these
schedulers to execute a non-periodic legacy Linux application a particular problem that
we call deadline aging can happen. We will explain this problem in more detail in the
next section and propose one possible solution that will be implemented in the next
version of the Resource Management components.

1.2 Resource Management component

We would like also to improve the behavior of the resource management component. In
the current version, it is a dynamically loadable module in the Linux kernel that, using
the features of a resource reservation scheduler, dynamically adjusts the server
bandwidth to maximise the quality of service experienced by the application. The
algorithm is based on a feedback control strategy: it measures the scheduling error (i.e.
The difference between the task deadline and the task finishing time) and tries to reduce
this error to 0 by incrementing/decrementing the server maximum budget.

The parameter of the feedback controller can be customised to the application
characteristics. If the application complies to some requirements (for example, the
maximum variation of the computation time is bounded) then our feedback controller
guarantees certain properties. See [Pal03] and [Abe02]for a complete description of the
controller and its properties.

The current version of the controller is quite generic, in the sense that it does not exploit
the characteristic of the application. In fact, it has been designed to work well with a
wide range of applications.

It would be nice if we could customise the feedback controller to the characteristic of the
application. In the context of the OCERA project, we are going to apply feedback
scheduling techniques to multimedia applications like an MPEG player. It is well know
that a MPEG stream consist of an almost regular pattern of frames. We would like to
exploit this regular pattern to improve the behavior of the feedback scheduler. In section
3 we propose a possible improvement of the feedback scheduler and present some
preliminary simulation result that is very encouraging.

OCERA IST 35102 1

2 Problems with CBS and GRUB
To understand the problem, it is necessary to know how algorithms CBS and GRUB
schedule the processes. To avoid repetition, we remand to deliverables D4.1 and D4.2.
The original formulation of the two algorithms can be found in [Abe98] and in [Lip00],
respectively.

The Constant Bandwidth Server does not behave very well when serving a non-periodic
process that consist of one single instance. For example, when we execute the compiler,
it runs without stopping until the program has been compiled. Many “batch” programs
have a similar behaviour. The problem is explained by the following example.

Example 1. Suppose that the two processes are in the system. The first process is a non-
periodic process with a single instance. It is activated at time 0, and it is server by a CBS
with a budget Q1=1 and a period P1=4 . The second process is again a non-

periodic process with a single instance, server by another CBS with budget Q2=3
and period P2=6 and it is activated at time t=7 . The schedule is shown in
Figure 2.1.

As you can see, at the beginning only the first process is active. This process consume all
its budget immediately, so its deadline is postponed. However, since it is the only active
process, it continues to execute and consume again all its budget, postponing its
deadline. Very soon, its deadline goes very far: after 7 instances, the deadline is
d=28 . When the second process arrives, it is the one with the earliest deadline and

it executes. When its budget is entirely consumed, its deadline is postponed: however,
since the deadline of the first process is very far, it is still the earliest deadline process
and continues to execute. It is only after its own deadline becomes greater than the first
process deadline that it is preempted and the first process can continue to execute. We
say that both processes suffer of deadline aging. This problem can happen if at some
point the system is not fully loaded. Since there is nothing else to do, the first process
continues to execute, but in doing so it consumes its future budgets and its deadline is
postponed very often. As a result, when the second process arrives, the priority of the
first process is so low that it executes as it were in background.

The previous behavior is not desirable for many reason. In fact, the main goal of any
resource reservation algorithm is to provide each process Q units of budget every
interval of time P. In the previous example, this is not true: from time 7 to time 17 the
first process cannot execute.

This problem is partially solved by the GRUB algorithm. Consider again the previous
example. In Figure 2.2 we show the schedule produced by the GRUB algorithm.

OCERA IST 35102 2

Figure 2.1: Problem with CBS.

Algorithm GRUB maintains a variable U that keeps track of the total bandwidth used
by the active processes. It uses this information to reclaim unused bandwith and give it
entirely to the executing task (GRUB stands for greedy reclamation of unused
bandwidth). Therefore, in interval [0,7] when the first process is the only active process,
there is not unnecessary postponing of the server deadline. For this reason, when the
second process arrives, the deadline of the first server is not too far and the deadline
aging problem does not happen.

However, GRUB suffers from another undesirable problem that is in some way related to
the previous one. Consider The following example.

Example 2. Consider a system scheduled by the GRUB algorithm consisting of a
process that is always active and is served by a server with budget Q1=1 and period
P1=4 . Another process is a periodic process with period T 2=16 that is served

by a CBS with budget Q2=12 and P2=16 . The resulting schedule is shown in
Figure 2.3.

As you can see, the first process is not scheduled as we expect. In particular, it executes
as it were served by a server with budget Q '=4 and period P '=16 . Notice also
that this behavior depends by the parameters of the other servers in the system. For
example, if the second server had a period of P=20 , the first process would be
scheduled as it were served by a server with budget Q '=5 and P '=20 .

It is quite clear that the problem is caused by the fact that when the budget is exhausted
the process is not suspended, but is inserted again in the ready queue with a new
deadline.

We can solve this problem by introducing the concept of hard reservation. It was first
introduced by Rajkumar [Raj97]. In a hard reservation, when the budget is exhausted,
the process is suspended until the recharging time. In the case of CBS, a hard reservation
can easily be implemented by suspending the process until the server deadline. We could
do this by adding the following rule to the CBS:

Hard Reservation Rule: when the current budget q of the server is 0, the task is
suspended until the current server deadline d . When the time is equal to the server
deadline, the budget is recharged to q=Q , and the deadline is set to d=dP .

OCERA IST 35102 3

Figure 2.2: Same example scheduled by GRUB.

Figure 2.3: Problem with GRUB.

As an example, we apply the previous rule to Example 2. The resulting schedule is
shown in Figure 2.4.

As you can see, the problem is now solved because we forced the first process to be
executed inside its period.

However, even after introducing the Hard Reservation rule, there is still a small problem
that needs to be addressed. It can happen that, in certain cases, the system becomes idle
even if there is some process that needs to be executed. In fact, it can happen that some
process finishes before we expect, while all other processes are suspended waiting for
the recharging time.

Example 3. Consider again the system of Example 2, and suppose that the second
process need to execute only 9.1 units of time. The resulting schedule is shown in Figure
2.5 .

Althought the first process is always active, at time t=13.1 the system becomes idle.
The first process is waiting for recharging while the second process has finished its
instance. It is not easy to understand what to do. One possibility would be to recharge the
budget of process 1 immediately. However, this solution can work in this example, but it
is much more difficult to understand what to do when we have many processes in the
system.

The CBS and GRUB algorithms were not designed for providing hard reservations and
the previous case cannot be handled easily. This last problem is quite important in soft
real-time system, where one of the main goals is to optimise the system resources.
Therefore, we should use work-conserving algorithms.

Next, we describe a new scheduling algorithm, based on CBS, that solves all the three
problems described in this section.

2.1 A new scheduling algorithm

In this section we describe a new server algorithm. Let's first introduce some definitions.

• Like a CBS server, our server has two parameters, the budget Q and the period P.

OCERA IST 35102 4

Figure 2.4: Schedule of Example 2 with Hard Reservations.

Figure 2.5: Hard reservartions make the algorithm non-work-conserving.

• The sum of all server bandwidths cannot exceed 1:

∑
i=1

n Qi
P i

1

• Every server has two internal variables: the current budget q and the current absolute
deadline d. Our algorithm will perform the Earliest Deadline First algorithm among
servers.

• Every server can have four states:

a) Inactive, i.e. the server has no pending job and it does not contribute to the total
bandwidth of the system

b) ActiveContending,, i.e. the server has pending jobs and its current budget is
greater than 0.

c) ActiveNonContending, i.e. the server has no pending jobs but its bandwidth still
contributes to the total system bandwidth.

d) Recharging, i.e. the server has a pending job but its current budget is 0 and it has
to wait to be recharged

• The system maintains

a) a ready queue, where all ActiveContending servers are ordered by deadline

b) a recharging queue, where all Recharging servers are ordered by recharging time

c) a suspended queue, where all ActiveNonContending servers are ordered by
inactive time.

d) a total system bandwidth U t  that is the sum of the bandwidths of all the
servers that are not in the Inactive state.

The state diagram for the algorithm is shown in Figure 2.6 The servers change state
according to the following rules:

1. Initially all servers are in the Inactive state

2. If a job arrives at time t

a) If the server is Inactive, then q=Q and d=tP

b) if the server is ActiveContending or Recharging, the arrival is buffered and will be
served later

c) if the server is ActiveNonContending, it becomes active contending and it is
inserted again in the ready queue with the same current budget and deadline

3. When the server executes for  , q=q−

4. If the server is ActiveContending and q=0 , the server reaches the Recharging

OCERA IST 35102 5

state and the recharging time is set to r=d .

5. If the server is in the Recharging state and t=r , then the server become
ActiveContending and q=Q and d=dP .

6. When the job finishes

a) If there is another pending job, the server remains in the ActiveContending state.

b) If there are no pending jobs and td−q Q
P

, the server becomes inactive

c) otherwise, the server becomes ActiveNonContending and the inactive time is set

to i=d−q Q
P

.

7. If the server is ActiveNonContending and t=i , then the server becomes inactive.

8. If at time t no server is in ActiveContending state and there is at least one server in
Recharging state:

a) let j be the first server in the recharging queue (i.e. The one with the smallest
recharging time), and let =r i−t . For every server i in the recharging queue,
r i=r i− .

b) Every server i in the recharging queue with r i=t is removed from the
recharging queue and inserted in the ready queue; its budget is recharged to
q=Q and its deadline is set to d i=tP i .

The way the algorithm works is better explained by an example.

Example 4. Consider a system consisting of 3 tasks,  1 , 2 and  3 . Task

OCERA IST 35102 6

Figure 2.6: State diagram of the new algorithm.

 1 is always active and is assigned a server with budget Q1=1 and period
P1=4 . Task  2 is a periodic real time task with computation time C 2=1 and

period T 2=6 . It is assigned a server with Q2=2 and P2=6 . Task  3 is

always active and it is assigned a sever with Q3=2 and P3=9 .

The system is underutilised, because the sum of the bandwidths of all server is less than
1. Moreover,  2 uses less bandwidth than expected (only 1 unit whereas it is
allocated 2), and we would like to reclaim this exceeding bandwidth to execute the other
two tasks.

The resulting schedule is shown in Figure 2.7. Each activation of a server is represented
with an upward arrow and the corresponding deadline is represented with a downward
arrow. The activation instant and the corresponding deadline are linked by an arc. For
example, task  3 is activated at time 0 with deadline at 9, at time 6 with deadline at
15 and at time 11 with deadline at 20.

Let's now analyse the schedule.

• At time 0 all tasks are ready, and task  1 is the one with the earliest deadline and
execute. At time 1, the budget is 0 and the server goes to the Recharging state. The
server is inserted in the recharging queue with recharging time r1=4 .

• Then tasks  2 is executed and finish its execution at time 2 without exhausting its
budget. It goes to the ActiveNonContending state, with inactive time at 3.

• Task  3 is executed and its budget goes to 0. Like task  1 , it is inserted in the

recharging queue with recharging time r3=9 . Meanwhile, task %tau%_2 is now
in the Inactive state.

• At time 4, the recharging time for task  1 is come, so it is put in the

ActiveContending state and its budget is recharged to q1=1 and its deadline is set

OCERA IST 35102 7

Figure 2.7: Example of schedule with the new algorithm

to d 1=8 .

• Task  1 is selected to execute, and its budget become 0 again at time 5. It is then

put again in the Recharging with r1=8 . Note that until now the schedule is the
same as with CBS.

• At time 5, there is not other task in ActiveContending. Therefore, rule 8 is applied.
The earliest recharging time is r1=8 . Therefore, all recharging times are

decremented by =r1−t=3 , with the result that r1=5 and r3=6 . Now,

task  1 is put again in the ready queue with budget recharged to q1=1 and

deadline set at d 1=9 .

• Since it is the only task in the ready queue,  1 executes and again exhaust its

budget and is put again in Recharging with r1=9

• At time 6, task  2 arrives and needs to be executed again with deadline
d 2=12 . Moreover, task  3 recharging time is arrived and it is put in the

ready queue with budget q3=2 and deadline d 3=15

The interested reader can go through the remaining of the schedule to check how the
algorithm works. A few things need to be highlighted. Since task  1 and  3 are
always active and never suspend themselves, they spend their time between state
ActiveContending and Recharging. Task  2 is using less than expected, therefore it
goes through states Inactive, ActiveContending and ActiveNonContending. Note that
there are no idle times, as expected, since there are two tasks that are always active. Note
also that each task executes at least Q units of budget every P.

2.2Implementation in OCERA

The proposed algorithm is still in the stage of definition. We need to prove that the
algorithm provides at least the same good properties of CBS and GRUB and, in addition,
that it solves the problems presented in the previous section. Also, we would like to
compare the proposed algorithm with other possible approaches. Finally, we will
implement the algorithm in the next version of the QRES component.

OCERA IST 35102 8

3 Feedback Scheduler
Before describing the work that will be done in the next phase of the OCERA project for
what concerns the Resource Manager component, we briefly recall the basic ideas
underlying the current version of the feedback controller.

3.1 The feedback controller

The algorithm is based on the assumption that that underlying scheduler is a reservation
based scheduler, such the CBS [Abe98]. The use of this class of schedulers is very
important because

• it permits to analyse and control each task separately from the rest of the system. In
fact, a reservation based scheduler provides temporal protection, i.e. to some extent
the temporal behaviour of one task is not influenced by the temporal behaviour of the
other tasks,

• and the temporal behaviour of the task can be precisely modeled.

The second property is very important because it allows us to describe precisely the
mathematical relation between the inputs of the system, its internal state and its outputs.
To the best of our knolwedge, our approach is the first one that uses an exact model of
the scheduler. We now briefly recall this model.

3.2 Scheduler model

A periodic task  i is a (possibly infinite) sequence of jobs J i 1 , J i 2 , ... , each

one characterised by an arrival time ai k =k T i , a deadline d i k =k1T i
and a computation time ci k  . The system consists of one or more soft real-time
periodic tasks. The goal is to minimise the scheduling error for each task. The scheduling
error is defined as the difference between the finishing time of the job and its deadline:

 i k1= f i k – d i k 

In the general case, the finishing time is very much influenced by the scheduling
algorithm. However, a remarkable simplification in this respect arise from using a
reservation based scheduler. The approach can be described as follows.

Each task is served by a CBS server with budget Qi k  and period P i . We define
the server bandwidth U i k  as Qi k /P i . Note that the budget and the bandwidth
depends on k, because our feedback controller will modify the server bandwidth
according to its rule.

For any reservation based system (also for the CBS), we can define the virtual finishing
time VFT i k  of job J i k  as the time it would finish in a dedicated processor of
speed U i k  . For example, if job J i k  arrives at time ai k  and requests
ci k  units of computation time, it would finish at time

OCERA IST 35102 9

 r i k 
ci k 
U i k 

 in the dedicated slower processor. Therefore, its

virtual finishing time is

VFT i k =
ci k 
U i k 

(1)

Intuitively, if VFT i k P i , then we need to allocate a larger reservation to task
i , (i.e. we need to speed-up the dedicated processor) in order to fulfil its

requirements.

In any reservation based scheduler, there is a relationship between the virtual finishing
time and the finishing time. By using the CBS with hard reservations, it can be proved
[Lip00] that:

VFT i k −P i f i k VFT i k P i

Therefore, the smaller is P i , the closest is the difference between the virtual finishing
time and the actual finishing time. Since the virtual finishing time does not depend on
the scheduling algorithm, or on the presence of other tasks in the system, we define our
scheduling error on the virtual time:

 i k1=VFT i k – d i k  (2)

If the scheduling error is greater than 0, then we are giving the task less bandwidth than
necessary. If it is less than 0, then we are giving the task more bandwidth than necessary.

The objective of our controller is to keep the scheduling error as close as possible to 0.
To ensure a good quality of service it is only required that the scheduling error not to be
positive: however, we would also like to minimise the bandwidth given to the task,
because in this way we can use the spare bandwidth for other purposes (for example, for
other tasks or for other less important activities).

Now, Equation (1) is valid only when the server queue is empty when a job arrives. If a
job arrives while another job is being served, this job is enqueued and it will be executed
after the end of the current job. Therefore, the complete equation for the virtual finishing
time can be written as follows:

VFT i k ={ ci k 
U i k 

if VFT i k−1P i

VFT i k−1
ci k 
U i k 

if VFT i k−1P i} (3)

and, the equation for the scheduling error is:

OCERA IST 35102 10

 i k1={ ci k 
U i k 

−P i if  i k 0

 i k 
ci k 
U i k 

−Pi if  i k 0}
We further divide by P i and introduce the step function si k  that is 1 when the
scheduling error is positive and 0 otherwise. We also eliminate the subscript i because
we are now going to analyse the behaviour of one task only. We finally set
u k =1/U k  . After all these substitutions, the equation for the scheduling error

can be written as :

 k =s k  k−1c k u k −1 (4)

Note that:

1. the scheduling error is the output of the system that we want to control to a certain
value. Tipically, we want to control the scheduling error to 0

2. c k  is an unknown (stochastic) variable. We can make some assumption on the
possible evolution of this variable depending on the type of application we want to
control. Namely, we assume that even though c k  is not known in advance, it is
possible to estimate of an interval [cmk  , cM k ] where c k  will be
contained with high probability.

3. u k  is the command variable. We can change this variable in order to control the
scheduling error to 0. However, this variable is bounded too. Remember that the sum
of the bandwidth of all servers in the system must be less than 1.

The second observation is especially noteworthy. In the current version of the feedback
controller we made very general assumptions on the evolution of c k  . This is useful
because we can apply the same algorithm in different contexts.

OCERA IST 35102 11

Figure 3.1: Structure of the feedback controller.

The resulting controller scheme is depicted in Fig.3.1: the command variable u k 
is decided based both on the past history of  k  and on the prediction of the future
values for c k  performed by the estimation block. The proposed scheme has the
following features:

1. The scheduling error remains bounded in a given interval provided that c k 
complies with the estimated region.

2. The above region becomes more and more tight when a better estimation is used for
c k  .

3. The produced values for u(k) respect the saturation constraint on the bandwidth.

4. If at a certain time, the schedulign error is outside of the specified region, then the
algorithm ensures convergence in a finite number of steps.

We now show some simulation that demonstrate the effectiveness of the approach. We
used a real data stream (courtesy of Philips Research) taken from the decoding of a DVD
stream. In Figure 3.2 we plot the decoding time for the first section of the stream.

OCERA IST 35102 12

Figure 3.2: Decoding time for the DVD stream, normalised to the period (courtesy of Philips
Research).

Figure 3.3: Scheduling error in case of static allocation of the bandwidth. The allocated
bandwidth is slightly greater than the average required bandwidth.

In Figures 3.3 and 3.4 we show the the scheduling error when we assign the application a
fixed bandwidth and schedule it with CBS. As you can see, if we allocate the bandwidth
based on the average value of c k  (Figure 3.3), the scheduling error can become
very high. If we allocate the bandwidth on the maximum value of c k  , we have an
overallocation (the scheduling error is always lower than 0), wasting bandwidth.

In Figure 3.4 we show the scheduling error when the feedback control is in place. As
you can see, the scheduling error is almost always inside [-0.2,0.2]. However, there is
still space for improvement.

3.3 Improvements of the algorithm

In many practical cases c k  evolves according to some structure. For example, a
MPEG2 stream is composed of three different kinds of frames: the I frames contain a lot
of information and it takes more time to decode them; the P and B frames contain only
partial information and can be decoded in a shorter time. Moreover, the sequence of
frames in the stream often presents a periodic pattern. In our experiments, the pattern
was IBBPBBPBBPBB. Therefore, we can exploit this regularity in the estimation block
(see Figure 3.1).

In particular, we ran some preliminary simulation of a new control algorithm based on
more than one moving avarage. In Figure 3.5, the probability distribution functions for
the scheduling errors are shown in the case of 1 moving average (i.e. the current
implementation of the feedback controller), of 3 moving averages (i.e. it does not
distinguish between I and P frames) and of 12 moving averages (i.e. it distinguishes
between every single frame in the pattern). As it is possible to see, the last case is the
most favourable.

OCERA IST 35102 13

Figure 3.4: Scheduling error in case of static allocation of the bandwidth. The allocated
bandwidth is equal to the maximum required bandwidth. There are large intervals over which the

bandwidth is overallocated.

Bibliography
Abe02: Luca Abeni, Luigi Palopoli, Giuseppe Lipari, Jonathan Walpole, Analysis

of a Reservation-Based Feedback Scheduler,Proc. of IEEE Real-time
systems symposium, 2002

Abe98: Luca Abeni and Giorgio Buttazzo, Integrating Multimedia Applications in
Hard Real-Time Systems,Proceeding of the 19th Real-Time Systems
Symposium, 1998

Lip00: Giuseppe Lipari and Sanjoy Baruah, Greedy Reclamation of Unused
Bandwidth in Constant Bandwidth Servers,Euromicro Conference on Real-
Time Systems, 2000

Pal03: Luigi Palopoli, Luca Abeni, Giuseppe Lipari, On the applications of hybrid
control to CPU Reservations,Proc. of Hybrid system computation and
control, 2003

OCERA IST 35102 14

Figure 3.5: PDF of the scheduling error with different moving averages.

