
WP9 – Validation on platform

Deliverable D9rb.2 – Robotic Application
Component Specification

WP9 – Validation on platform : Deliverable D9rb.2 – Robotic Application Component
Specification

by F. RUSSOTTO (CEA)

Published: july 2003

Copyright © 2003 by OCERA Consortium

OCERA IST 35102 3

Table of Contents
1 Introduction ... 5

2 General... 5

2.1 Application overview .. 5

2.2 Hardware architecture.. 6

2.3 Software architecture ... 6

2.3.1 Operating system, Linux & RTLinux kernels ...6

2.3.2 OCERA components ...7

2.3.3 Robotic application V0..7

3 Main components description.. 9

3.1 Client application (virtuose_client) ... 9

3.2 Haptic controller (hapticctrl_app) ... 10

3.3 Communication protocol (hap_protocol) .. 11

3.4 Synchronous cycle supervisor (hap_clock) ... 15

3.5 Servo-control (hap_servo) ... 17

3.6 Input/Output (hap_io) and Virtuose simulator (hap_simulator).......................... 18

4 Requirements ... 20

4.1 Functional requirements .. 20

4.2 Performance requirements ... 20

5 Acronyms... 21

OCERA IST 35102 4

Document Presentation

Project Coordinator

Organization: UPVLC

Responsible person: Alfons Crespo

Address: Camino Vera, 14, 46022 Valencia, Spain
Phone: +34 963877576

Fax: +34 963877576
Email: alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E

CR 2 Scuola Superiore Santa Anna SSSA I

CR 3 Czech Technical University in Prague CTU CZ

CR 4 Commissariat a l’Energie Atomique CEA FR

CR 5 Unicontrols UC CZ

CR 6 MNIS MNIS FR

CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 28/07/2003 First release

OCERA IST 35102 5

1 Introduction

The objective of this work package is to demonstrate the efficiency of the developed
operating-system components (WP4 to WP7). For this purpose three applications are
proposed covering the following domains: robotics, multimedia and process control.

This document defines the Robotic Application Component Specification. Robotic
applications require high performances from the real-time operating system: high frequency
and delay accuracy for digital servo loops, high reactivity to take into account asynchronous
events, robust and reliable input/output control, communication and efficient multitasking

This document is not intended to give a full description of the internal structures and
mechanisms of the application. Its goal is to provide a detailed description of the interface
mechanisms involved when the application interacts with the other components (eg: the Linux
Kernel, the RTLinux Kernel and the system components, including the OCERA components).

2 General

2.1 Application overview

The Robotic application that will be developed for the OCERA project is a Servo-control
application of a master robot arm (called “haptic device”). It is used in an immersive and
interactive theater. The haptic device allows user to manipulate virtual objects located into a
virtual 3D scene projected in front of the user through a high dimension screen.

Figure 1 : Interactive and immersive system of virtual manipulation

OCERA IST 35102 6

The haptic device is a six-axis robot arm including six motors, six position sensors and a six-
axis force sensor. It is controlled in position and force to give the operator force feedback
computed from the interaction with the virtual environment. So that the user can feel contacts,
collisions, repulsions, frictions and even gravity when he manipulates objects into the virtual
scene.

The system requires high performances from the embedded controller that pilots the haptic
device. Indeed, for good force feedback, the haptic device must have a high bandwidth,
typically 50 to 100 Hz. Such high bandwidth require a very high sampling frequency
regarding the embedded controller; to fix ideas, a minimum of 10 to 20 times the bandwidth is
required, e.g.: 1000 Hz sampling rate is needed from the embedded controller.

The Robotic application running on a true robot-arm will be finalized at the end of the project
(application V1). For now, the robotic application V0 will be developed in order to run a
simulated robot-arm instead of a true one. This will allow to debug and fine tune the
application prior to use it on a real device which could be dangerous for user if that phase was
bypassed.

2.2 Hardware architecture

The final target platform for the Robotic application V1 (the controller) is an Intel Pentium III
@850 MHz on an Intel i440BX chipset as described in document D9rb.1 (Robotic application
requirement specification).

However, for tests purpose, the application V0 will be run on a most powerful platform: an
Intel Pentium 4M @2.0 GHz on an Intel i845 chipset (Dell Precision M50). So that, the robot-
arm simulator introduced for test purpose should not disturb the application behavior,
moreover we should be able to run locally in a graphical environment a Client application and
an interface for the simulator. This will improve the application robustness.

2.3 Software architecture

2.3.1 Operating system, Linux & RTLinux kernels

The Operating System installed for Application V0 is Linux. It is based on a Debian 3.0R1
distribution.

The Linux kernel has been recompiled to version 2.4.18 (compiler: gcc 2.95.4) with the
following patches preliminary applied (prepatched OCERA Linux kernel): 'BigPhysArea',
'LowLatency', ‘PreemptKernel’ and OCERA pcomp-1.0-1 (PK/RTL compatibility). The rtl-
3.2-pre1 patch was also applied to Linux kernel. The following kernel options have been
selected: no ACPI, no APM, BigPhysArea, Kernel-Preemption, Low-Latency, IDE DMA1
and APIC UP; the full configuration file will be made available on CVS.

RTLinux kernel version 3.2-pre1 has been installed with BigPhysArea patch applied. The
following kernel options have been selected : dynamic memory support, no user space real-
time; the full configuration file will be made available on CVS.

1 in case of using an old or low-perf. disk drive, this option should be disabled in order to avoid latency
issues due to PCI DMA.

OCERA IST 35102 7

2.3.2 OCERA components

The following OCERA components will be used in application V0:

- Doubly Indexed Memory Allocator 0.70-1
- POSIX Barriers 0.1-1
- POSIX Timers 0.2-1
- POSIX Trace 1.0-1
- Fault Tolerance Application Monitor 0.1-1
- Fault Tolerance Controller 0.1-1

2.3.3 Robotic application V0

The overall Robotic application V0 consists mainly of two components : a Servo-control
application running on the local machine (mainly in the Linux kernel) and a Client application
allowing high level control of the Servo-control application and running remotely on a Linux
or Windows machine or locally in the Linux user space.

The Client-application consists mainly of one component described shortly in the next chapter
but not detailed since it does not involve any real-time feature. In the next chapters, we will
use: “application” to deal with: “Servo-control application”.

The Servo-control application is intended to control in position, speed and force a six DoF
robot-arm called Virtuose. As the application is in pre-alpha test version, it will not be
connected to a true Virtuose robot-arm but to a simulated one running synchronously in the
context of the main Servo-control task.

The Servo-control application is divided into 5 main components which are described in the
following chapter:

- Communication protocol (hap_protocol)
- Synchronous cycle supervisor (hap_clock)
- Servo control (hap_servo)
- Input/Output (hap_io)
- Virtuose simulator (hap_simulator)

Each component dependency is also described as soon as it involves calls or requires services
from Linux, RTLinux or OCERA components.

At runtime, the Servo-control application consists of three hard real-time kernel tasks and two
soft real-time user tasks (actually 2 threads launched by a main process sleeping until threads
termination); see figure below for details.

- Soft real-time tasks (user space) :
o SERVER and CLIENT threads of the PROTO_INTERFACE process respectively

run the server side and the client side of the hap_protocol component,
- Hard real-time tasks (kernel space) :

o PROTO_IN runs the hap_proto_in sub-component of hap_protocol,
o CLOCK runs the hap_clock component,
o SERVO runs the hap_servo component and its dependencies including the

hap_proto_server sub-component of hap_protocol, the hap_io component and
the hap_simulator component.

OCERA IST 35102 8

The following figure shows the overall Servo-control application architecture (excluding
Client application). A graphical user interface should be developed to control the behavior of
the Virtuose robot arm simulator (hap_simulator); this component will run locally in user
space and will communicate with the simulator through RT-FIFOs (component and associated
FIFOs are not represented on the figure). Main components of the application are detailed in
the next chapter.

Figure 2 : Servo-control application architecture

OCERA IST 35102 9

3 Main components description

3.1 Client application (virtuose_client)

The Client application consists of an executable linked to a static library called virtuose_api
that runs in the user space. The virtuose_api library provides a complete API set for high
level control of the Servo-control application and data transfer at high rate in soft real-time
between the Client and the Servo-control applications.

The Client application is intended to be run on a remote computer (though it can be run
locally in the machine user space). The Client application is the only task of the Robotic
application that can run remotely; all other tasks described in this chapter run on the local
machine and are part of the Servo-control application. The virtuose_api uses a standard
Ethernet connection and the UDP/IP protocol to communicate with the Servo-control
application (though no Ethernet adapter is required if the Client application run locally).

The communication API used by virtuose_api is the standard Socket one. Data are
encapsulated in a specific protocol (named: “haptic protocol”) onto UDP/IP. Data transmitted
are encoded to then decoded from the Sun® XDR® format to avoid data corruption due to
communication between different platforms (virtuose_api is available for Linux, Win32 and
SGI).

The virtuose_api API is intended to be linked to an application running the Physical Engine
(as described in document D9rb.1); this will be done in the second phase of the OCERA
project for Robotic Application V1. For Robotic application V0, the virtuose_api will be
linked to a test Client application that will simulate the final Physical Engine Client
application behavior (all functionalities of the Servo-control application are not fully available
yet and thus do not allow to run a true Physical Engine). The test Client application will
consist of a graphical user interface representing (in 3D) a virtual world including a pair of
spheres which one can be coupled to the (simulated) Virtuose robot arm. The test Client
application will also perform the initialization tasks needed by the Servo-control application
to run properly : references definition, units definition, application specific internal variables
definition and interactive mode initialization.

Figure 3 : “Test” Client application V0 snapshot

OCERA IST 35102 10

3.2 Haptic controller (hapticctrl_app)

The Haptic controller component (hapticctrl_app) is the top-level component of the Servo-
control application dependency tree. It implements the entry point of the kernel application
(init_module()), the application main initializing function, application specific servo-control
functions and the application termination function. The initializing function creates, at the end
of initialization phase, the main kernel threads of the application (CLOCK, SERVO and
PROTO_IN).

The hapticctrl_app component is not represented on Figure 2 since it is active only at
application startup. Figure 2 shows active tasks at runtime only.

The basic tasks carried out by hapticctrl_app at application initialization are the following:

- ITCs creation (rtf_in, rtf_out, sem_rtf_in, mtx_proto, mtx_data, bar_clock and other
needed RT-FIFOs),

- application components initialization: Communication protocol (hap_protocol; this
initiates Client connection), Servo (hap_servo; this initializes servo-loop parameters),
Input/Output (hap_io; this does nothing in application V0 but will initialize I/O cards in
application V1), State model (hap_state_model; this initializes internal variables needed
to compute logical and physical states), Control (hap_control; this initializes controller
filters), Virtuose simulator (hap_simulator; this initializes initial state of the simulator)
and all required dependencies,

- application specific variables/parameters definition and setting (references, units and
internal variables),

- initial (simulated) robot arm positions calibration,
- CLOCK, SERVO and PROTO_IN kernel tasks creation.

The basic tasks carried at by hapticctrl_app at application termination are the following:

- Client connection closing (hap_protocol),
- SERVO and PROTO_IN kernel tasks deletion,
 [the following tasks may be performed at module unload (cleanup_module())]
- ITCs destruction,
- dynamic memory deallocation (most of the application components dynamically allocate

data to store internal structures at initialization phase).

The API used to start the kernel threads is the standard RTLinux/Free one except for the
SERVO task which will be run using the Fault-Tolerance OCERA component (see § 3.5):

- CLOCK: pthread_create() then pthread_make_periodic() (periodic task; T = 1 ms),
- SERVO: ft_task_init() and ft_task_create() (one shot mode task),
- PROTO_IN: pthread_create() (one shot mode task).

The hapticctrl_app component is compiled as a Linux kernel module (except the
hap_proto_interface which is compiled as a standard user-space executable; see § 3.3); only
this application kernel module has to be inserted into the Linux kernel. The Servo-control
application will be launched using a shell script; the script will run in the background the
hap_proto_interface component and then insert the hapticctrl_app module into the kernel.

OCERA IST 35102 11

3.3 Communication protocol (hap_protocol)

The goal of the Communication protocol component (hap_protocol) is to provide
communication facilities between the Client application and the Servo-control application.

The tasks carried out by this component are the following:

- Receive and interpret control frames transmitted from the Client application through
Ethernet (UDP/IP) to the controller,

- decode frames from the Sun® XDR® format to the platform internal format,
- store the decoded data into a shared memory for use by the SERVO task (see § 3.5).
- Collect answer-data from the Servo-control component ,
- encode data from the platform internal format to the Sun® XDR® format,
- send the answer frames to the Client interface through Ethernet.

The hap_protocol component is divided into 4 sub-components described below. The
hap_proto_server and hap_proto_client components are part of the hap_proto_interface
sub-component which is compiled as a standard Linux executable.

3.3.1.1 Server (hap_proto_server)
The communication protocol server (hap_proto_server) runs as a separate thread in the
Linux user space (SERVER). Its main goal is to serve UDP requests from the Client
application. It is launched at initialization as a standard POSIX thread by the
hap_proto_interface component main task (pthread_create()).

Figure 4 : hap_proto_server component architecture

OCERA IST 35102 12

The basic tasks carried out by hap_proto_server are the following:

- Listen to the Client application requests on a socket opened at initialization (recvfrom()),
- receive a full length control frame from the client (maximum length : 90 bytes),
- transmit the full frame to the Listener sub-component through the rtf_in RT-FIFO

(write()),
- loop.

As soon as a data is available in the rtf_in FIFO, a handler associated with the FIFO transfers
the data to a secured buffer in kernel space (rtf_get()) and increments a counter by the
number of bytes sent. When the counter reaches the expected frame length, the handler posts
the sem_rtf_in synchronization semaphore (sem_post()) that is initially taken. This releases
the PROTO_IN task (see below).

3.3.1.2 Listener (hap_proto_in)
The communication protocol listener (hap_proto_in) runs as a separate real-time thread in
the kernel space (PROTO_IN). Its main goal is to interpret high-level commands from the
control frame, to decode XDR encapsulated data and to perform a CRC on data. The
PROTO_IN task has the lower priority of the RT tasks of the application.

As the xdr_codec() function (that encodes and decodes XDR data) is non reentrant, calls to
this function are protected by a mutex semaphore (mtx_proto). mtx_proto also protects
concurrent accesses to the VPr shared memory (see below).

Figure 5 : hap_proto_in component architecture

The basic tasks carried out by hap_proto_in are the following:

- Wait for the sem_rtf_in synchronization semaphore (sem_wait()) to be posted by the
rtf_in handler,

- take the mtx_proto mutex semaphore that grants exclusive access to protocol
(pthread_mutex_lock()),

- copy the control word and decode the encoded data from the buffer to the VPr shared
memory (xdr_codec()),

- post the mtx_proto mutex semaphore (pthread_mutex_unlock()),
- take the sem_rtf_in synchronization semaphore,
- loop.

OCERA IST 35102 13

3.3.1.3 Synchronizer (hap_proto_synchro)
The communication protocol synchronizer (hap_proto_synchro) runs in the SERVO task
context. It is called by the hap_servo component within the synchronous cycle of the
SERVO task (see § 3.5) and acts as the Client application / Servo-control application
synchronizer.

Figure 6 : hap_proto_synchro component architecture

The basic tasks carried out by hap_proto_synchro are the following:

- Try to lock the mtx_proto mutex semaphore (pthread_mutex_trylock())
- if mtx_proto has been successfully locked : copy data from VPr to the data shared

memory (receive_vp()),
 else : compute the best estimate of VPr and store result into the data shared memory

(hap_servo input data),
- unlock the mtx_proto mutex if previously locked (pthread_mutex_unlock()),
- copy hap_servo output data from the data shared memory to the VP memory

(send_vp()),
- try to lock the mtx_proto mutex semaphore (pthread_mutex_trylock())
- if mtx_proto has been successfully locked :

o XDR encode data in VP to a buffer (xdr_codec()),
o generate answer frame from data (haptic protocol) and send it to the rtf_out FIFO

(rtf_put()),
 else : do nothing,
- unlock the mtx_proto mutex if previously locked (pthread_mutex_unlock()),
- return from call.

OCERA IST 35102 14

3.3.1.4 Client (hap_proto_client)
The communication protocol client (hap_proto_client) runs as a separate thread in the Linux
user space. Its main goal is to send data coming from hap_proto_synchro to the remote
Client application using UDP/IP through an opened socket on the client machine. It is
launched at initialization as a standard POSIX thread by the hap_proto_interface component
main task (pthread_create()).

Figure 7 : hap_proto_client component architecture

The basic tasks performed by hap_proto_client are the following :

- Collect a full-length answer frame from hap_proto_synchro through RT-FIFO rtf_out
(rtf_read_all_at_once(); note that this useful and efficient “RTAI” function will be
implemented as close as possible to the original one),

- send the full length answer frame to the Client socket (sendto()),
- loop.

OCERA IST 35102 15

3.4 Synchronous cycle supervisor (hap_clock)

The goal of the Synchronous cycle supervisor (hap_clock) is to give the start top of the
synchronous cycle (e.g.: to the SERVO task) and to perform benchmarking on execution
times and jitters. Since it has been designed for such purpose, the hap_clock component can
also perform check on execution time of the SERVO task and run an alternate task in case of
deadline miss (degraded behavior). However, as the OCERA Fault-Tolerance component can
provide this mechanism in a more efficient way, it will be used instead, although, the
hap_clock component will still be used to check an abnormal situation such as: 5 consecutive
deadline miss from either the main SERVO task (normal behavior) or the auxiliary one
(degraded behavior); see below and § 3.5 for details.

The hap_clock component runs as a separate real-time task in the kernel space (CLOCK).
This task has a higher priority than all other tasks of the application. This is also the only
periodic task of the application.

At its initialization, the CLOCK task performs a pthread_make_periodic_np() (in order to
make periodic) with a period of 1 millisecond and then sleep for a while (using usleep()) in
order for the SERVO task to execute its first code instructions; the SERVO task then starts
by locking on the bar_clock barrier by calling in the first place the pthread_barrier_wait()
function (see § 3.5).

Figure 8 : hap_clock component architecture

An application termination order can be sent to the application from the Linux user space.
This feature is implemented using a dedicated RT-FIFO and an associated handler (not
represented on figures) that changes state of a global flag (servo_stop) as soon as a data is
posted in the FIFO. The servo_stop flag is set to FALSE at application startup and reset to
TRUE by the handler when called. It is tested inside the CLOCK task loop (see below).

OCERA IST 35102 16

In order to check whether the SERVO task is working or not, a global flag (servo_working)
is used and tested inside the CLOCK task loop. The flag is set to TRUE at the beginning of
the servo-loop and reset to FALSE at the end (see below and § 3.5).

The basic tasks performed by hap_clock are the following :

- Wake up the SERVO task by unlocking the synchronization barrier bar_clock using a
pthread_barrier_wait() call (the bar_clock barrier is initialized with a count attribute set
to 2),

- sleep for 3/4 of the synchronous cycle period (750 µs = 3/4 * 1 ms) using usleep(),
- check that either the main SERVO task or the auxiliary one completed its work by testing

the global servo_working flag (see § 3.5), if it is TRUE, then increments a local counter
(miss_count), else reset the counter,

- perform jitters computation and update statistics,
- wait for next period (pthread_wait_np()),
- if both servo_stop is FALSE and miss_count is less than 5, then loop to beginning,
 else : inhibit motor commands, power off (simulated) robot supply, execute the

application termination function (that will terminate among other things SERVO and
PROTO_IN tasks; see § 3.2) and exit from CLOCK task.

OCERA IST 35102 17

3.5 Servo-control (hap_servo)

The Servo-control component (hap_servo) and its dependencies is the main component of the
application. It implements the generic servo-control functions that are called within the main
Servo-control task (SERVO) context.

The SERVO task runs in kernel space with a greater priority than the other real-time tasks
except the CLOCK one. It is a one-shot mode task looping indefinitely after initialization
phase and performing the successive sequential tasks needed to control the (simulated)
Virtuose robot-arm in position, speed and force (this loop is called in the following: “the
servo-loop”).

Figure 9 : hap_servo component architecture

The SERVO task will be created using the OCERA Fault-Tolerance API (e.g. : ft_task_init()
and ft_task_create()). The same code will be used for both the main SERVO task (normal
behavior) and the auxiliary one (degraded behavior); the reason is that the code of hap_servo
has reached such level of maturity that one can make the assumption that no bug remains in it,
so a deadline miss could either occur on hardware failure (e.g.: memory used on the local
machine is not ECC compliant and thus could fail) or on some localized/limited strong
computation needs.

OCERA IST 35102 18

The basic tasks (e.g.: the servo-loop) carried out by hap_servo and its dependencies are the
following :

- Wait for hap_clock synchronization on bar_clock barrier (pthread_barrier_wait()),
- set the servo_working global flag to TRUE,
- take the mtx_data mutex that protects access to the main servo-control internal structure

(data)2,
- start acquisition and retrieve position, speed and efforts applied on the (simulated)

Virtuose robot-arm by calling the get_measures() function (hap_io component),
- build the logical and physical states of the robot (build_logical_state(),

build_physical_state(); hap_state_model component),
- compute the commands to control the (simulated) Virtuose robot-arm movements and

compute the efforts to be applied to the coupled virtual object (cartesian_control();
hap_control component),

- send commands to the (simulated) Virtuose robot-arm (send_commands(); hap_io
component),

- call the send_vp() function of the hap_proto_synchro component that will send the
efforts to be applied to the coupled virtual object (see § 3.3.1.3),

- post the mtx-data mutex to allow other tasks to access the data structure,
- reset the servo_working flag to FALSE,
- loop.

3.6 Input/Output (hap_io) and Virtuose simulator (hap_simulator)

The Input/Output component (hap_io) is intended to implement the functions that control the
hardware (Input/Output PC104 cards); this will be done for Robotic application V1 since it
will work on true hardware. For application V0, the hap_io component will redirect
get_measures() and send_commands()3 functions (see § 3.5) to and from the Virtuose
simulator component (hap_simulator) that will be specifically developed for the application
V0 purpose. This task is, at now, the only one performed by the hap_io component.

The Virtuose simulator component (hap_simulator) will be specifically developed to
simulate dynamically (but in a simplified way) the behavior of the true Virtuose robot-arm.
The component main function (simulate_arm()) runs in the context of the SERVO task and is
called within the servo-loop (see § 3.5).

A GUI should be specifically developed to interact in (soft) real time with the simulator. It
should communicate with it through dedicated RT-FIFOs from the Linux user-space.
However, as this development represents a substantial work that is not necessary needed to
evaluate Robotic application V0, this component design could be postpone to the next project
period. In such case, the GUI would be replaced by an equivalent off-line result analysis. The
following figure shows a snap-shot of the GUI now in pre-alpha test version available for
Win32 only at now.

2 indeed, this protection mechanism will not be used for application V0 since no other task accesses
the data structure ; however, it will be used in the future.
3 the send_command() function is inhibited until a power-on request coming from the Virtuose robot-
arm ; this will be simulated using a dedicated RT-FIFO, an associated handler and a global flag.

OCERA IST 35102 19

Figure 10 : Virtuose robot-arm simulator GUI

The basic tasks carried out by hap_simulator are the following:

- Get efforts applied by user on the (simulated) Virtuose robot-arm handle (this will be
done through the GUI if implemented or from a pre-computed sequence loaded at
application startup if not),

- compute movement of the (simulated) Virtuose handle resulting from user efforts applied
on it and commands applied to the (simulated) Virtuose motors through hap_io,

- send computed position to the GUI (if implemented; or log to a buffer otherwise) that will
refresh image,

- return the computed position and speed to hap_io.

OCERA IST 35102 20

4 Requirements

Document D9rb.1 defined requirements relative to the operating systems and OCERA
components in order for the robotic application to run properly. The goal of this chapter is to
define requirements relative to the application itself.

4.1 Functional requirements

The main requirement associated to the Robotic application is at first a correct behavior, as
described earlier. That is to say: correct application initializing, working and shutdown,
following the mechanisms described in the previous chapter.

Correct behavior of the application will be checked through the following phase sequence:

- At kernel module loading, the application should start and initialize properly, then, it
should immediately enter the synchronous cycle and stay in this state indefinitely. Motor
commands to the (simulated) Virtuose motors should be inhibited until a power-on
request coming from the (simulated) Virtuose robot-arm is received.

- At Virtuose robot-arm power-on, the motor commands should be immediately enabled
and the servo-loop within the synchronous cycle should work properly allowing bilateral
cartesian coupling of the (simulated) Virtuose robot-arm with a virtual object running in
the test Client application. Movements and coupling effects (force feedback) should be
observable from both the Servo-control application and the Client application.

- The application should stay in the synchronous cycle until an application termination
request is received or if exactly 5 consecutive synchronous cycle deadline miss occur. In
case of such event, the application should go in a fail-safe state carrying the following
tasks out (in this order): inhibit motor commands, power off (simulated) robot supply,
close protocol (e.g.: communication), terminate all kernel tasks (except the one active if
any) and perform all other needed jobs to terminate properly the application.

4.2 Performance requirements

As the platform used for application V0 is more powerful than the one that will be used for
application V1, the obtained performances should be higher than the one specified in
document D9rb.1. However, we will check the following figures:

- A full synchronous hard real-time cycle should not exceed 500 µs.
- The SERVO task should start computing at the latest 50 µs after CLOCK task wake-up.
- No missed deadline should be observed within the hard real-time cycle, even while user

space is heavily loaded by a Linux task.
- Data transfer rate between the Servo-control application and the Client application should

be at least: 1 sample / 3 ms, continuous, with less than 1 sample lost on 10 (long term).

OCERA IST 35102 21

5 Acronyms
ACPI Advanced Configuration and Power Interface

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

APM Advanced Power Management

CRC Circular Redundancy Checksum

DMA Direct Memory Access

DoF Degrees of Freedom

FIFO First In First Out (ITC mechanism)

GUI Graphical User Interface

IP Internet Protocol

ITC Inter-Tasks Communication

MUTEX MUTual-EXclusion semaphore

OCERA Open Components for Embedded Real-time Applications

PCI Peripheral Component Interconnect

POSIX Portable Operating System Interface

RT Real-Time

UDP User Datagram Protocol

XDR eXternal Data Representation (Sun microsystems)

