
WP9 Validation on platform

Deliverable D9pc.2
 Process control application

 component specification

WP9 Validation on platform : Deliverable D9pc.2 Process control application - component
specification
by Ales Hajny and Petr Cvachoucek

Published May 2003
Copyright © 2003 by OCERA Consortium

Table of Contents
Chapter 1. Description of control system software structure ..1

Description of control algorithm interpreter ExeCont...1
Chapter 2. Component Specification..4

Developed components..4
Planned use of OCERA components...4
Description of components..5

Interface TioStore (technology IO store)..5
Interface MsgStore (message store)..6
Interface IpcMsgQueue (interprocess message queue)...7
Process NdMan (node manager)...8
CanIO subsystem..8
Ethernet communication...9

OCERA IST 35102 iii

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia, Spain
Phone:+34 963877576

Fax:+34 963877576
Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E
CR 2 Scuola Superiore Santa Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 27/05/03First release

OCERA IST 35102 iv

Chapter 1. Description of control system software
structure

Control system SW consists of blocks as depicted in the following figure. The blocks
exchange information via data IO interface. The control system kernel is an
interpreter of control algorithms which meets the requirements of ISO 61131. The
other system modules ensuring control system node management, communication
between nodes and data transmission from process interfaces will be connected to the
interpreter.

Description of control algorithm interpreter ExeCont

Application ExeCont includes the following program modules:
 MessProc - module for processing messages sent by other stations or processes

and received via IpcMsgQueue interface, generation of replies and their sending
out via IpcMsgQueue.

 MessGen - module for generation of events on application program variables,
generation of messages to other stations or processes and their sending out via
MsgStore.

OCERA IST 35102 1

interpreter

IpcMsgQueue

interpreter
task

IpcMsgQueue

node
manager

IpcMsgQueue

ethernet
UDP/IP socket

CANopen
device

node
database

TioStore

data

control

parameters

soft RT
hard RT

hard RT

hard RTsoft RT

MsgStore

node
manager

IpcMsgQueue

soft RT

communication
subsystem

IpcMsgQueue

IO subsystem

IpcMsgQueue

 Modules of libraries of execution functions of FWE object interpretation classes

 KerExe - Interpreter kernel module

The interpreter kernel contains three-level hierarchy of C++ objects, and an
additional fourth level from the viewpoint of UniCAP objects (order from the top
of the hierarchy downwards):

1. The only object of cNdExe class covering the whole interpreter

2. Up to three subordinated objects of cTaskPc class reprezenting individual
priority classes of category TASK

3. Objects of cTask class corresponding to the objects of category TASK defined
for given node in UniCAP

4. FWE objects

State diagram of interpreter UCtasks of ATDN node target database

OCERA IST 35102 2

cTask function:Exec() forms the interpreter kernel, and includes three gradually
executed parts:

1. Preparation of data entering the task - potential initialization of variables,
download of data addressed to the task by the tasks of another nodes (via
MsgStore interface), download of input data from local and remote IO modules
(via TioStore interface) and their eventual sending for transmission via
synchronization channel into the node in Standby state.

2. Interpretation loop, in which interpretation functions FWExec are gradually
activated for individual instances of FWE objects.

3. Output variable data transfer for transmission to IO modules (via TioStore
interface), generation of events and event messages with transfer for sending
the messages for other processes and tasks of other nodes (via MsgStore
interface), and potential generation of synchronization messages and their
transfer for transmission into Standby node.

The interpretation loop is written as an endless one, and its quitting is realized by
a mechanism of user exception enforced in the body of an object of End type, or as
a consequence of a run-time error.

OCERA IST 35102 3

Chapter 2. Component Specification

Developed components

To connect the interpreter to the control system node, the following data IO
interfaces and control system modules will be implemented in OCERA environment:

 Interface TioStore (technology IO store)
 Interface MsgStore (message store)
 Interface IpcMsgQueue (interprocess message queue)
 Node manager - process NdMan
 CanOpen IO subsystem – CanIO
 Ethernet communication – process ExeCom

Planned use of OCERA components

 CanOpen - DS301
 CanOpen analyzer
 Ethernet communication – RTPS
 Semaphore between user and kernel space
 Shared memory between user and kernel space
 Signals between user and kernel space
 PowerPC implementation

OCERA IST 35102 4

Description of components

Interface TioStore (technology IO store)

Interface TioStore will serve for handing over of values of variables among more
processes. It will enable store of variables of various data types, and offer tools for
synchronization of processes in access to variables stored in the interface. Internal
implementation and structure of the interface will be fully hidden for the applying
processes; they will work with the interface by means of a set of methods (API).

Interface requirements:
 Interface contains a set of slots - slot is an array of variables of identical data

type
 Slots are identified by their ID (ordinal number) and a short name in the

interface
 Slot contains, besides an array of variables, also state - an item to be freely

used by the processes connected to the interface (handing over state
information such as validity of variable values etc.)

 A number of processes can be connected to the interface simultaneously, the
maximum number of the processes connected is specified as a parameter in
the interface design

 Access to the variables in the interface is synchronized by means of a lock
(mutex); every elementary operation (read, write of variables) is lockable

 Calling processes can lock the interface for the whole sequence of individual
elementary operations

 The number of connected processes, their PIDs and names can be determined
by means of API interface

 Processes connected to the interface can send signals to each other and thus
control the access to variables (the process which modifies the variables in
the interface can send this information to the other processes connected)

 For every connected process, the interface contains a memory (queue) of
several recent entries - it is designed for the processes which want to process
only changes in the interface; the number of memorized changes is a
parameter set in the interface design - the function is only executed, if a
connected process requires this functionality

 The interface is implemented as a C++ object
 Implementation uses objects DataModule (shared memory between

processes) and Mutex (lock) from the library UcFramework, which ensure
independence on the target platform

 Implementation for soft, hard RT environment and between the both
environments

Diagnostic utility DumpTio:
 designed for viewing and modifying the content of TioStore interface
 has a form of a line program controlled from the command line

Components used: shared memory, semaphore and signal between soft and hard RT
environment.

OCERA IST 35102 5

Interface MsgStore (message store)

Interface MsgStore will serve for handing over messages (blocks of data of various
size) among more processes. The order of read of messages from the interface can be
arbitrary (it is selected by the process/processes which takes/take the messages from
the interface). The inserted messages are identified by additional tags such as
message priority, sender, recipient, user context etc., which are used by the other
processes in taking messages from the interface. Internal implementation and
structure of the interface will be fully hidden for the applying processes; they will
work with the interface by means of a set of methods (API).

Interface requirements:
 Messages are stored in a set of blocks - block is a basic allocation unit in the

interface
 Messages longer than one block are divided into more blocks; the interface

should make it possible to set whether the message can be fragmented or must
lie in a continuous area

 Messages are unambiguously identified by their ID (determined by the
number of the block they are stored in)

 A number of processes can be connected to the interface simultaneously, the
maximum number of the processes connected is specified as a parameter in
the interface design

 Access to the messages in the interface is synchronized by means of a lock
(mutex); every elementary operation (message read, write) is lockable

 Calling processes can lock the interface for the whole sequence of individual
elementary operations

 The number of connected processes, their PIDs and names can be determined
by means of API interface

 Processes connected to the interface can send signals to each other and thus
synchronize each other

 Message can have assigned a specification of the recipient, priority and
context (user defined information) and a signal (process which wrote the
message in the interface can apply for signal sending at the moment when the
message is read from the interface)

 Processes connected to the interface can, using its API, also determine what
messages are stored in the interface, and select their own algorithms in
message selection

 Most common requirements (such as selection of the oldest message in the
interface, selection of a message with the highest priority etc.) will be
implemented as methods in API interface

 The interface is implemented as a C++ object
 Implementation uses objects DataModule (shared memory between

processes) and Mutex (lock) from the library UcFramework, which ensure
independence on the target platform

 Implementation for soft, hard RT environment and between the both
environments

OCERA IST 35102 6

Diagnostic utility DumpMsg:
 intended for viewing and modifying the content of MsgStore interface
 has a form of a line program controlled from the command line

Components used: shared memory, semaphore and signal between soft and hard RT
environment.

Interface IpcMsgQueue (interprocess message queue)

Interface IpcMsgQueue will serve for transfer of messages between processes, when
the messages will be read from the interface in the order of their writing (FIFO). The
interface provides a simple but very efficient mechanism of interprocess
communication. It is designed for one-way transmission of messages from more
processes to a queue owner.

Interface requirements:
 Messages will be stored in a circular buffer in the shared memory

(DataModule)
 Buffer access is synchronized by means of a lock (mutex)
 Process writing a message into the queue can call for sending a signal at the

moment of message collection from the queue
 Queue owner (the process which created the queue and the only process

which read the messages from the queue) can call for sending of the signal at
the moment of writing the message into the queue

 Implementation for soft, hard RT environment and between the both
environments

Components used: shared memory, semaphore and signal between soft and hard RT
environment.

OCERA IST 35102 7

Process NdMan (node manager)

Links between processes and interfaces used:

Requirements for NdMan process:
 At node start, it determines the state of the node itself based on

communication with NdMan of the standby node
 It monitors the standby node state, and decides on the state of the node itself

(ACTIVE/STANDBY)
 It receives messages from interpreter Execont - requests for a change of the

node state coming from the tuning tool UniTun or from internal diagnostics
of Execont process

 Monitoring is carried out by means of messages transmitted between NdMan
processes in both nodes

 In changes of the state of its own node, it commands other processes
(Execont, BackupIO, CanIO)

 Commanding is executed by means of sending messages via IpcMsgQueue
interface

CanIO subsystem

Requirements for CanIO subsystem:
 It ensures reconfiguration of CAN subsystem (concurrent copman process)

according to the commands from NdMan process
 CAN subsystem is controlled according to current state of the node itself

(ACTIVE/STANDBY) in such a way that CAN network is controlled from
the active node only

Components used: CanOpen

Ethernet communication

OCERA IST 35102 8

NdMan

IpcMsgQueue

ExeCont

IpcMsgQueue

CanIO

IpcMsgQueue

It enables data exchange between control system nodes and control application
development station.
Requirements:

 Transmission of data to the target node
 Receipt of data from the target node
 Acknowledgement of data receipt to the source node
 User information on node unavailability
 Dynamic configuration of the network by means of broadcast of node state

messages

Components used: RT ethernet

OCERA IST 35102 9

