
WP9 – Validation on platform

Deliverable D9rb.3_rep – Robotic Application
Development Report

WP9 – Validation on platform : Deliverable D9rb.3_rep – Robotic Application Development
Report

by F. RUSSOTTO (CEA)

Published: november 2003

Copyright © 2003 by OCERA Consortium

OCERA IST 35102 3

Table of Contents
Chapter 1. Introduction ..7

1.1 Summary...7

1.2 Description..7

1.2.1 Client application..8

1.2.2 Controller application ...9

Chapter 2. temps_reel component ..14

2.1 Summary...14

2.2 Description..14

2.3 API / compatibility ...14

2.4 Implementation issues ..27

2.5 Tests and validation ..27

2.5.1 Validation criteria ...27

2.5.2 Tests..28

2.5.3 Results and comments ..28

2.6 Examples ..28

2.7 Installation instructions...28

Chapter 3. horloge component ...29

3.1 Summary...29

3.2 Description..29

3.3 API / compatibility ...30

3.4 Implementation issues ..37

3.5 Tests and validation ..37

3.5.1 Validation criteria ...37

3.5.2 Tests..37

3.5.3 Results and comments ..37

3.6 Examples ..37

3.7 Installation instructions...37

Chapter 4. protocol component ..38

4.1 Summary...38

4.2 Description..38

4.3 API / compatibility ...38

4.4 Implementation issues ..47

OCERA IST 35102 4

4.5 Tests and validation ..47

4.5.1 Validation criteria ...47

4.5.2 Tests..47

4.5.3 Results and comments ..48

4.6 Examples ..48

4.7 Installation instructions...48

Chapter 5. hapticctrl component ..49

5.1 Summary...49

5.2 Description..49

5.3 API / compatibility ...49

5.4 Implementation issues ..56

5.5 Tests and validation ..56

5.5.1 Validation criteria ...56

5.5.2 Tests..56

5.5.3 Results and comments ..57

5.6 Examples ..57

5.7 Installation instructions...57

Chapter 6. proto_interface component ...58

6.1 Summary...58

6.2 Description..58

6.3 API / compatibility ...58

6.4 Implementation issues ..60

6.5 Tests and validation ..60

6.5.1 Validation criteria ...60

6.5.2 Tests..60

6.5.3 Results and comments ..60

6.6 Examples ..60

6.7 Installation instructions...60

Chapter 7. virtsim component ..61

7.1 Summary...61

7.2 Description..61

7.3 API / compatibility ...62

7.4 Implementation issues ..65

7.5 Tests and validation ..65

7.5.1 Validation criteria ...65

OCERA IST 35102 5

7.5.2 Tests..65

7.5.3 Results and comments ..65

7.6 Examples ..65

7.7 Installation instructions...65

Chapter 8. Conclusion and future works ..66

Chapter 9. Acronyms table...66

OCERA IST 35102 6

Document Presentation

Project Coordinator

Organization: UPVLC

Responsible person: Alfons Crespo

Address: Camino Vera, 14, 46022 Valencia, Spain
Phone: +34 963877576

Fax: +34 963877576
Email: alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country
CO 1 Universidad Politecnica de Valencia UPVLC E

CR 2 Scuola Superiore Santa Anna SSSA I

CR 3 Czech Technical University in Prague CTU CZ

CR 4 Commissariat a l’Energie Atomique CEA FR

CR 5 Unicontrols UC CZ

CR 6 MNIS MNIS FR

CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 1/10/2003 First release

OCERA IST 35102 7

Chapter 1. Introduction

1.1 Summary

This document is the development report of the Robotic application V1. Robotic application
is intended to demonstrate efficiency of Linux, RT-Linux and the system components
developed within the OCERA project (WP4-7).

This document is not intended to provide a full and detailed description of the whole
application components for two main reasons: 1) the OCERA robotic application consists in a
porting of an existing industrial robotic application which is to big to be fully detailed here; 2)
application has to be considered as a validation tool within the OCERA project, describing the
whole application is then off topic. That way, only the general application functioning and
application components that interface with Linux, RT-Linux and OCERA system components
will be described in details in this document.

1.2 Description

The Robotic application that has been developed is a Servo-control application of a master
robot arm called: Virtuose. Virtuose robot arm is intended to be used in an 3D virtual
environment consisting of screen displaying a 3D virtual scene made of 3D objects. Virtuose
robot arm allows user to manipulate virtual objects of the 3D scene with 6 DoF force feedback
so that user can feel weight, inertia, collisions between objects as if he manipulated real
objects.

Figure 1 : Virtuose robot arm in action

For application V1, the developed servo-control application is not connected to a real Virtuose
robot arm. A Virtuose robot simulator has been developed instead in order to test correct
behavior of the application prior to use it on a real hardware robot.

OCERA IST 35102 8

The robotic application actually consists in two applications, a Controller application and a
Client application, running on separate machines connected together by Ethernet.

Figure 2: Client - Controller general view

Description of each application follows. OCERA is mainly concerned by the Controller
application, running the robotic control (and hard-real time) part of the application.

1.2.1 Client application

The client application is a Win32 executable running on a Windows desktop computer. Using
standard Ethernet connection, the client application can communicate with the controller
application. Data transmitted are encapsulated into a specific protocol working on top of
UDP/IP. Data transmitted is encoded to then decoded from the Sun® XDR® format to avoid
data corruption due to communication between different platforms.

The client application includes a simplified Physics/Dynamics engine that is used to simulate
the behavior of a virtual scene consisting of two half-rigid spheres; one of these spheres is
fixed in the scene while the other one is mobile. A GUI represents the virtual environment and
allows user to apply (virtually) forces and torques on the mobile sphere.

Figure 3: Client application GUI

OCERA IST 35102 9

When the Client and the Controller applications are running and connected together through
Ethernet, the mobile sphere and the (simulated) Virtuose robot arm handle are bi-laterally
coupled, so that:
- any force (virtually) applied on the mobile sphere (from the Client) involves movement of

both the mobile sphere and the (simulated) Virtuose robot arm,
- any force (virtually) applied on the (simulated) Virtuose robot arm handle (from the

Controller) involves movement of both the mobile sphere and the (simulated) Virtuose
robot arm.

1.2.2 Controller application

The Controller application consists in three executives: one Linux kernel module and two
user-space processes. The kernel module runs the robotic control (and hard RT) part of the
application, while the user-space (soft RT) processes are respectively the Client / Controller
communication interface (Ethernet/UDP/IP) and the Simulated Virtuose robot user interface
allowing user to act on simulated Virtuose robot.

1.2.2.1 Robotic control (kernel module – hard RT)

Robotic control kernel module application includes several components divided into the three
main following categories. Most of these components will not be described in details in this
document because they are robotics or haptics1 related and do not have any interface with the
OS (which is the center of interest in the OCERA project); they are briefly presented in this
section to provide user some information about how the application works.

- Generic Real-Time components: these components provide an API that encapsulates
common features of the RT kernel. They can be used within the context of any real-time
application in order to enhance the application portability towards several RT kernel or
OS. Most of these components strongly interface with RT-Linux and OCERA components
and the main one will be fully described in the following sections.

- Generic robotics components: theses components provide common robotics functions that
can be used in the context of any robotics application (including haptics). These
components use the generic RT components but do not have any other interface with the
OS and so will not be detailed.

- Haptics components: these components provide haptic specific features to the application.
Except the “protocole” and the “simul” components which interfaces with RT-Linux, none
of these components will be described in this document.

1 Haptics is related to tactile robotics

OCERA IST 35102 10

1.2.2.1.1 Generic Real-Time components

The following figure shows the dependency tree of the Generic RT components. Components
represented in yellow are native RT-Linux components, pink ones are OCERA components
and white ones are application components.

Figure 4: Generic Real-Time components dependency tree

Components brief description follows:
- temps_reel 2 : this component encapsulates mostly used RT kernel primitives such as:

task management and ITC; it is fully detailed in Chapter 2.
- horloge 3 : this component provide a way to manage a set of periodic tasks synchronized

on a same common clock; component is fully detailed in Chapter 3.
- gest_erreur 4 : this component provides common features for application error

management; component has still no interface with RT-Linux or other system component
(but will have in future versions), therefore it is not described in the following sections.

- rtl_libc : this component is intended to provide a little libc-like API for screen I/O or file
access within RT tasks; this component is not implemented yet but will be in future
versions, therefore it is not described in the following sections.

- temps_reel_debug : this component is intended to provide an interface to a RT trace
toolkit such as POSIX trace; this component is not implemented yet but will be in future
versions, therefore it is not described in the following sections.

2 temps-reel stands for : real-time
3 horloge stands for : clock
4 gestion d’erreur stands for : error management

OCERA IST 35102 11

1.2.2.1.2 Robotics, haptics and application-specific components

The following figure shows the simplified dependency tree of the overall robotic control
kernel-module (hapticctrl). Components represented in yellow are native RT-Linux
components, pink ones are OCERA components and white ones are application components.

Figure 5: Robotic control kernel-module dependency tree

Components brief description follows:
- robotics # : these components provide common robotics features; they are not detailed in

the following sections.
- hap_### : these components provide common haptics features; they are not detailed in the

following sections.
- protocol : this component provide a simple communication protocol API to be used by the

kernel-module to communicate with the Client application; component is described in
Chapter 4.

- hapticctrl : this component is the kernel-module top-level component; it includes all
application specific definitions; component is described in Chapter 5.

- simul : this component is the Virtuose robot arm simulator; component has been merged
(as a sub-component) with the hapticctrl component and is described in the same section
as hapticctrl component (Chapter 5.).

OCERA IST 35102 12

1.2.2.2 User-space interfaces

1.2.2.2.1 Communication protocol interface (proto_interface)

This component is a Linux user-space executable connected to the kernel-module protocol
component through RT-fifos (see §1.2.2.2.1 and Chapter 4.). It provides to Controller
application a standard Linux socket interface to communicate with the Client application
using UDP/IP. This component is described in Chapter 6.

Figure 6 : proto_interface component principle of functioning

OCERA IST 35102 13

1.2.2.2.2 Virtuose robot arm simulator user interface

This component is a Linux user-space executable connected to the kernel-module
hapticctrl/virtsim component (see §1.2.2.1.2 and Chapter 5.). It provides a user interface to
interact with Virtuose robot arm simulator component (hapticctrl/virtsim). This component is
described in Chapter 7.

vitsim component includes an implementation of a GUI based on QT and Glut allowing a
pretty nice visual monitoring of the simulated Virtuose robot arm. Unfortunately, due to some
Linux/RT-Linux problems, the GUI implementation could not be successfully connected to
the application kernel-module; we hope being able to do so as soon as related Linux/RT-
Linux problems are solved.

Figure 7 : Virtuose robot arm QT/Glut user interface

OCERA IST 35102 14

Chapter 2. temps_reel component

2.1 Summary

Name:

 temps_reel (stands for: real-time)

Description:

 Encapsulates common RT kernel primitives for application portability
enhancement

Author:

F. Russotto (russotto@cea.fr)

Reviewer:

Layer:

 Application level

Version:

 0.1 beta

Status:

 Design

Dependencies:

 rtl, rtl_sched, rtl_fifo, rtl_malloc, ftappmonitor, ftcontroller.

Release date:

 MS 4

2.2 Description

This component encapsulates some common primitives of the RT kernel, such as scheduling,
synchronization, MUTEX and timer primitives. The component is design so that
implementation for other RT kernel or OS (RTAI, VxWorks, ...) is made possible using #ifdef
/ #endif blocks. This ensures application code compatibility towards several platforms.

2.3 API / compatibility

TR_creer_semaphore_synchro
Create a synchronization semaphore

TR_creer_semaphore_mutex
Create a MUTEX semaphore

OCERA IST 35102 15

TR_detruire_semaphore
Destroy a synchronization or MUTEX semaphore

TR_tester_semaphore
Try lock / try wait a semaphore (non-blocking)

TR_attendre_semaphore
Lock / wait a semaphore (blocking)

TR_poster_semaphore
Unlock / post a semaphore

TR_creer_tache
Create a Real-Time task / thread

TR_detruire_tache
Destroy (cancel) a RT task

TR_delai
Suspend the current task for a given delay

TR_creer_watch_dog
watchdog (timer) creation

TR_lancer_watch_dog
Arm a watchdog (timer)

TR_desarmer_watch_dog
De-arm a watchdog (timer)

TR_detruire_watch_dog
Delete a watchdog (timer)

TR_initialiser_es
Initialize communication channels

TR_terminer_es
Uninitialize communication channels

TR_creer_canal_rtfifo
Create a communication channel from a channel number

TR_creer_canal
Create a communication channel from a file descriptor

TR_descripteur_canal
Return file descriptor associated to a communication channel

TR_lire_canal
Read data from a communication channel (blocking)

TR_ecrire_canal
Write data to a communication channel

TR_fermer_canal
Close communications on a channel

OCERA IST 35102 16

TR_creer_semaphore_synchro

Synopsis

TrSem TR_creer_semaphore_synchro(void)

Include

"tr.h"

Return value

ID of the newly created semaphore or NULL if an error occurred.

Description

This function allocates needed memory and creates a synchronization semaphore using the
sem_init() function of the RT-Linux API.

WARNING: a unique semaphore should not be used to synchronize more than one task. To
synchronize multiple tasks, use a barrier instead.

See also

TR_creer_semaphore_mutex, TR_detruire_semaphore, TR_attendre_semaphore,
TR_poster_semaphore

TR_creer_semaphore_mutex

Synopsis

TrSem TR_creer_semaphore_mutex(void)

Include

"tr.h"

Return value

ID of the newly created mutex or NULL if an error occurred

Description

This function allocates needed memory and creates a mutual exclusion semaphore that can be
used to protect concurrent accesses to a shared resource. It uses standard pthread_mutex_init()
of the RT-Linux API to do so.

See also

TR_creer_semaphore_synchro, TR_detruire_semaphore, TR_attendre_semaphore,
TR_poster_semaphore

TR_detruire_semaphore

Synopsis

int TR_detruire_semaphore(TrSem sem)

OCERA IST 35102 17

Include

"tr.h"

Parameters

sem

semaphore to be deleted

Return value

0 if succesfull, -1 otherwise.

Description

This function destroys a previously created synchronization or mutex semaphore. This uses
either the sem_destroy() or the pthread_mutex_destroy() of the RT-Linux API depending on
semaphore type.

See also

TR_creer_semaphore_synchro, TR_creer_semaphore_mutex

TR_tester_semaphore

Synopsis

int TR_tester_semaphore(TrSem sem)

Include

"tr.h"

Parameters

sem

semaphore to be locked/waited

Return value

0 if sem has been succesfully locked/waited, -1 otherwise

Description

This function performs a non-blocking lock/wait on the given semaphore. This uses either a
sem_try_wait() or a pthread_mutext_trylock() call depending on the semaphore type. If sem is
in use by another task (locked or waited) then the function returns -1 immediately without
blocking; if sem is not in use by another task, then function returns 0 and sem becomes
locked/waited.

See also

TR_creer_semaphore_synchro, TR_creer_semaphore_mutex

TR_attendre_semaphore

OCERA IST 35102 18

Synopsis

int TR_attendre_semaphore(TrSem sem)

Include

"tr.h"

Parameters

sem

semaphore to be taken

Return value

0 if successful, -1 if an error occurred

Description

This function locks / waits the given semaphore. This uses either the sem_wait() or the
pthread_mutex_lock() functions depending on the sempahore type. If sem is in use by another
task (locked or waited) then function blocks undefinitely waiting for semaphore
unlocking/posting (calling task is suspended); as soon as sem is unlocked/posted (or if sem
was not in use), then TR_attendre_semaphore() returns 0, sem becomes locked/waited and the
calling task is woked up if possible. TR_attendre_semaphore() can be used either to grant
access to a shared ressource or to suspend current task for syncrhonization by another task.

See also

TR_creer_semaphore_synchro, TR_creer_semaphore_mutex

TR_poster_semaphore

Synopsis

int TR_poster_semaphore(TrSem sem)

Include

"tr.h"

Parameters

sem

semaphore to be unlocked / posted

Return value

0 if successful, -1 otherwise

Description

This functions unlocks / posts the given semaphore. This uses either pthread_mutex_lock() or
sem_post() depending on sem type. This function can be used either to synchronize a pending
task or to give access back to a shared ressource.

OCERA IST 35102 19

See also

TR_creer_semaphore_synchro, TR_creer_semaphore_mutex

TR_creer_tache

Synopsis

TrTache TR_creer_tache(const char *nom, unsigned int priorite, size_t
taillePile, (void *)(*ptEntree)(void *), void *arg)

Include

"tr.h"

Parameters

nom

name of the task to be created (human readable format)

priorite

priority of the task (0 is the highest)

taillePile

task stack size

ptEntree

pointer to the task entry point function

arg

arguments to be passed to the task entry point function

Return value

ID of the newly created task or NULL if an error occurred

Description

This function creates a Real-Time task (or thread). Parameter name can be given to identify
the task, though this parameter is not used in RT-Linux function calls. Parameter priorite
should be given according to the following standard: 0 is the highest priority and
sched_get_priority_max(SCHED_FIFO) is the lowest one.

TR_creer_tache() performs the following steps:

• initialize pthread attributes using parameters ptEntree and arg
• set pthread scheduling attributes using priority =

sched_get_priority_max(SCHED_FIFO) - priorite
• dynamically allocates memory for task stack using the malloc() function provided by

the rtl_malloc OCERA component (this allows creating a RT task dynamicaly within
the context of another running RT task) and parameter taillePile

• set pthread detachstate using PTHREAD_CREATE_DETACHED
• create the RT task using standard pthread_create()

OCERA IST 35102 20

See also

TR_redemarrer_tache, TR_detruire_tache

TR_detruire_tache

Synopsis

int TR_detruire_tache(TrTache tache)

Include

"tr.h"

Parameters

tache

task to be deleted (canceled)

Return value

0 if successful, -1 otherwise

Description

This function destroys (cancels) the specified Real-Time task and frees allocated memory
ressource. This uses standard pthread_cancel() and free() provided by the rtl_malloc OCERA
component.

See also

TR_creer_tache, TR_redemarrer_tache

TR_delai

Synopsis

int TR_delai(double secondes)

Include

"temps_reel.h"

Parameters

secondes

suspension time in seconds

Return value

0 if successful, -1 otherwise

Description

This function suspends the current task for the given time secondes. Parameter secondes can
be less than 1. The effective sleeping time may be different from the given one (see RT-Linux
nanosleep()). This uses nanosleep() RT-Linux function call.

OCERA IST 35102 21

TR_creer_watch_dog

Synopsis

TrWd TR_creer_watch_dog(void)

Include

"temps_reel.h"

Return value

ID of the newly created watchdog (timer) created

Description

This function (not implemented yet) will create a watchdog (timer)

See also

TR_lancer_watch_dog, TR_desarmer_watch_dog, TR_detruire_watch_dog

TR_lancer_watch_dog

Synopsis

int TR_lancer_watch_dog(TrWd wd, double secondes, void *(*fnFinDelai)(void
*), void *arg)

Include

"temps_reel.h"

Parameters

wd

watchdog (timer) ID

seconde

watchdog (timer) fire delay (in seconds)

fnFinDelai

pointer to a call-back handler

arg

arguments to be passed to the call-back handler

Return value

0 if successful, -1 otherwise

Description

This function (not implemented yet) will arm the given watchdog (timer). Parameter
fnFinDelai specifies a pointer to a call-back function (handler) to be fired (called) at watchdog
(timer) expiration.

OCERA IST 35102 22

See also

TR_creer_watch_dog, TR_desarmer_watch_dog, TR_detruire_watch_dog

TR_desarmer_watch_dog

Synopsis

int TR_desarmer_watch_dog(TrWd wd)

Include

"temps_reel.h"

Parameters

wd

watchdog ID

Return value

0 if successful, -1 otherwise

Description

This function (not implemented yet) will de-arm a previously armed watchdog (timer). De-
arming a watchdog (timer) prevents the call-back function to be fired (called).

See also

TR_lancer_watch_dog, TR_detruire_watch_dog

TR_detruire_watch_dog

Synopsis

int TR_detruire_watch_dog(TrWd wd)

Include

"temps_reel.h"

Parameters

wd

watchdog (timer) ID

Return value

0 if successful, -1 otherwise

Description

This function destroys a previously created watchdog (timer).

OCERA IST 35102 23

See also

TR_creer_watch_dog, TR_lancer_watch_dog, TR_desarmer_watch_dog,
TR_detruire_watch_dog

TR_initialiser_es

Synopsis

int TR_initialiser_es(int nb_rtf, int dc_rtf)

Include

"temps_reel.h"

Parameters

nb_rtf

number of fifos to create

dc_rtf

first fifo device number to be used

Return value

0 if successful, -1 otherwise

Description

This function creates a fixed number of RT fifos that are used by the Communication channel
objects. Communication channels objects are FIFO-style Inter-Task Communication (ITC)
mechanisms with blocking read/write features.

The number of created fifos is nb_rtf; it is also the maximum number of communication
channels that the application can use. The created fifos are numbered from 0 to nb_rtf-1; this
number is different from the fifo device number (eg: the # in /dev/rtf#). Parameter dc_rtf
specifies the fifo device number that has to be used for channel number 0, other channels use
increasing fifo device numbers (eg: if dc_rtf=10, channel number 0 uses /dev/rtf10, channel
number 1 uses /dev/rtf11, ...). This function has to be called within the init_module() function
of the application. This function only exists for RT kernel (such as RT-Linux) that do not
allow fifo creation within a RT context; we all expect that this architectural constraint will
disappear in future RT-Linux versions.

See also

TR_creer_canal, TR_creer_canal_rtfifo

TR_terminer_es

Synopsis

int TR_terminer_es(void)

OCERA IST 35102 24

Include

"temps_reel.h"

Return value

0 if successful, -1 otherwise

Description

This function destroys previously created fifos and has to be called within the
cleanup_module of the application.

See also

TR_initialiser_es

TR_creer_canal_rtfifo

Synopsis

TrCanal TR_creer_canal_rtfifo(int num, in rw)

Include

"temps_reel.h"

Parameters

num

Communication channel number

Return value

ID of the newly created channel or NULL if an error occurred.

Description

This function creates a Communication channel based on a previously created RT-fifo
(TR_initialiser_es() function call)

Communication channels are useful objects providing ITC mechanisms of type FIFO with
blocking read and write features.

Parameter num specifies the channel number to be used for the newly created channel object.
This number should be less than the maximum number of channels available, as specified at
initialization (see TR_initialiser_es()).

See also

TR_lire_canal, TR_ecrire_canal, TR_initialiser_es

TR_creer_canal

Synopsis

TrCanal TR_creer_canal(int fd)

OCERA IST 35102 25

Include

"temps_reel.h"

Parameters

fd

fifo device number or file descriptor (eg: the # in /dev/rtf#)

Return value

ID of the newly created channel or NULL if an error occurred.

Description

This function creates a Communication channel using the file descriptor fd of an existing
system character device; this file descriptor is the fifo device number (eg: the # in /dev/rtf#).
The fifo should have been created within the init_module() of the application.

Communication channels are useful objects providing ITC mechanisms of type FIFO with
blocking read and write methods.

See also

TR_lire_canal, TR_ecrire_canal, TR_fermer_canal

TR_descripteur_canal

Synopsis

int TR_descripteur_canal(TrCanal c)

Include

"temps_reel.h"

Parameters

c

Communication channel

Return value

This function returns the file descriptor of the character device associated to a Communication
channel object. This is the fifo device number of the RT-fifo associated to the channel.

See also

TR_creer_canal, TR_lire_canal, TR_ecrire_canal, TR_fermer_canal

TR_lire_canal

Synopsis

int TR_lire_canal(TrCanal c, void *buf, size_t longueur)

OCERA IST 35102 26

Include

"temps_reel.h"

Parameters

c

communication channel

buf

buffer to copy data to

longueur

number of bytes to be read

Return value

longueur or -1 if an error occurred

Description

This function performs a blocking read on the specified communication channel.
TR_lire_canal() does not return until the specified data size has been read; the calling task is
suspended during function blocking.

TR_lire_canal uses a fifo-handler and a synchronization semaphore in order to make the
function blocking: function sem_wait() the semaphore while fifo handler sem_post() it as
soon as a data is available in the fifo.

See also

TR_creer_canal, TR_ecrire_canal

TR_ecrire_canal

Synopsis

int TR_ecrire_canal(TrCanal c, const void *buf, size_t longueur)

Include

"temps_reel.h"

Parameters

c

communication channel

buf

buffer to copy data from

longueur

number of bytes to write

OCERA IST 35102 27

Return value

longueur or -1 if an error occurred

Description

This function writes data to the specified communication channel; the function does not return
until the full data size has been written to the fifo (eg: exactly as RT-Linux does). Although,
there is no way to know when the task/process that is reading the fifo effectively read sent
data.

See also

TR_creer_canal, TR_lire_canal

TR_fermer_canal

Synopsis

void TR_fermer_canal(TrCanal c)

Include

"temps_reel.h"

Parameters

c

communication channel

Description

This function close communications on specified channel and frees allocated ressources.

This function should never be used on prealocated communication channels such as the one
provided by TR_creer_canal_rtfifo().

See also

TR_creer_canal, TR_lire_canal, TR_ecrire_canal

2.4 Implementation issues

Not applicable

2.5 Tests and validation

Unit test application provided with component and Robotic application validation.

2.5.1 Validation criteria

Unit test application success and Robotic application behavior as expected.

OCERA IST 35102 28

2.5.2 Tests

See unit test application.

2.5.3 Results and comments

Component successfully tested.

2.6 Examples

None

2.7 Installation instructions

Not applicable

OCERA IST 35102 29

Chapter 3. horloge component

3.1 Summary

Name:

 horloge (stands for: clock)

Description:

 Synchronous periodic tasks management

Author:

F. Russotto (russotto@cea.fr)

Reviewer:

Layer:

 Application level

Version:

 0.1 beta

Status:

 Design

Dependencies:

 rtl, rtl_sched, ftl_fifo, rtl_malloc, temps_reel, gest_erreur, temps_reel_debug

Release date:

 MS 4

3.2 Description

This component allows to create periodic tasks synchronized on a common clock. The
component initialization function (HORLOGE_initialiser()) creates 2 empty lists of functions
and starts a main periodic task named HORLOGE acting as a scheduler.

Using the HORLOGE_ajouter_fct_periodique() primitive, the user application can create a
periodic task and attach it to the horloge component so that it is synchronized on the same
clock period. All attached periodic tasks necessarily have a period multiple of the main
HORLOGE task period. To avoid unexpected context task switch, periodic tasks are created
with an effective priority decreased by the main HORLOGE task priority.

The HORLOGE task also performs deadline miss tests on attached tasks and switches from
normal behavior to degraded behavior if needed (this job will be performed by the OCERA
Fault-Tolerant controler in future versions); for each periodic task, a normal behavior and a
degraded behavior have to be defined using two different functions.

OCERA IST 35102 30

3.3 API / compatibility

HORLOGE_initialiser
Initialize horloge component

HORLOGE_terminer
Uninitialize horloge component

HORLOGE_ajouter_fct_periodique
Attach a periodic task

HORLOGE_activer_fct_periodique
Activate/deactivate a periodic task

HORLOGE_supprimer_fct_periodique
Detach a periodic task

HORLOGE_forcer_execution
Immediate execution of a periodic task

HORLOGE_arreter
Stop the main HORLOGE clock

HORLOGE_redemarrer
Restart the main HORLOGE clock

_point_d_entree
Generic entry point for the normal behavior periodic tasks (private)

_horloge_gerer_depassement
Generic entry point for the degraded behavior periodic tasks (private)

_traiter_top_horloge
Entry point of the main HORLOGE task (private)

HORLOGE_initialiser

Synopsis

int HORLOGE_initialiser(double periodeBase)

Include

"horloge.h"

Parameters

periodeBase

period of the HORLOGE task (in seconds)

Return value

0 if successful, -1 otherwise

OCERA IST 35102 31

Description

This function creates the main scheduling periodic task (HORLOGE) and 2 empty lists of
functions defining the entry point of the attached periodic tasks (normal behavior and
degraded behavior). At now, the HORLOGE task manages normal/degraded behavior mode
switches; in future versions, this job will be performed by the OCERA FT controller.

The HORLOGE task performs undefinitely the following basic steps:

• wait for next period (using pthread_wait_np())
• check for faulty tasks (deadline misses)
• wake-up degraded behaviour tasks corresponding to the faulty tasks (this uses a

synchronization semaphore; a barrier will be used instead in future versions) wake-up
normal behaviour tasks for other tasks if needed (this uses a synchronization
semaphore; a barrier will be used instead in future versions)

See also

_traiter_top_horloge, HORLOGE_ajouter_fct_periodique,
HORLOGE_supprimer_fct_periodique

HORLOGE_terminer

Synopsis

void HORLOGE_terminer()

Include

"horloge.h"

Description

This function stops the main scheduling task (HORLOGE), all attached periodic tasks and
frees allocated resources.

See also

HORLOGE_initialiser, HORLOGE_arreter, HORLOGE_supprimer_fct_periodique

HORLOGE_ajouter_fct_periodique

Synopsis

HorlogeId HORLOGE_ajouter_fct_periodique(const char *nom, HorlogeFct fct,
void *arg, double periode, uint_t priorite, size_t taillePile, HorlogeFct
fctDepassement, void *argDepassement)

Include

"horloge.h"

Parameters

nom

name of the periodic task to be created and attached

OCERA IST 35102 32

fct

normal behavior entry point function of the periodic task

arg

arguments to be passed to the normal behavior function

periode

period of the task (seconds)

priorite

priority of the task

taillePile

stack size of the task

fctDepassement

degraded behavior entry point function of the periodic task

argDepassement

arguments to be passed to the degraded behavior function

Return value

ID of the newly created task or NULL if an error occurred

Description

This functions creates and attaches a task to the horloge component. At now, the function
creates two RT tasks (one task for the normal behavior and one task for the degraded
behavior) using standard pthread_create() to create both tasks, in future versions, the OCERA
Fault-Tolerant component will be used instead to create the tasks pair using ft_task_create().

The period parameter (periode) should be a multiple of the HORLOGE period; if not, the
period of the task is truncated to the lowest integer-multiple of the HORLOGE period.

The effective task priority (at RT-Linux level) is decreased by the priority of the main
HORLOGE task (this ensures the attached periodic tasks have a lesser priority than the
HORLOGE task; which is better;).

The normal behavior task performs undefinitely the following basic steps:

• wait for synchronization by the HORLOGE task (using a synch. sem)
• mark the task as active (static flag)
• call the normal behavior entry point function (fct)
• mark the task as inactive

The degraded behavior task performs undefinitely the following basic steps:
- wait for synchronization by the HORLOGE task (using a synch. sem)
- mark the task as active (static flag)
- call the degraded behavior entry point function (fctDepassement)
- mark the task as inactive

At now, normal/degraded mode switches are managed by HORLOGE task. In future versions,
both tasks will synchronize on the same event (periodic timer) and the FT controller will do
the job.

OCERA IST 35102 33

See also

HORLOGE_initialiser, HORLOGE_supprimer_fct_periodique

HORLOGE_activer_fct_periodique

Synopsis

int HORLOGE_activer_fct_periodique(HorlogeId id, int actif)

Include

"horloge.h"

Parameters

id

ID of the task to be activate/deactivate

actif

1 to activate, 0 to deactivate

Return value

always 0

Description

This function activates or deactivates calls to a periodic task. This does not perform a suspend
or wake-up of the task but only activate or deactivate synchronization of the task by
HORLOGE.

If this function is called when the task is running, the tasks finishes its job but will not be
called anymore as long as it is activated again.

See also

HORLOGE_ajouter_fct_periodique

HORLOGE_supprimer_fct_periodique

Synopsis

int HORLOGE_supprimer_fct_periodique(HorlogeId id)

Include

"horloge.h"

Parameters

id

ID of the task to be detached

Return value

0 if successful, -1 otherwise

OCERA IST 35102 34

Description

The functions detaches the specified function from the HORLOGE managed tasks and cancels
the corresponding tasks (normal and degraded behavior).

See also

HORLOGE_initialiser, HORLOGE_ajouter_fct_periodique

HORLOGE_forcer_execution

Synopsis

int HORLOGE_forcer_execution(HorlogeId id)

Include

"horloge.h"

Parameters

id

ID of the task

Description

This function starts immediately the specified task without waiting for the next period.

Return value

-1 on success, 0 otherwise

See also

HORLOGE_ajouter_fct_periodique

HORLOGE_arreter

Synopsis

void HORLOGE_arreter(void)

Include

"horloge.h"

Description

This function is not implemented yet.

See also

HORLOGE_redemarrer

OCERA IST 35102 35

HORLOGE_redemarrer

Synopsis

void HORLOGE_redemarrer(void)

Include

"horloge.h"

Description

This function is not implemented yet.

See also

HORLOGE_arreter

_point_d_entree

Synopsis

static void *_point_d_entree(void *arg)

Parameters

arg

ID of the task

Return value

Never returns (while (1))

Description

This function is the generic entry point for normal behavior of any periodic task. It calls the
entry-point function associated to the normal behavior of the periodic task (this is the pointer
'fct' passed to function HORLOGE_ajouter_fct_periodique()).

_point_d_entree() performs undefinitely the following basic steps:

• wait for synchronization by the HORLOGE task (using a synch. sem)
• mark the task as active (static flag)
• call the normal behavior entry point function (fct)
• mark the task as inactive

See also

HORLOGE_ajouter_fct_periodique, _horloge_gerer_depassement

_horloge_gerer_depassement

Synopsis

static void *_horloge_gerer_depassement(void *arg)

OCERA IST 35102 36

Include

"horloge.h"

Parameters

arg

ignored

Return value

Never returns (while (1))

Description

This function is the generic entry point for degraded behavior of any periodic task. It calls the
entry-point function associated to the degraded behavior of the periodic task (this is the
pointer 'fctDepassement' passed to function HORLOGE_ajouter_fct_periodique()).

_horloge_gerer_depassement() performs undefinitely the following basic steps:

• wait for synchronization by the HORLOGE task (using a synch. sem)
• mark the task as active (static flag)
• call the degraded behavior entry point function (fctDepassement)
• mark the task as inactive

See also

HORLOGE_ajouter_fct_periodique, _horloge_gerer_depassement

_traiter_top_horloge

Synopsis

static void _traiter_top_horloge(int)

Description

This function is the entry point of the main HORLOGE task. It is a periodic task created using
standard pthread_create() at application initialization by calling HORLOGE_initialiser()
function.

HORLOGE acts as a scheduler on the attached periodic tasks; it is periodically woked-up by
the RT-Linux task timer (using standard pthread_wait_np()) and performs undefinitely the
following basic steps:

• wait for next period (pthread_wait_np())
• scan the list of attached periodic tasks
• check for faulty tasks (deadline miss at previous period)
• wake-up degraded behavior tasks corresponding to the tasks marked as faulty; this is

done using a synchronization semaphore (but will be done with a barrier instead in
future versions)

• wake-up normal behavior tasks corresponding to the tasks not marked as faulty; this is
done using a synchronization semaphore (but will be done with a barrier instead in
future versions)

At now, as described above, _traiter_top_horloge() self manages deadline misses on attached

OCERA IST 35102 37

periodic tasks. In future versions of the component, this will be performed using the OCERA
Fault-Tolerant components instead.

See also

HORLOGE_initialiser, HORLOGE_ajouter_fct_periodique

3.4 Implementation issues

Not applicable

3.5 Tests and validation

Unit test application provided with component and Robotic application validation.

3.5.1 Validation criteria

Unit test application success and Robotic application behavior as expected.

3.5.2 Tests

See unit test application.

3.5.3 Results and comments

Component successfully tested.

3.6 Examples

None

3.7 Installation instructions

Not applicable

OCERA IST 35102 38

Chapter 4. protocol component

4.1 Summary

Name:

 protocol

Description:

 Provide simple protocol for communication between the Controller application
and the Client application.

Author:

F. Russotto (russotto@cea.fr)

Reviewer:

Layer:

 Application level

Version:

 0.1 beta

Status:

 Design

Dependencies:

 rtl, rtl_sched, rtl_fifo, rtl_malloc, generic robotics component.

Release date:

 MS 4

4.2 Description

This component provides a simple protocol for communication between the Controller
application and the Client application. The component uses standard RT fifos to exchange
data with a user-space process (see proto_interface) which exchange data with the Client
application using standard Linux sockets. The communication protocol is based on UDP/IP.

4.3 API / compatibility

server_read
Receive Controller input data from the Client application

server_write
Send Controller output data to the Client Application

OCERA IST 35102 39

do_proto
Synchronise Controller / Client data exchange

init_proto
Initialize the protocol component

uninit_proto
Uninitialize the protocol component

write_protocol
Compute a checksum and write raw data

read_protocol
Read raw data and verify the checksum

_fifo_server_handler
Client -> Controller communication fifo handler

write_udp
Send raw data to the Client application

read_udp
Receive raw data from the Client application

init_module_udp
Initialize the proto_udp sub-component (protocol)

cleanup_module_udp
Cleanup the proto_udp sub-component (protocol)

server_read

Synopsis

static void * server_read(void)

Include

"protocol.h"

Return value

never returns (while (1))

Description

This function is the entry point of the PROTO_IN task. PROTO_IN is an asynchronous
sporadic task providing the following service:

• receive control data coming from the Client application through an Ethernet
connection

• decode data from the Sun XDR format to the local platform format

OCERA IST 35102 40

Incoming data is preliminary received by a user-space process (part of the proto_interface
component) on a standard Linux socket, using UDP/IP protocol. Data is then transfered to the
PROTO_IN task through a dedicated RT-fifo using read_protocol(). server_read() performs
undefinitely the following steps:

• receive checked data (using read_protocol())
• lock the _mtx_proto mutex (TR_attendre_semaphore())
• decode data and store it to a shared static structure VPr (encode_decode())
• unlock the _mtx_proto mutex (TR_poster_semaphore())

read_protocol() is a blocking function; it does not return until a full checked data is available
for decoding. As soon as data is available, it is immediately decoded and stored in the VPr
static structure for use by the do_proto() function. The _mtx_proto mutex prevents data from
being accessed in do_proto() during storage. Using such a dedicated task (PROTO_IN) and
such a mechanism allows to fully de-synchronize the Soft Real-Time context where Ethernet
data comes from, from the Hard Real-Time context where the SERVO task takes place.
server_read() is declared static as it is private to the protocol component. The PROTO_IN task
is started in the init_proto() function see below) which should be called at application
initialization.

See also

read_protocol, server_write, do_proto, init_proto

server_write

Synopsis

static void server_write(void)

Include

"protocol.h"

Description

This function provides the following service to the application:
• encode state data from the local platform format to the Sun XDR format
• send data to the Client application through an Ethernet connection

Outgoing data is actually sent to a user-space process (part of the proto_interface user-space
component) through a dedicated RT-fifo. Data is then transmitted by the user-space process to
the Client application through a standard Linux socket using UDP/IP. server_write() performs
the following steps:

• encode data from shared static structure VP (encode_decode())
• send encoded data (write_protocol())

server_write() is declared static as it is private to the protocol component; it is called within
the do_proto() function (see below).

See also

do_proto, server_read

OCERA IST 35102 41

do_proto

Synopsis

int do_proto(ServoDonnees * don)

Include

"protocol.h"

Parameters

don

pointer to the main application data structure

Return value

always 0

Description

This function performs the 3 following basic steps:
• copy control data from the global structure don to the shared static structure VPr

(copie_consigne())
• copy state data from the shared static structure VP to the global global structure don

(copie_etat())
• call server_write()

Parameter don is a pointer to the main data structure of the application; this data structure
contains all control and state variables needed at the different steps of the main servo-control
loop performed by the SERVO task (for details on the main servo- control loop and the
SERVO task, see hapticctrl component). do_proto() is called within the synchronous hard-
Real-Time context of the SERVO task.

See also

copie_consigne, copie_etat, server_write

init_proto

Synopsis

int init_proto(void)

Include

"protocol.h"

Return value

0 if succesfull, -1 otherwise.

OCERA IST 35102 42

Description

This function performs the 4 following steps:
• initialize static semaphore _sem_fifo_server to TAKEN (sem_init())
• initialize some component internal parameters
• create static mutex _mtx_proto
• start the PROTO_IN task (entry point: server_read())

_sem_fifo_server is a synchronization semaphore used to provide blocking behavior to the
read_protocol() function (see read_protocol). _mtx_proto is a mutex semaphore used to
protect concurrent accesses to the VPr static structure, as it is accessed by both the SERVO
task (do_proto()/copie_consigne()) and the PROTO_IN task (server_read()). init_proto()
should be called at application initialization by the INIT task (thought this has not been tested,
it **might** be called in the application init_module() function; in such a case,
init_module_udp() should be called first).

See also

init_module_udp, do_proto, server_read, uninit_proto

uninit_proto

Synopsis

int uninit_proto(void)

Include

"protocol.h"

Return value

0 if succesfull, -1 otherwise.

Description

This function performs the 4 following steps:
• cancel the PROTO_IN task
• delete mutex _mtx_proto
• unitialize some component internal parameters

uninit_proto() should be called at application termination (eg: in the application
cleanup_module() function); the cleanup_module_udp() function should be called after call to
uninit_proto().

See also

cleanup_module_udp, init_proto

write_protocol

Synopsis

ssize_t write_protocol(int fildes, const void *buf, size_t nbyte)

OCERA IST 35102 43

Include

"protocol.h"

Parameters

fildes

file descriptor (not used under RTLinux)

buf

pointer to data to be sent

nbyte

data size in bytes

Return value

nbyte if successful, -1 otherwise

Description

This function is called within the server_write() function. It computes a checksum for
outgoing data and reformat data as a raw packet including a header, the data size, the data and
the computed checksum. Reformated raw data is then passed to the proto_write() function.

See also

proto_write, read_protocol

read_protocol

Synopsis

ssize_t read_protocol(int fildes, const void *buf, size_t nbyte)

Include

"protocol.h"

Parameters

fildes

file descriptor (not used under RTLinux)

buf

pointer to data to be read

nbyte

maximum data size in bytes

Return value

read data size in bytes if successful, -1 otherwise

OCERA IST 35102 44

Description

This function is called within the server_read() function and performs the following steps:
• retrieve from the Client application a raw data packet consisting of: a header, a data

size, a data, and a checksum (function proto_read())
• extract data, data size and checksum from the packet
• compute a new checksum from the extracted data
• compare computed and extracted checksums
• reformat data so that it is usable by server_read() (removes header data size and

checksum).

read_protocol() is a blocking function; it does not return until a full checked data is available
or an error occurred.

See also

proto_write

_fifo_server_handler

Synopsis

static int _fifo_server_handler(unsigned int fifo)

Include

"protocol.h"

Parameters

fifo

RT-fifo (device) number

Return value

not applicable

Description

This function is the handler associated to the Client -> Controller communication fifo
(FIFO_SERVER). A fifo handler is automatically called when a data is available in the fifo.
This behavior allows synchronization between user-space and kernel-space using a simple
synchronization mechanism such as a synchronization semaphore. The only job carried out by
_fifo_server_handler() is to post the _sem_fifo_server synchronization semaphore (using
sem_post()). Doing so wakes up the PROTO_IN task which is waiting for synchronization
within the read_udp() function.

See also

read_udp

OCERA IST 35102 45

write_udp

Synopsis

static ssize_t write_udp (int fildes, void *buff, size_t len)

Include

"protocol.h"

Parameters

fildes

file descriptor (not used under RTLinux)

buf

pointer to data to be sent

nbyte

data size in bytes

Return value

len if successful, -1 otherwise

Description

This function sends raw data packet generated by write_protocol() to the Client application.
Outgoing raw data is actually sent by a user-space process (see proto_interface component)
using a standard Linux socket; data is read by the user-space process from a dedicated RT fifo.
write_udp() writes this data to the fifo. write_udp() performs the following steps:

• serialize data length and data into a unique buffer
• write the buffer to the fifo

write_udp() is called within the write_protocol() function.

See also

write_protocol, read_udp

read_udp

Synopsis

static ssize_t read_udp (int fildes, void *buff, size_t len)

Include

"protocol.h"

Parameters

fildes

file descriptor (not used under RTLinux)

buf

pointer to data to be read

OCERA IST 35102 46

nbyte

maximum data size in bytes

Return value

read data size in bytes if successful, -1 otherwise

Description

This function receives raw data sent by the Client application to the Controller application.
Incoming raw data is actually received by a user-space process (see proto_interface
component) using a standard Linux socket; it is then sent to the kernel-module application
using a RT-fifo. A handler associated to the fifo (_fifo_server_handler()) and a
synchronization semaphore (_sem_fifo_server) allows read_udp() to provide a blocking
behavior. read_udp() performs the following steps:

• wait for synchronization (sem_wait(_sem_fifo_server))
• retrieve data from the fifo (rtf_get())
• if data length is complete, then return from call else, loop until data length is complete

Note that the _sem_fifo_server synchronization semaphore is not posted back by read_udp();
it is actually posted by the fifo handler _fifo_server_handler(). This ensures the blocking
behavior of read_udp(). read_udp() is called within the read_protocol() function.

See also

_fifo_server_handler, write_udp, read_protocol

init_module_udp

Synopsis

int init_module_udp(int fifo_client, int fifo_server)

Include

"protocol.h"

Parameters

fifo_client

RT-fifo to be used for

Controller

Client communication

fifo_server

RT-fifo to be used for

Client

Controller communication

Return value

0 if succesfull, -1 otherwise.

OCERA IST 35102 47

Description

This function creates the two RT-fifos needed by the protocol component to communicate
with the user-space proto_interface component (FIFO_SERVER & FIFO_CLIENT). It also
creates a handler associated to the FIFO_SERVER fifo using the static function:
_fifo_server_handler(); this handler is used to provide a blocking behavior to the
read_protocol() function. This function should be called within the application init_module()
function and prior any call to init_proto().

See also

init_proto, cleanup_module_udp

cleanup_module_udp

Synopsis

int cleanup_module_udp(void)

Include

"protocol.h"

Return value

0 if succesfull, -1 otherwise.

Description

This function destroys previously created FIFO_SERVER & FIFO_CLIENT RT fifos. This
function should be called within the application cleanup_module() function and only after call
to uninit_proto().

See also

init_proto, cleanup_module_udp

4.4 Implementation issues

Not applicable

4.5 Tests and validation

Robotic application validation.

4.5.1 Validation criteria

Robotic application behavior as expected.

4.5.2 Tests

Robotic application.

OCERA IST 35102 48

4.5.3 Results and comments

Robotic application works as expected.

4.6 Examples

None

4.7 Installation instructions

Not applicable

OCERA IST 35102 49

Chapter 5. hapticctrl component

5.1 Summary

Name:

 hapticctrl

Description:

 Robotic application kernel-module top-level component.

Author:

F. Russotto (russotto@cea.fr)

Reviewer:

Layer:

 Application level

Version:

 0.1 beta

Status:

 Design

Dependencies:

rtl, rtl_sched, ftl_fifo, rtl_malloc, temps_reel, horloge, other generic RT
components, all generic robotics components, all generic haptics components,
protocol.

Release date:

 MS 4

5.2 Description

This component is the top-level component of the OCERA Robotic application kernel-
module. It includes all application-specific definitions and functions, including:

• platform-specific definitions & functions (eg: init_module, cleanup_module, …)
• the main application initialization function (hapticctrl)
• Virtuose robot arm simulator

5.3 API / compatibility

init_module
Application kernel module initialization function

cleanup_module
Application kernel module cleanup function

OCERA IST 35102 50

hapticctrl
Entry point of the application initialization task (INIT)

_servo
Entry point of the main servo-control task (SERVO)

ES_standard_build_logical_state
Update System state

ES_standard_send_commands
Send motor commands to the simulated Virtuose robot

_sim_virtuose_dynamics
Simulate a Virtuose robot arm

_sim_get_position
Get robot handle position from the Controller internal model

_sim_set_force
Set user force/torque on handle of the Controller internal model

_sim_ctrl_fifo_handler
Controller mode change fifo handler

_sim_force_fifo_handler
User force/torque set fifo handler

_sim_send_position
Send simulated Virtuose robot arm handle position to the virtsim HMI

init_module

Synopsis

int init_module(void)

Return value

Always 0

Description

This function is the application kernel module initialization function. The tasks carried out by
the init_module() function are the following:

• Create RT-fifos used by the application; this includes 2 fifos for protocol <->
proto_interface (user-space) communication, 3 fifos for Virtuose simulator <-> virtsim
(user-space) communication and 5 general-purpose RT-fifos used by the temps-reel
component

• Create fifo handlers for all user-space -> kernel space fifos
• Create the main application initialization task (INIT) using standard pthread_create()

function of the RTLinux API.

Most of application initializations are made in the hapticctrl() function; the init_module()
function is only used to create objects that RTLinux does not allow to create in a RT context
(such as fifos). We all expect that RTLinux will allow RT-fifo creation in a RT context in the
future. The INIT task, created in the init_module() function will start all other needed tasks of

OCERA IST 35102 51

the application.

See also

hapticctrl, cleanup_module

cleanup_module

Synopsis

void cleanup_module(void)

Description

This function is the application kernel module cleanup function. The cleanup_module()
function terminates all running tasks, destroys created RT-fifos and exits the kernel.

See also

init_module, hapticctrl

hapticctrl

Synopsis

int hapticctrl(char * robot)

Return value

0 if initialization is successful, -1 otherwise

Parameters

robot

Robot name (in human readable format)

Description

This function is the entry point of the application initalization task (INIT). INIT task is created
in the application init_module() after creation of needed RT-fifos and fifo handlers. The
hapticctrl() function (mainly) performs the following steps:

• initialize required haptics & robotics components
• initialize protocol component (init_proto(); this will create the PROTO_IN task)
• initialize horloge component (HORLOGE_initialiser())
• create the main SERVO task (HORLOGE_ajouter_fct_periodique(); this will create

the HORLOGE and DLMISS tasks)

See also

init_proto, HORLOGE_initialiser, HORLOGE_ajouter_fct_periodique, _servo

OCERA IST 35102 52

_servo

Synopsis

void _servo(void)

Description

This function is the entry point of the main servo-control task (SERVO)

See also

hapticctrl

ES_standard_build_logical_state

Synopsis

void ES_standard_build_logical_state(ServoDonnees * don, ulong_t
estampille)

Parameters

don

pointer to the main application data structure

estampille

period number (horloge component reference)

Description

This function is called within the main synchronous servo-control loop (see hapticctrl). It is
(normally) used to update logical state of the System (eg: the set of logical variables that
define the System mode); the System considered here is the Controller + the controlled Robot.
In the context of OCERA robotic application V1, this function is also used to:

• get position of the simulated Virtuose robot (using call to _sim_get_position())
• set force/torque to be applied to the simulated Virtuose
• send position to the Virtuose HMI (_sim_send_position())

The Virtuose HMI is a user-space process (see virtsim component) implementing a Human-
Machine Interface allowing user to control and monitor the simulated Virtuose robot (eg:
position monitoring, and force/torque control). Communication between virtsim and the
Controller application kernel-module uses 3 dedicated RT-fifos (1 output, 2 input). Function
_sim_send_position() uses the output fifo to send position data to virtsim synchronously (eg:
within the hard RT context of the SERVO task); data can be sent each period (~ 1 ms) or each
N periods if needed. Force/torque data coming from virtsim are collected asynchronously
using a handler associated to input fifo #1 (see _sim_force_fifo_handler()) while System
mode change control words coming from virtsim are catched by a handler associated to input
fifo #2 (see _sim_ctrl_fifo_handler()).

See also

_sim_get_position, _sim_set_force, _sim_send_position, _sim_force_fifo_handler,
_sim_ctrl_fifo_handler

OCERA IST 35102 53

ES_standard_send_commands

Synopsis

void ES_standard_send_commands(ServoDonnees * don)

Parameters

don

pointer to the main application data structure

Description

This function is called within the main synchronous servo-control loop (see hapticctrl). It is
(normally) used to send computed commands to the motors of the controlled robot. In the
context of OCERA robotic application V1, instead of sending commands to a real hardware
card connected to a true robot, commands are passed to a simulation function
(_sim_virtuose_dynamics()) that computes dynamic behavior of a virtual Virtuose robot arm.
As mentioned above, dynamic computation is done during the synchronous hard- RT context
of the servo-control loop; this introduces a minor overhead in the servo-control loop but not
so much as the simulation model is very simplistic.

See also

_sim_virtuose_dynamics

_sim_virtuose_dynamics

Synopsis

static void _sim_virtuose_dynamics(ServoDonnees * don)

Parameters

don

pointer to the main application data structure

Description

This function is called within the main synchronous servo-control loop (see hapticctrl) by the
ES_standard_send_commands() function. _sim_virtuose_dynamics() simulates (computes)
dynamic behavior of a virtual Virtuose robot arm. The robot model used is very simplistic to
avoid introducing non-representative overheads within the servo-control loop; this involves a
dynamic behavior of the simulated robot which is not as close as possible to the real one but
this does not matter in any way in the OCERA context as we are not testing the Controller
application itself but the OCERA system components;). Dynamic robot simulation inputs are
the following:

• motor commands (data computed by the Controller)
• force/torque applied by the user on the Virtuose handle (data coming from the virtsim

HMI; see ES_standard_build_logical_state())

While simulation output are the following:
• position of the Virtuose handle (data sent to the virtsim HMI)

OCERA IST 35102 54

As _sim_virtuose_dynamics() computes the robot behavior in the motors reference, we need
to express:

• force/torque applied on the handle in the motors reference
• handle position in any reference usable by the virtsim HMI such as: cartesian (base)

reference or articular reference

Still to avoid non representative overheads, _sim_virtuose_dynamics() does not compute these
transformations. Instead of that we use the Controller internal model of the robot to:

• apply force/torque on the Controller internal model as a disturbing force/torque right
before the motors commands are computed (this is done in the _sim_set_force()
function)

• retrieve handle position of the Controller internal model in cartesian (base) and
articular reference (this is done in the _sim_get_position() function

By this way, the computed pseudo-motor commands retrieved and used in
_sim_virtuose_dynamics() are the sum of the effective motor commands (as computed in the
control loop) and the user force/torque applied on handle in the motors reference (take it
easy;).

See also

ES_standard_send_commands, _sim_get_position, _sim_set_force

_sim_get_position

Synopsis

static void _sim_get_position(ServoDonnees * don)

Parameters

don

pointer to the main application data structure

Description

This function is called within the main synchronous servo-control loop (see hapticctrl) by the
ES_standard_build_logical_state() function. _sim_get_position() retrieve handle position of
the Controller internal robot model expressed in both the cartesian (base) and the articular
references. Data is copied to a static structure (virtuose) for use by the _sim_send_position()
function.

See also

_sim_send_position, _sim_set_force, ES_standard_build_logical_state

_sim_set_force

Synopsis

static void _sim_set_force(ServoDonnees * don)

OCERA IST 35102 55

Parameters

don

pointer to the main application data structure

Description

This function is called within the main synchronous servo-control loop (see hapticctrl) by the
ES_standard_build_logical_state() function. _sim_set_force() sets a disturbing force/torque on
the handle of the Controller internal model; this disturbing force/torque corresponds to a user
force/torque applied on the simulated Virtuose robot originated from the virtsim HMI (see
virtsim component). Force/torque data used as input is stored in a static array (_sim_p_force)
that is asynchronously refreshed by the RT-fifo handler: _sim_force_fifo_handler() as soon as
a new data coming from the virtsim HMI is available in the fifo.

See also

_sim_get_position, _sim_force_fifo_handler, ES_standard_build_logical_state

_sim_ctrl_fifo_handler

Synopsis

static int _sim_ctrl_fifo_handler(unsigned int fifo)

Parameters

fifo

RT-fifo (device) number

Description

This function is the handler associated to the FIFO_SIM_CTRL RT-fifo. This RT-fifo is used
by the virtsim HMI user-space process to send System mode change control words to the
application kernel-module. This allows to power on or off Controller, to request power state,
to enable/disable HMI/application communication or to trigger an emergency stop. Incoming
data is atomic (int), so there is no need to ensure data consistency using rtf_get().

See also

_sim_force_fifo_handler

_sim_force_fifo_handler

Synopsis

static int_sim_force_fifo_handler(unsigned int fifo)

Parameters

fifo

RT-fifo (device) number

OCERA IST 35102 56

Description

This function is the handler associated to the FIFO_SIM_FORCE RT-fifo. This RT-fifo is
used by the virtsim HMI user-space process to send force/torque applied by user on the
simulated Virtuose robot arm handle. Force/torque data is an array of 6 floats. A simple
mechanism using a temporary array prevents data inconsistency: rtf_get'ed data is preliminary
copied to the temporary array; it is then flushed to the shared static array _sim_p_force only
when the 6 floats of the array have been fully rtf_get'ed.

See also

_sim_set_force, _sim_ctrl_fifo_handler

_sim_send_position

Synopsis

static int _sim_send_position(void)

Return value

number of bytes sent

Description

This function is called within the main synchronous servo-control loop (see hapticctrl) by the
ES_standard_send_commands() function. _sim_send_position() sends to virtsim HMI user-
space process the computed position of the simulated Virtuose robot arm using a RT-fifo
(FIFO_SIM_POSITION). The rtf_put'ed data is stored in a shared static structure
(_sim_position) computed by the _sim_get_position() function.

See also

_sim_set_position, ES_standard_send_commands

5.4 Implementation issues

Not applicable

5.5 Tests and validation

Robotic application validation.

5.5.1 Validation criteria

Robotic application behavior as expected.

5.5.2 Tests

Robotic application execution.

OCERA IST 35102 57

5.5.3 Results and comments

Robotic application works as expected.

5.6 Examples

None

5.7 Installation instructions

Not applicable

OCERA IST 35102 58

Chapter 6. proto_interface component

6.1 Summary

Name:

 proto_interface

Description:

 Provide user-space side of the protocol component using Linux sockets

Author:

F. Russotto (russotto@cea.fr)

Reviewer:

Layer:

 Application level

Version:

 0.1 beta

Status:

 Design

Dependencies:

 libc, socket, pthread, rtl_fifo.

Release date:

 MS 4

6.2 Description

This user-space component is connected to the protocol kernel component. It provides user-
space side of the communication protocol (see protocol component), allowing access to
standard Linux sockets for communication between the Client application and the Controller
application.

6.3 API / compatibility

_server
SERVER user-space thread entry point

_client
CLIENT user-space thread entry point

main
Communication protocol interface process entry point

OCERA IST 35102 59

_server

Synopsis

void _server(void)

Description

This function is the entry point of the SERVER thread. SERVER is a user-space posix thread
which undefinitely listens to a Linux socket for incoming data transmitted by the Client
application and sends it to the Controller kernel-module application through a RT-fifo.
_server() performs undefinitely the following steps:

• receive incoming data from an open socket (UDP/IP)
• send received data to the Controller kernel-module application using a RT-fifo

(FIFO_SERVER)

See also

_client, main

_client

Synopsis

void _client(void)

Description

This function is the entry point of the CLIENT thread. CLIENT is a user-space posix thread
which undefinitely reads outgoing data from a dedicated RT-fifo and sends it to the Client
application through a standard Linux socket using UDP/IP. _server() performs the following
steps:

• read outgoing data from a RT-fifo (FIFO_CLIENT)
• send data to the Client application through a Linux socket.

See also

_server, main

main

Synopsis

int main(void)

Return value

0 on execution success, non-zero otherwise

OCERA IST 35102 60

Description

This function is the entry point of the Communication protocol user-space interface
(PROTO_INTERFACE). The tasks carried out main() are the following:

• open and bind a UDP socket for the SERVER & CLIENT threads
• open FIFO_SERVER RT-fifo for writing
• open FIFO_CLIENT RT-fifo for reading
• initialize CLIENT & SERVER posix threads attributes to: priority=99 (max),

scheduling=SCHED_FIFO, ...
• create CLIENT & SERVER posix threads (pthread_create())
• wait for threads termination (pthread_join())
• close socket, RT-fifos and exit

See also

_server, _client

6.4 Implementation issues

Not applicable

6.5 Tests and validation

Robotic application validation.

6.5.1 Validation criteria

Robotic application behavior as expected.

6.5.2 Tests

Robotic application.

6.5.3 Results and comments

Robotic application works as expected.

6.6 Examples

None

6.7 Installation instructions

Not applicable

OCERA IST 35102 61

Chapter 7. virtsim component

7.1 Summary

Name:

 virtsim

Description:

 Virtuose robot arm simulator user interface.

Author:

J. Brisset (julien.brisset@cea.fr)

Reviewer:

Layer:

 Application level

Version:

 0.1 beta

Status:

 Design

Dependencies:

 libc, pthread, rtl_fifo.

Release date:

 MS 4

7.2 Description

This component implements the Virtuose robot arm simulator HMI. Virtuose HMI (virtsim) is
a user-space process that allows user to control and monitor the simulated Virtuose robot (eg:
position monitoring, and force/torque control).

virtsim component has 2 two different implementations:

• Implementation #1 is a very simple full-text based interface. It has been developed to
debug and test the overall application behaviour.

• Implementation #2 is a QT-based Graphical User Interface much more sexy than the
1st one. Unfortunately this implementation could not be tested successfully as it
introduced severe instabilities in RT-Linux latencies (tons of deadline misses each
second, latencies up to 100 milliseconds); tests proved that virtsim was not the cause
itself as there was absolutely no link (communication) between virtsim and the Linux
kernel during tests. The QT implementation is given as is and will not be linked to the
Controller application until a Linux / RT-Linux bug fix is available.

OCERA IST 35102 62

7.3 API / compatibility

main(#1)
Virtuose robot arm simulator text-based HMI entry point (virtsim #1)

_hmi
HMI posix thread entry point

main(#2)
Virtuose robot arm simulator QT-based HMI entry point (virtsim #2)

VirtSimDlg::timerEvent
QT Timer event callback method

VirtWidget::paintGL()
Glut paint method

main(#1)

Synopsis

int main(void)

Return value

0 on execution success, non-zero otherwise

Description

This function is the entry point of the Virtuose robot arm simulator user-space text-based HMI
(virtsim #1).

Communication between virtsim and the Controller application kernel-module uses 3
dedicated RT-fifos (1 input, 2 output). The input fifo is used to read position data coming
from the Controller application kernel-module while output fifo #1 is used to send user
force/torque data and fifo #2 to send System mode change control words.

Data exchange between virtsim and the Controller application kernel module are made in a
dedicated posix thread (HMI) that main() creates, while main() is used for user inputs. The
tasks carried out are:

• open 3 RT-fifos (1 input, 2 output) to communicate with kernel
• set attributes and create the HMI posix thread (priority=97,

scheduling=SCHED_FIFO)
• loop undefinitely waiting for user inputs; available user imputs are: power on/off

simulated Virtuose robot, apply force/torque on Virtuose robot handle, exit virtsim;
user force/torque data is sotred in a shared static array (_sim_force)

• exit loop on user request
• order HMI thread to terminate
• wait for HMI thread termination (pthread_join())
• close RT-fifos
• exit process

OCERA IST 35102 63

See also

_hmi

_hmi

Synopsis

void _hmi(void)

Description

This function is the entry point of the HMI thread. HMI thread is created by the main process
to communicate both ways with the Controller application kernel-module and optionnally
displays simulated Virtuose robot position on screen. _hmi() performs the following tasks:

• open HMI / Controller app communication by sending an appropriate control word to
fifo #2

• do undefinitely:
• read position data from input fifo (blocking), then store it in a shared static structure

(_sim_position)
• write force/torque data from a shared static structure (_sim_force) to output fifo #1
• (optionally) displays position on screen
• exit loop on user request
• close HMI / Controller communication
• exit thread

See also

main

main(#2)

Synopsis

int main(void)

Return value

0 on execution success, non-zero otherwise

Description

This function is the entry point of the Virtuose robot arm simulator user-space QT-based
graphical HMI (virtsim #2).

Communication between virtsim and the Controller application kernel-module uses 3
dedicated RT-fifos (1 input, 2 output). The input fifo is used to read position data coming
from the Controller application kernel-module while output fifo #1 is used to send user
force/torque data and fifo #2 to send System mode change control words. Data exchange
between virtsim and the Controller application kernel module are made in a dedicated posix
thread (HMI) that main() creates, while main() is mainly used to create the QT GUI. The
main() function performs the following tasks:

OCERA IST 35102 64

• create the 3 needed RT-fifos to communicate with the Controller application kernel-
module

• set attributes and create the HMI posix thread (priority=97,
scheduling=SCHED_FIFO)

• create and show the main dialog box object (class VirtDlg); VirtDlg constructor will
(among other things) create the Glut widget object (class VirtWidget) which is used to
display a 3D model of the Virtuose robot arm

• destroys RT-fifos exit process

See also

_hmi, VirtSimDlg::timerEvent

VirtSimDlg::timerEvent

Synopsis

void VirtSimDlg::timerEvent(QTimerEvent *)

Description

This function implements the QT Timer event call-back method. It is periodically called by
the low-level QT layer at a specified rate (12 to 50 Hz). VirtSimDlg::timerEvent() performs
the following tasks:

• check for key pressed by user
• set force/torque to be applied on Virtuose robot handle depending on key pressed by

user then store force/torque data in the shared static array _sim_force
• call the VirtWidget::updateGL() that will (among other things) call the

VirtWidget::paintGL() method

See also

VirtWidget::paintGL

VirtWidget::paintGL()

Synopsis

void VirtWidget::paintGL()

Description

This function implements the painting method of the VirtWidget class. This method is called
periodically by the VirtWidget::updateGL() method (auto-generated by QT designer) which is
called within the VirtSimDlg::timerEvent() method.

paintGL() redraws the Virtuose robot 3D model into the application dialog box, using
Virtuose robot position parameters stored in the shared static structure _sim_position.

See also

VirtSimDlg::timerEvent

OCERA IST 35102 65

7.4 Implementation issues

Not applicable

7.5 Tests and validation

Robotic application validation.

7.5.1 Validation criteria

Robotic application behavior as expected.

7.5.2 Tests

Robotic application.

7.5.3 Results and comments

Robotic application works as expected.

7.6 Examples

None

7.7 Installation instructions

Not applicable

OCERA IST 35102 66

Chapter 8. Conclusion and future works

OCERA Robotic application V1 is still in a very beta state but provides the expected
behavior. The few remaining bugs will be fixed soon and some internal mechanisms of the
application will be completed or modified in order to enhance application efficiency using the
following OCERA components :

- Fault-Tolerance component in temps_reel and horloge components
- POSIX barriers instead of synchronization semaphore in horloge
- POSIX Trace in temps_reel_debug component

Future works on the application leading to version V2 will mainly be focused on:

- minor architectural changes of the application in order to fit the new industrial version
(some changes to enhance application efficiency in the Client/Controller communication
mechanisms, and in some robotics/haptics mechanisms)

- use of RTL-lwIP component (if available in OCERA) to avoid use of a Linux soft-real
time interface for Client/Controller communication through UDP

- application integration on a real (hardware) Virtuose Robot arm

Chapter 9. Acronyms table
ACPI Advanced Configuration and Power Interface

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

APM Advanced Power Management

CRC Circular Redundancy Checksum

D Dimensions

DMA Direct Memory Access

DoF Degrees of Freedom

FIFO First In First Out (ITC mechanism)

GUI Graphical User Interface

IP Internet Protocol

ITC Inter-Tasks Communication

MUTEX MUTual-EXclusion semaphore

OCERA Open Components for Embedded Real-time Applications

PCI Peripheral Component Interconnect

POSIX Portable Operating System Interface

RT Real-Time

UDP User Datagram Protocol

XDR eXternal Data Representation (Sun microsystems)

