
Case Studies for RT Linux

Case Studies for RT Linux:
by Michal Sojka

Second Edition
Published February 2005
Copyright © 2004 by Ocera
You can (in fact you must!) use, modify, copy and distribute this document, of course free of charge, and think about the

appropriate license we will use for the documentation.

Table of Contents
Preface...i
Document presentation ... ii
1. RT-Linux Threads ..1

1.1. Introduction..1
1.2. Kernel Modules ..1
1.3. Threads...1

1.3.1. Basic example ...1
1.3.2. Thread priorities...3
1.3.3. Periodic threads..3

1.4. Assignment...4
2. Debugging Techniques..5

2.1. Introduction..5
2.2. Debugging by Printing...5
2.3. Analyzing Crashes ...5

2.3.1. Crashes in Non-Real-Time Code ...5
2.3.2. Crashes in Real-Time Code..7
2.3.3. Finding an Error in Source Code...7

2.4. Assignment...8
3. Controller of DC motor...9

3.1. Introduction..9
3.2. Real-Time Controller ...9

3.2.1. The Motor Data Structure ...9
3.2.1.1. Locking of the Motor Structure..10

3.2.2. Initialization ...10
3.2.3. PWM Generation..10
3.2.4. Action Value Calculation..11

3.2.4.1. Fixed Point Arithmetic ...12
3.2.5. Position Measuring...12

3.2.5.1. IRQ Handler..12
3.2.5.2. Measure Thread..13

3.2.6. Compilation...14
3.3. User-Space Part of Controller..14
3.4. Conclusion ..15
3.5. Assignment...15

4. CANping – a simple LinCAN testing application..17
4.1. Introduction..17
4.2. CANping manual ...17

canping..17
4.3. Implementation details..18

4.3.1. Usage of the LinCAN driver ..19
4.3.1.1. Opening the Driver ...19
4.3.1.2. Setting Filters ...19
4.3.1.3. Reading and Writing ..19
4.3.1.4. Closing...20

4.3.2. Other parts of the application..20
4.3.2.1. Lists ...20
4.3.2.2. Waiting for the thread completion ...21
4.3.2.3. Signal handling...21

4.4. Assignment...22
A. Schematics of Motor Driver Board ...23

iii

List of Tables
1. Project Co-ordinator ..ii
2. Participant List..ii
A-1. Bill of Materials ...24

List of Figures
1-1. The simplest Linux module (threads0.c)...1
1-2. Creation of RT-Linux threads (threads1.c) ...1
1-3. Body of the thread ..2
1-4. Setting of thread priorities...3
1-5. A periodic thread (high priority)..3
1-6. The output of threads3 example. ...4
3-1. Declaration of struct motor ..9
3-2. Code of the pwmfunction ..11
3-3. Code of the regul function..11
3-4. Code of irq_handler function ...12
3-5. Measurement of position..13
3-6. User-space part of the controller ...14
A-1. Motor controller scheme ..23
A-2. Scheme of connectors for motor controller..23

iv

Preface
This document contains several case studies for RT-Linux and some OCERA compo-
nents. It covers RT-Linux basics as well as quite advanced topics, but it is not exhaus-
tive. There are many topics not covered by this document, so the reader has to study
other documents in order to learn how to use RT-Linux and/or OCERA components.
The following chapters are organised as follows. First, there is an introduction present-
ing what is the case study about and what the reader will learn. In the following sections
a problem is analysed. For each case study, there is one or more programs solving the
problem and these programs are explained in detail. The source code of these programs
is available so the reader can modify it and look what their change caused. At the end,
there are assignments for students. These can be used as exercises in a school.
If these case studies are used in school for teaching RT-Linux and OCERA, the teacher
should explain the problem in a similar way how it is written here and then let the
students to solve individual tasks e.g. those mentioned in the assignment sections.

i

Document presentation
Table 1. Project Co-ordinator

Organisation: UPVLC
Responsible person: Alfons Crespo

Address: Camino Vera, 14. CP: 46022, Valencia, Spain
Phone: +34 9877576

Fax: +34 9877579
E-mail: alfons@disca.upv.es

Table 2. Participant List

Role Id. Name Acronym Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore S. Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA CEA FR
CR 5 UNICONTROLS UC CZ
CR 6 MNIS MNIS FR
CR 7 VISUAL TOOLS S.A. VT E

ii

Chapter 1. RT-Linux Threads

1.1. Introduction
This case study introduces RT-Linux basics—threads. First, the concept of Linux kernel
modules is briefly explained then follows a description of how to create threads and
change their priorities and at the end a section about periodic threads is included.

1.2. Kernel Modules
RT-Linux application is in fact a Linux kernel module. It is the same type of module,
which Linux uses for drivers, file systems and so on. The main difference between RT-
Linux module and an ordinary Linux module is that RT-Linux module calls functions,
which are offered by RT-Linux kernel whereas ordinary module uses only Linux kernel
functions.
The source code of a simple Linux module is in Figure 1-1. It contains two functions:
init_module , which is called when the module is inserted to the kernel (usually by
insmod or modprobe command), and cleanup_module , which is called before module
is removed (usually by rmmod).

#include <linux/module.h>
#include <linux/kernel.h>

int init_module(void)
{

printk("Init\n");
return 0;

}

void cleanup_module(void)
{

printk("Cleanup\n");
}

MODULE_LICENSE("GPL");

Figure 1-1. The simplest Linux module (threads0.c)
After you insert the module by running insmod threads0.o, you should see a mes-
sage Init on your console. After running rmmod threads0, you will see a Cleanup
message. If you write RT-Linux application you use these functions to initialize and
deinitialize your application.

1.3. Threads
RT-Linux implements a POSIX API for a threads manipulation. If you are familiar with
a POSIX threads library (pthread) used by user-space application, it should not be
problem for you to work with threads in RT-Linux. A thread is created by calling the
pthread_create() function. The third parameter of pthread_create() is a function
which contains the code executed by the thread.

1.3.1. Basic example
Let’s look at threads1.c , where is a simple example. In Figure 1-2 is code that cre-
ates three threads. Every thread does the same thing (function thread_code()), but
different parameters are passed to each of them.

1

Chapter 1. RT-Linux Threads

int init_module(void)
{

pthread_create(&t1, NULL, &thread_code, "this is thread 1");
rtl_printf("Thread 1 started\n");
pthread_create(&t2, NULL, &thread_code, "this is thread 2");
rtl_printf("Thread 2 started\n");
pthread_create(&t3, NULL, &thread_code, "this is thread 3");
rtl_printf("Thread 3 started\n");
return 0;

}

Figure 1-2. Creation of RT-Linux threads (threads1.c)
void do_some_work(void)
{

rtl_delay(1000000000); /* 1 second */
}

void *thread_code(void *arg)
{

int i;

/* If this line isn’t commented, the behaviour is diferent. */
/* usleep(10000); */ ➊

for (i = 0; i < 3; i++) {
rtl_printf("Message: %s\n", (char *) arg);
do_some_work();

}

return (void *)0;
}

Figure 1-3. Body of the thread
The code of each thread is in Figure 1-3. If you run this RT-Linux application, you should
see the following messages on your console:
Message: This is thread 1
Message: This is thread 1
Message: This is thread 1
Thread 1 has stared
Message: This is thread 2
Message: This is thread 2
Message: This is thread 2
Thread 2 has started
Message: This is thread 3
Message: This is thread 3
Message: This is thread 3
Thread 3 has started.

You may wonder, why the consecutive thread is started after the previous thread has fin-
ished. The explanation is very simple. Every RT-Linux thread has higher priority than
Linux kernel (and user-space application too). The init_module function is executed
in Linux context and because our real-time threads don’t sleep, Linux have next chance
to run only after the real-time thread finishes.

The behaviour of rtl_printf() depends on whether you have RT-Linux
compiled with the option “rtl_printf uses printk” set or not. If this option is set,
messages are printed to the console only when Linux runs, which may by
sometimes long time from the instant when the message was produced. For
purposes of these case studies it is better to not set this option. In this case you
can see in "real-time" what the CPU does.

If you uncomment line marked by ➊, the behaviour changes. Now, all threads wait at
beginning of its execution and Linux has a chance to create remaining threads. After
inserting the modified module, there should appear on your console something like that:
Thread 1 has started
Thread 2 has started
Thread 3 has started
Message: This is thread 1
Message: This is thread 3
Message: This is thread 3
Message: This is thread 3
Message: This is thread 2

OCERA. IST 35102 2

Chapter 1. RT-Linux Threads

Message: This is thread 2
Message: This is thread 2
Message: This is thread 1
Message: This is thread 1

1.3.2. Thread priorities
Often it is necessary to set thread priorities. Threads with higher priorities can preempt
threads with lower priorities. For example, we can have a thread controlling a stepper
motor. In order to move the motor fluently, it is necessary to start this thread in strictly
regular intervals. This can be guaranteed by assigning a high priority to this thread.
The example threads2.c does the same as thread1.c , but we set different thread
priorities. Due to the priority changes, the order of lines at the program output differs
from the previous example. Setting of thread priority is done by code shown in Figure
1-4.

int init_module(void)
{

pthread_attr_t attr;
struct sched_param param;

pthread_attr_init(&attr);
param.sched_priority = 1;
pthread_attr_setschedparam(&attr, ¶m);
pthread_create(&t1, &attr, &thread_code, "this is thread 1");
rtl_printf("Thread 1 started\n");

...

Figure 1-4. Setting of thread priorities

The output the program is as follows.
Thread 1 started
Thread 2 started
Thread 3 started
Message: this is thread 1
Message: this is thread 2
Message: this is thread 2
Message: this is thread 2
Message: this is thread 1
Message: this is thread 1
Message: this is thread 3
Message: this is thread 3
Message: this is thread 3

The thread 2 has the highest priority and the thread 3 has the lowest priority. The first
message is printed by the middle priority thread 1 because it is started short time before
the thread 2.

1.3.3. Periodic threads
Most of control applications execute periodic tasks. They same code is run repeatedly in
regular intervals. This is called a periodic thread and RT-Linux has support for this type
of threads. After spawning, the thread should call pthread_make_periodic_np() to
setup its period. Then it enters a loop in which the pthread_wait_np() function is
called. This function assures that the thread waits to the start of the next period. In
Figure 1-5, there is code of periodic threads from threads3.c example.

void *high_prio_thread(void *arg)
{

pthread_make_periodic_np(pthread_self(), gethrtime(), 300*MS);

while (!terminate) {
rtl_printf("#");
do_some_work();
pthread_wait_np();

}

return (void *)0;
}

OCERA. IST 35102 3

Chapter 1. RT-Linux Threads

void *low_prio_thread(void *arg)
{

int i;
pthread_make_periodic_np(pthread_self(), gethrtime(), 2*1000*MS);
while (!terminate) {

for (i = 0; i < 5; i++) {
rtl_printf(".");
do_some_work();

}
pthread_wait_np();

}
return (void *)0;

}

Figure 1-5. A periodic thread (high priority)

This example contains two threads. One thread is assigned high priority and the second
low priority. The period of the high priority thread is 300 ms and this thread has also
less to do. The low priority thread has period of 2 seconds and has five times more to do.
When an example is run, one can see (by watching the printing of # character), that the
high priority thread runs very regularly regardless of whether the low priority thread
does something or not1.
#..#..#.#####..#..#.####.#..#..#####..#..#.#####..#..#.####.#..#..###
##..#..#.#####..#..#.####.#..#..#####..#..#.#####..#..#.####.#..#..##
###..#..#.#####..#..#.####.#..#..#####..#..#.#####..#..#.####.#..#..#
####..#..#.####

Figure 1-6. The output of threads3 example.

1.4. Assignment
Create an application that will regularly switch on and off LEDs connected to parallel
port. Use three LEDs and every LED will blink with a different period.

Notes
1. The ’#’ characters appear regularly only if you have RT-Linux compiled without the

“rtl_printf uses printk” option.

OCERA. IST 35102 4

Chapter 2. Debugging Techniques

2.1. Introduction
This chapter provides basic information on debugging RT-Linux modules. More pre-
cisely, it covers analysis of real-time program crashes and teaches the reader how to
acquire as much information as possible from kernel oops messages.
The debugging of RT-Linux code is not as simple as the debugging of a user-space appli-
cation. The reason of this is the absence of an interactive debugging facility in the Linux
kernel. There are some patches to Linux kernel that provide some debugging possibil-
ities and RT-Linux has also its own debugging facility1, but usage of these interactive
tools is out of scope of this document and interested reader should consult the documen-
tation of the appropriate tool.

2.2. Debugging by Printing
There are several reasons why we need to debug our application. First, we may need to
find out why our application doesn’t behave the way we want. This is often a trivial error,
which can be discovered by looking at sources or by the technique called debugging by
printing. We use a rtl_printf function to print some relevant messages, which help
us to find an error. It is worth noting that the behaviour of rtl_printf depends on
configuration of RT-Linux. If option CONFIG_RTL_SLOW_CONSOLEis set, all messages
printed with rtl_printf are passed to printk . This has an advantage of appearing
the messages in kernel log, which can be seen by running dmesg command. On the
other hand it has a drawback too. When Linux hasn’t chance to run (RT-Linux threads
have always higher priority than Linux), no messages are written to a console and to
the kernel log as well.
The second case where we need debugging is the solving of application crashes. When an
application crashes it is important to collect as much information concerning the crash
as possible. After we have the right information, we can find where the crash was and
try to fix the code, which caused the error. Later we can use the debugging by printing
technique to see values of variables or to print other useful information, to find out what
have exactly caused the crash.

2.3. Analyzing Crashes
In most cases, the crash of an application is caused by a fault when accessing an invalid
virtual memory address. In such a case an exception is generated by the CPU and Linux
handles it by printing a so called oops message. If we are lucky enough, the fault was
not at real-time level but rather at Linux level, such as in the module initialization or
cleanup function. In this case the kernel kills the process, in whose context the kernel
was running, in the time of the fault. This is often an insmod or rmmod command. It is
important, that the kernel go on running. If we want to find out more information about
the crash, it is always better to have a module compiled with debugging information.
This can be accomplished by invoking gcc with -g parameter.

2.3.1. Crashes in Non-Real-Time Code
Let’s look at the buggy0.c example. There is a function buggy , which tries to write the
number 123 to the NULLaddress.

void buggy(void)
{

int *p = NULL;
*p = 123;

}

5

Chapter 2. Debugging Techniques

For educational purposes, this function is called from another function called
my_function . When we try to insert buggy0 module by running insmod buggy0, an
oops message appears:
Unable to handle kernel NULL pointer dereference at virtual address 00000000

printing eip:
c8852075
*pde = 00000000
Oops: 0002
CPU: 0
EIP: 0010:[<c8852075>] Not tainted
EFLAGS: 00010282
eax: 0000007b ebx: c8852000 ecx: c02dd010 edx: c118a244
esi: 00000000 edi: 00000000 ebp: ffffffea esp: c69c9f18
ds: 0018 es: 0018 ss: 0018
Process insmod (pid: 145, stackpage=c69c9000)
Stack: c8852085 c0118ebb c8852060 080add18 00000100 00000000 080add4c 00000094

00000060 00000060 00000006 c691b1e0 c691a000 c691d000 00000060 c8841000
c8852060 00000160 00000000 00000000 00000000 00000000 00000000 00000000

Call Trace: [<c8852085>] [<c0118ebb>] [<c8852060>] [<c8852060>] [<c0107617>]

Code: a3 00 00 00 00 c3 90 8d 74 26 00 e8 db ff ff ff 31 c0 c3 90

We can see that we are accessing a memory at virtual address 0, which is the only mean-
ingful information for this time. To obtain more information, we need to run this oops
message through ksymoops utility. The easiest way of doing this is running a com-
mand dmesg|ksymoops (which uses a pipe to pass output of dmesg to the ksymoops).
Possible output of this command is shown here:
Unable to handle kernel NULL pointer dereference at virtual address 00000000
c8852075
*pde = 00000000
Oops: 0002
CPU: 0
EIP: 0010:[<c8852075>] Not tainted
Using defaults from ksymoops -t elf32-i386 -a i386
EFLAGS: 00010282
eax: 0000007b ebx: c8852000 ecx: c02dd010 edx: c118a244
esi: 00000000 edi: 00000000 ebp: ffffffea esp: c69c9f18
ds: 0018 es: 0018 ss: 0018
Process insmod (pid: 145, stackpage=c69c9000)
Stack: c8852085 c0118ebb c8852060 080add18 00000100 00000000 080add4c 00000094

00000060 00000060 00000006 c691b1e0 c691a000 c691d000 00000060 c8841000
c8852060 00000160 00000000 00000000 00000000 00000000 00000000 00000000

Call Trace: [<c8852085>] [<c0118ebb>] [<c8852060>] [<c8852060>] [<c0107617>]
Code: a3 00 00 00 00 c3 90 8d 74 26 00 e8 db ff ff ff 31 c0 c3 90

>>EIP; c8852075 <[buggy0]buggy+5/10> <===== ➊

>>ebx; c8852000 <[rtl_sched]rtl_timer_list_lock+3278/32d8>
>>ecx; c02dd010 <contig_page_data+130/320>
>>edx; c118a244 <_end+e1e678/84ba494>
>>esp; c69c9f18 <_end+665e34c/84ba494>

Trace; c8852085 <[buggy0]init_module+5/10> ➋

Trace; c0118ebb <sys_init_module+4bb/630>
Trace; c8852060 <[buggy0]my_function+0/0>
Trace; c8852060 <[buggy0]my_function+0/0>
Trace; c0107617 <system_call+47/50>

Code; c8852075 <[buggy0]buggy+5/10>
00000000 <_EIP>:
Code; c8852075 <[buggy0]buggy+5/10> <=====

0: a3 00 00 00 00 mov %eax,0x0 <===== ➌

Code; c885207a <[buggy0]buggy+a/10>
5: c3 ret

Code; c885207b <[buggy0]buggy+b/10>
6: 90 nop

Code; c885207c <[buggy0]buggy+c/10>
7: 8d 74 26 00 lea 0x0(%esi,1),%esi

Code; c8852080 <[buggy0]init_module+0/10>
b: e8 db ff ff ff call ffffffeb <_EIP+0xffffffeb>

Code; c8852085 <[buggy0]init_module+5/10>
10: 31 c0 xor %eax,%eax

OCERA. IST 35102 6

Chapter 2. Debugging Techniques

Code; c8852087 <[buggy0]init_module+7/10>
12: c3 ret

Code; c8852088 <[buggy0]init_module+8/10>
13: 90 nop

Let’s look at some interesting lines:
➊ Here we can see the value of an instruction pointer register (EIP) and in which

function this value is. We can see it is in function called buggy , which is 0x10 (16)
bytes long and EIP points to the 5th byte of this function.

➋ Starting with this line, there is a stack trace. These lines show possible order of
called functions. In our example the order shown here differs a little bit from real
situation on the stack, but it can also help us. With a little imagination we can
see that the buggy function was called from my_fuction and this was called from
init_module . The reason why the stack trace is not exact is that the Linux kernel
uses an approximation algorithm for the trace extraction.

➌ On this line is shown exact instruction that caused the fault. Here the value of eax
register was written to address 0x0.

Now we have all needed peaces of information and can continue with Section 2.3.3,
Finding an Error in Source Code.

2.3.2. Crashes in Real-Time Code
When a fault occurs in real-time part, which is not associated with any process, oops
message is printed and kernel doesn’t go on running. This is a problem, because we can’t
gather information as easy as in the previous section. Let’s study example buggy1.c .
There is the function buggy too, but instead of being called from init_module , it is
called from real-time thread thread1 .
When inserting the module to the kernel, we should add -m to the insmod command.
This causes the insmod to print symbols and addresses of inserted module. On my com-
puter it gives:
insmod -m buggy1.o
...
Symbols:
00000000 a buggy1.mod.c
00000000 a buggy1.c
c8852000 d __this_module
c8852000 D __insmod_buggy1_O/lib/modules/2.4.18-ocera-0.5/misc/buggy1.o_M40698F38_V132114
c8852060 T __insmod_buggy1_S.text_L156
c8852060 T buggy
c8852060 t .text
c8852070 T my_function
c8852080 T thread1
c88520a0 t init_module
c88520e0 t cleanup_module
c88521f0 d .bss
c88521f0 D t1
c88521f0 d .data

After the buggy() function executes the bad instruction, an oops message similar to
that one in a previous example is printed. In this oops message we should notice a value
of the EIP register. On my computer I can see:

printing eip:
c8852065

When we compare this address with the list of symbol values, we find out this is five
bytes after the symbol buggy . Every symbol marks the beginning of a same named
function.

OCERA. IST 35102 7

Chapter 2. Debugging Techniques

2.3.3. Finding an Error in Source Code
Now we have exact information about an instruction that caused the fault. This is prob-
ably not enough to remove the bug, because we don’t know what line in C source code
this instruction belongs to. This can be determined by objdump utility. If we have our
module compiled with debugging information, we can run
objdump -S buggy1.o | less

This command disassembles the module and prints assembler code intermixed with C
source code. Here is a listing of buggy function:
Disassembly of section .text:

00000000 <buggy>:
void buggy(void)
{

int *p = NULL;

p = 123; / attempt to write to bad memory
0: b8 7b 00 00 00 mov $0x7b,%eax
5: a3 00 00 00 00 mov %eax,0x0

* position */
}

a: c3 ret
b: 90 nop
c: 8d 74 26 00 lea 0x0(%esi,1),%esi

We can see that on 5th byte after beginning of the buggy function is instruction mov
%eax,0x0 and this instruction belongs to C source line *p = 123; .

2.4. Assignment
Students will be given an arbitrary RT-Linux application with source code, which con-
tains some errors which prevent the application from functioning properly. The student’s
goal is to find and fix those errors.

Notes
1. The RT-Linux debugging facility is implemented in module rtl_debug.o .

OCERA. IST 35102 8

Chapter 3. Controller of DC motor

3.1. Introduction
This chapter contains a description of a real RT-Linux application. The goal of this case
study is to write an RT-Linux application that controls velocity of DC motor equipped
with an IRC (Incremental Radial Counter) sensor. The motor is connected to a PC
through a simple electronic circuit consisting of a motor driver and basic logic parts.
This circuit is to be plugged in to the PC printer port. Schematics for the board can be
found in Appendix A, Schematics of Motor Driver Board.
The application consists of two programs. One is a RT-Linux kernel module that builds
a real-time part of a controller and the second is a user-space program, which displays
current status of the controller to the user and let him to change desired value of velocity.
This program communicates with real-time part via real-time FIFO.
In the following sections we are going to describe the parts of the application in a more
detailed manner. It can be useful if you can look at the source code while reading this
text. There are lots of comments in the source code and if you don’t understand some
part of this documentation, the comments may help you.

3.2. Real-Time Controller
The real-time controller is the main part of this case study. It is a RT-Linux module and
in this section we will describe particular pieces of this module.

3.2.1. The Motor Data Structure
The heart of real-time part is a motor structure (struct motor, Figure 3-1). This structure
is meant to represent one real motor. In our case study we have only one motor, but if
someone wants us to control two or more motors, it would be very simple to implement it.
You can consider this as some sort of object oriented programming in plain C (not C++)
language. We have a structure representing some object and also functions that works
with this object. These functions are called methods in object oriented terminology. The
only difference1 between this approach and object oriented languages is that we have to
explicitly pass the motor structure as a parameter when we call methods.

struct motor {
int irq; /* interrupt request number */
int base; /* base address of parallel port registers */

/* This spinlock protects the following variables, which are
* used in irq handling routine. */
//pthread_mutex_t spinlock;
rtl_spinlock_t spinlock;

int delta_pos; /* num. of irqs during last sample
* period, signum determines
* direction */
int last_aper;
int dir; /* direction of motor rotation */
hrtime_t last_irq_time; /* time of last irq */
hrtime_t last_irq_interval; /* time between two last irqs */

/* This lock protects action variable. We use special lock
* only for this variable, because it is used quite often by
* PWM thread and long locking of this variable would break
* the PWM accurancy. */
pthread_mutex_t action_lock;
int action; /* action value that controls PWM
* (0-PWM_RESOLUTION) */
/* This lock protects everithing below against other threads. */
pthread_mutex_t lock;

9

Chapter 3. Controller of DC motor

/* Some of the following variables store values in fixed point
* aritmetic (FPA). Lower 16 bits is treated as decimal
* part. */
int reference; /* desired value of velocity (FPA) */

int velocity; /* measured velocity (FPA) */
int position; /* measured position (FPA) */

int last_pos_corr; /* last correction of position based
* on time calculations (FPA) */

int sum_dev; /* sum of regulator deviations (FPA) */
int last_dev; /* last regulator deviation (FPA) */

pthread_t thr_pwm, thr_measure, thr_regul;
int fifo_in, fifo_out;

}

Figure 3-1. Declaration of struct motor

3.2.1.1. Locking of the Motor Structure
In order to prevent multiple threads from manipulating motor structure concurrently,
some locking is needed. The basic idea behind locking is that any thread accessing a
resource (in our case the resource is a motor structure) must lock it. Whenever a thread
has locked the resource, other threads have to wait for the first thread to unlock the
resource.
There are thee locks in the motor structure that are used to lock various parts of the
structure:

spinlock
is a lock of type rtl_spinlock_t which is used to protect variables against modifica-
tion by an IRQ handler or, in SMP (Symmetric multi-processing) machine, by other
processors. When accessing the motor structure in a regular thread (not in an IRQ
handler) we lock the spinlock by calling rtl_spinlock_irqsave() . This forbids
an IRQ reception on a CPU and, if compiled for SMP machine, locks the spinlock. In
the IRQ handler we use rtl_spinlock_lock() to lock variables. This only locks
the spinlock on SMP and on UP (uni-procesor) it does nothing. We can do this be-
cause the other IRQs are already forbidden when one IRQ is handled. There isn’t
anyone else who could modify our data.

action_lock
is used to lock an action variable. The action variable isn’t protected by the third
lock (see bellow) because longer locking of that lock would prevent the PWM (Pulse
Width Modulation) thread (see Section 3.2.3, PWM Generation) from doing its work.

lock
this lock protects all variables not being protected by any of above locks.

3.2.2. Initialization
Initialization is done in the function motor_init . From there the function (method)
start_motor is called in order to initialize the motor structure, mutexes, FIFOs and so
on. It also starts three threads that implement the controller. These threads are:

• the PWM thread, for generating PWM signal,
• the measure thread, which measures current position and speed at regular intervals

and
• the regul thread which calculates the action value.

OCERA. IST 35102 10

Chapter 3. Controller of DC motor

3.2.3. PWM Generation
The PWM signal that drives the motor is generated by pwmfunction. There is an end-
less loop in this function. The loop body is executed once per time defined by the
PWM_PERIODsymbol. Default value is 1 ms.

void *pwm(void *arg)
{

struct timespec delay;
struct motor *motor = (struct motor *)arg;

delay.tv_sec = 0;
while (1) {

pthread_mutex_lock(&motor->action_lock);
if (motor->action > 0)

set_output(motor, MOTOR_FWD); ➊

else if (motor->action < 0)
set_output(motor, MOTOR_REV);

else
set_output(motor, MOTOR_STOP);

if (abs(motor->action) < PWM_RESOLUTION) {
int nsec = PWM_PERIOD * abs(motor->action) / PWM_RESOLUTION;
pthread_mutex_unlock(&motor->action_lock);
delay.tv_nsec = nsec;
nanosleep(&delay, NULL); ➋

set_output(motor, MOTOR_STOP); ➌

}
else pthread_mutex_unlock(&motor->action_lock);

pthread_wait_np(); ➍

}
return 0;

}

Figure 3-2. Code of the pwmfunction
In the beginning of the loop (Figure 3-2, ➊), one of the two output pins of the printer port
connected to the motor driver is set. Which bit is set depends on sign of action value.
After that the thread sleeps for some time that depends on an action value too (➋). After
waking up, the output pin is reset to zero (➌). It remains unset until beginning of next
period (➍).

3.2.4. Action Value Calculation
The action value (the value used by PWM thread) is calculated by a simple PSD
(proportional-sum-differential) controller. The controller is implemented in the function
regul (see Figure 3-3). This function blocks at the beginning (➊) and when new value
of velocity is measured, it is woken up. The real computation of action value is done in
calc_action function. The calculations are very simple, but they use a trick that is
described in the next section.

void *regul(void *arg)
{

struct motor *motor = (struct motor *)arg;
struct motor_status status;
int retval;
int action;

while (1) {
/* wait for measured value */
pthread_suspend_np(pthread_self()); ➊

pthread_mutex_lock(&motor->lock);

action = calc_action(motor) * PWM_RESOLUTION >> 16;

pthread_mutex_lock(&motor->action_lock);
motor->action = action; ➋

pthread_mutex_unlock(&motor->action_lock);

/* send status to user space program */

OCERA. IST 35102 11

Chapter 3. Controller of DC motor

status.velocity = motor->velocity;
status.position = motor->position;
status.action = motor->action;
retval = rtf_put(motor->fifo_out, &status, sizeof(status)); ➌

pthread_mutex_unlock(&motor->lock);
}
return 0;

}

Figure 3-3. Code of the regul function
The calculated value is then stored in the motor structure for use by the pwmthread (➋)
and current status is sent to the user-space program via the RT FIFO (➌).

3.2.4.1. Fixed Point Arithmetic
In order to represent decimal numbers in our control algorithm we use a trick called
fixed-point arithmetic. This is very simple. We use an integer variable to represent dec-
imal numbers. Sixteen least significant bits are used to represent a decimal part of a
number and 16 most significant bits represent an integer part.
We can add or subtract these numbers like ordinary integers. When we want to multiply
them, we can choose one from the following methods:

• Multiply the values using 64 bit multiplication and shift the result to right by 32 bits.
• Before multiplication shift both operands to right by 8 bits.
• Shift one operand to the right by 16 bits.

Which method is used depends on expected values of operands and desired precision.
If we for example know, one operand is always smaller than one and we use the third
method and shift that operand rightwards by 16 bits, we get zero, which is probably not
what we wanted.

3.2.5. Position Measuring
The measuring of position is the most complicated task in this case study. It can be
solved in more simple way than is presented here, but our method gives better results
in regulation and also allow us to demonstrate more RT-Linux features.
First, we will explain the simpler method and then extend it to the more complicated
one. Before the explanation of the measurement procedure we should describe what the
IRQ handler does.

3.2.5.1. IRQ Handler
Whenever signal from IRC sensor changes, an interrupt is generated. The interrupt
handler have to read a two-bit value of IRC sensor (➊) and determine the direction in
which the motor is rotating. According the direction a temporary variable delta_pos
representing current position of a motor is incremented (➌) or decremented. Also the
actual time is remembered in variable last_irq_time (➋) and a time since last IRQ
is computed and saved in variable last_irq_interval . See Figure 3-5 for graphic
representation of this.

char aper_seq[4] = {0, 1, 3, 2};

unsigned irq_handler(unsigned int irq, struct pt_regs * regs)
{

struct motor *motor = &my_motor;
int aper;
char pos, last_pos;
hrtime_t now;

/* This prevents other processor to manipulate our data. */
rtl_spin_lock(motor->spinlock);

/* deterine direction */

OCERA. IST 35102 12

Chapter 3. Controller of DC motor

aper = read_apertures(motor); ➊

pos = aper_seq[aper];
last_pos = aper_seq[motor->last_aper];

now = clock_gethrtime(CLOCK_REALTIME);
motor->last_irq_interval = now - motor->last_irq_time;
motor->last_irq_time = now; ➋

if (pos == (last_pos+1) % 4) {
motor->delta_pos++; ➌

motor->dir = +1;
}
else if (pos == (last_pos+3) % 4) {

motor->delta_pos--;
motor->dir = -1;

}
else {

rtl_printf("lost interrupt\n");
}

motor->last_aper = aper;

rtl_spin_unlock(motor->spinlock);

rtl_hard_enable_irq(irq); /* This irq is disabled in this
* routine, so we have to reenable
* it. */

return 0;
}

Figure 3-4. Code of irq_handler function

3.2.5.2. Measure Thread
This periodic thread is implemented in function measure . Before describing this thread,
let’s look at Figure 3-5. This is a graphical explanation of what is done when position is
measured. On the horizontal axis there is time and on the vertical axis is motor position.
The horizontal dotted lines represent position where IRC changes the output value. The
thick black curve is real position of the motor. The figure thus shows that, at beginning,
the motor rotates with constant velocity in one direction, than it quickly rotates to the
other direction and finally it rotates to the same direction as at beginning.

time

po
si

tio
n

1

2

3

4

sample 0 sample 1 sample 2 sample 3 sample 4

irq

last_irq_interval

pos_corr

pos_corr

Figure 3-5. Measurement of position
The simpler version of a measuring algorithm would do only these steps (in regular
intervals corresponding to sample marks on the horizontal axis):

OCERA. IST 35102 13

Chapter 3. Controller of DC motor

• delta_pos is saved to temporal variable and zeroed. While this is being done, inter-
rupts should be disabled.

• The saved value of delta_pos (position change since last sample period) is added to
position .

• Actual motor velocity is computed depending on a value of delta_pos .

This method of position measuring gives us the results that are depicted in Figure 3-
5 by the black dashed line. The inaccurate measuring of position in this simple version
isn’t big issue. The measuring of velocity is worse. When the motor rotates with constant
velocity, the measured velocity isn’t constant and oscillates between two adjacent values.
As we use the measured velocity to close the feedback loop of the PSD controller, we need
a better method of velocity measuring.
The method we use in our case study tries to estimate the real position depending
on time elapsed since last IRQ. In each sampling period the correction of position is
calculated (in Figure 3-5 denoted by pos_corr). The calculation is based on linear ex-
trapolation of position between last two IRQs. Variables used in this calculation are:
last_irq_interval , last_irq_time and current time. What the controller thinks
about current position measured in this manner is depicted in Figure 3-5 by red dash-
and-dot line.
Whenever the correction is bigger than one, we trim it to one. This can be seen for
example before sample 4.

3.2.6. Compilation
The compilation of this case study is a little bit harder than of other RT-Linux projects.
The reason of this is that we need 64-bit division. This functionality is contained in
libgcc library. When compiling an user-space application, this library is automatically
linked with the application. Since this is not true for compiling kernel modules and we
have to explicitly link the kernel module with libgcc . We can determine the exact name
of the library by gcc -print-libgcc-file-name command. Then we use ld command to
link the module with the library.
ld -r -o motor_ok.o motor.o $(gcc -print-libgcc-file-name)

3.3. User-Space Part of Controller
In this case study we want the user to have an ability to modify desired value of velocity.
Also it is useful when a user can see an actual velocity and position of the motor.
Because this functionality isn’t required to be hard real-time, is better (and safer) not to
include it in the real-time part and do it as a stand-alone user-space application. This
application communicates with the real-time part via RT FIFOs. Its source code is in
ctrl.c file and is very simple.

int main(int argc,char ** argv)
{

int fifo_in; /* to send desired value (input to motor.c) */
int fifo_out; /* to read motor state */
float value = 10;

struct motor_status mstate;
struct timeval timeout;
int retval;
fd_set rdfs;

if ((fifo_in = open("/dev/rtf0", O_WRONLY)) < 0) { ➊

fprintf(stderr, "Error opening /dev/rtf0\n");
exit(1);

}

if ((fifo_out = open("/dev/rtf1", O_RDONLY)) < 0) {

OCERA. IST 35102 14

Chapter 3. Controller of DC motor

fprintf(stderr, "Error opening /dev/rtf1\n");
exit(1);

}

while (1) { /* exit with Ctrl-C */
timeout.tv_sec = 0;
timeout.tv_usec = 10*1000; /* 10 ms */
FD_ZERO(&rdfs);
FD_SET(0, &rdfs); /* stdin */
FD_SET(fifo_out, &rdfs); /* motor state */
retval = select(fifo_out + 1,

&rdfs, NULL, NULL, &timeout); ➋

if (FD_ISSET(0, &rdfs)) {
int i;
printf("Rotation: ");
fflush(stdout);
scanf("%f",&value);
i = (int)(value * (1<<16)); /* fixed point aritmetic */
write(fifo_in, &i, sizeof(i));
printf("Rotation set to %.2f rps\n", value);
fflush(stdout);

}
if (FD_ISSET(fifo_out, &rdfs)) {

retval = read(fifo_out, &mstate, sizeof(mstate));
printf("\rPos: %8.2f Vel: %8.2f Action: %8d",

(double)mstate.position/(1<<16),
(double)mstate.velocity/(1<<16),
mstate.action

);
fflush(stdout);

}
}
return 0;

}

Figure 3-6. User-space part of the controller
At the beginning two FIFOs are opened (➊). One is used for reading status from the
real-time part and one for writing data to the real-time part. After that, the program
enters an endless loop, so the user can quit the program only by pressing Ctrl-C2. The
loop begins by waiting (with timeout) for either data from real-time part or input from
keyboard via STDIN. This waiting is performed in select() system call (➋). After re-
turning from this call we test if some file descriptor has ready data for us.
If there are data from STDIN, we print an issue to user to input desired rotation value.
Then this value is sent to real-time part via FIFO. If there are data from input FIFO,
we read them and store them to the structure of the same type as is used by real-time
part. Then we print stored values.

3.4. Conclusion
In this case study we have developed functional controller of DC motor. There is space
for the extension of its functionality, but it wouldn’t show us more RT-Linux features.
An important notice: When someone would solve the same task as in this case study
in an industrial environment, he would probably use some hardware for PWM signal
generation and/or position measuring. Almost every modern microprocessor dedicated
to control applications can do these tasks very easily.

3.5. Assignment
1. Modify both the real-time and the user-space part to allow tuning of controller pa-

rameters (REG_P etc.) on-line without recompilation.
You will need to define variables for each parameter and extend the communication
procedures to allow sending of parameter change requests. Take care of proper use
of mutexes!

OCERA. IST 35102 15

Chapter 3. Controller of DC motor

2. Extend the real-time part in a way that the motor will rotate only 10 seconds after
the user enters the new velocity. After the time elapses, the motor will automatically
stop.

Notes
1. In a fact, there are more differences. We don’t have for example a polymorphism

feature, but when we manually create virtual methods table, we can use this feature
in C language as well. This is common practice in Linux kernel and some other bigger
C projects.

2. This is quite common practice in Unix programs.

OCERA. IST 35102 16

Chapter 4. CANping – a simple LinCAN
testing application

4.1. Introduction
This chapter describes a simple application called canping. Its primary goal was to test
the LinCAN driver but it also nicely illustrates how to use LinCAN driver in real appli-
cations. In addition, it shows some maliciousness of the LinCAN driver.
Canping is a multithread application, which sends and receives messages in parallel
and thus can be used for stress testing of the LinCAN driver. For basic usage, two run-
ning instances of canping, each one on a different host, are needed. One instance sends
messages and waits for replies and the other instance waits for the sent messages and
sends replays with an ID incremented by one. Canping can also be run twice on one
host provided that we are either using a virtual CAN device or there are multiple CAN
cards/chips in the host.

4.2. CANping manual

canping

Name
canping — Multi-thread LinCAN testing utility

Synopsis
canping [-m num | -s num] [-c count] [-d device] [-h] [-i id] [-l length] [-o] [-t
timeout] [-y count]

Options
-m num

Start in the master mode and run num master threads in parallel.
-s num

Start in the slave mode and run num slave threads in parallel.
-c count

Every master thread will send only count messages and then finishes. Without this
option messages are sent forever and CANping can be terminated by a signal e.g.
by pressing a Ctrl+C key.

-d device

CAN device to be used. Default is /dev/can0 .
-i id

Select ID of the lowest generated or responded message. Default is 1000. CANping
in the master mode will generate messages with IDs id , id +2, id +4, etc. Each
master thread will generate different ID. The slave threads will listen to these IDs
and will answer with an ID increased by one.

-l len

Specify a length of the messages. Default is 8 and possible values are from 0 to 8.

17

Chapter 4. CANping – a simple LinCAN testing application

-t sec

A timeout in seconds; this option specifies how long the master thread will wait for
the response message from a slave. If the response won’t arrive in SECseconds, the
message is considered as loosed.

-v

Increase verbosity. Without this option only summary statistics are displayed just
before the program finishes. One -v means to display a global status (number of
sent messages and timeouts) during program execution. Two -v options display a
simple message for every packet in the format ID:time where time is measured in
microseconds. Three -v options display more verbose information about each packet.

-w msec

Wait time in milliseconds before the master thread sends a next message. Default
value is 1000 ms.

-y

Synchronize the master threads before sending the first message. When CANping is
stared with the high number of master threads, usually the first created thread will
begin by sending the messages before the last thread is created. Sometimes it may
be useful that every thread will wait before sending anything to the other threads.
Only when all threads are created and prepared for sending, sending can start.

Exit codes
The canping exit code depends on how the program finishes. This feature can be used
for (semi)automatic testing of LinCAN driver. Exit codes are listed in the table bellow.

0 OK
1 Bad command line parameter
2 Problem with opening LinCAN driver
3 Problem with filter
4 Insufficient memory
5 Read syscall error
6 Write syscall error
7 Select syscall error
8 Flush (ioctl syscall) error

Examples
On one computer one runs slave with 10 threads:
root@pc104:~% canping -d /dev/can1 -s 10

and on another computer master is run with 10 threads too:
sojka@glab:~% canping -d /dev/can4 -m 10 -v -c 100 -w 10
Total count: 1000, Timeouts: 0
Summary statistics:
Id 1000: count = 100 mean = 8005.16 stddev = 691.01 min = 2022 max = 11133 [us] loss = 0% (0)
Id 1002: count = 100 mean = 8013.10 stddev = 641.19 min = 4013 max = 12885 [us] loss = 0% (0)
Id 1004: count = 100 mean = 8035.99 stddev = 575.36 min = 5996 max = 13081 [us] loss = 0% (0)
Id 1006: count = 100 mean = 8062.38 stddev = 626.46 min = 7005 max = 14061 [us] loss = 0% (0)
Id 1008: count = 100 mean = 8082.63 stddev = 740.59 min = 5963 max = 15020 [us] loss = 0% (0)
Id 1010: count = 100 mean = 8089.04 stddev = 831.64 min = 7018 max = 15970 [us] loss = 0% (0)
Id 1012: count = 100 mean = 8105.02 stddev = 952.95 min = 7011 max = 16970 [us] loss = 0% (0)
Id 1014: count = 100 mean = 8129.57 stddev = 1037.39 min = 7020 max = 17906 [us] loss = 0% (0)
Id 1016: count = 100 mean = 8144.46 stddev = 1154.17 min = 7019 max = 18870 [us] loss = 0% (0)
Id 1018: count = 100 mean = 8157.85 stddev = 1259.84 min = 5994 max = 19842 [us] loss = 0% (0)

At the end of program execution, there are statistics for each packet type (ID). These
contain mean round trip times (RTT), standard deviations of RTT, minimal and maximal
RTT and packet losses (percentage and absolute).

OCERA. IST 35102 18

Chapter 4. CANping – a simple LinCAN testing application

4.3. Implementation details
The structure of canping is as follows. After the initialization and parsing of command
line options (function parse_optins()), communicating threads are started. The code
of these threads is made up by master_thread() and slave_thread() functions
which are described in the following section.
After these threads are finished (either after pressing Ctrl-C or due to -c switch), sum-
mary statistics are written to stdout and the application finishes.

4.3.1. Usage of the LinCAN driver
This section will cover master_thread() function. Code of slave_thread() is very
similar to master_thread() , so it will not be covered here. These functions represent
typical usage of the LinCAN driver in applications and if you are looking for examples
how to use the LinCAN driver, this is probably the most important section for you.
The master_thread() function is responsible for opening the driver, sending message
with a particular ID and waiting for response message. Sending and receiving messages
is done periodically in a loop.

4.3.1.1. Opening the Driver
At the beginning of every access to the LinCAN driver, the driver has to be opened. This
is done by calling open() .

canfd = open(option_device, O_RDWR)

The value of the option_device variable specifies the name of CAN device e.g.
/dev/can0 and the second parameter contains additional flags. We are using a
O_RDWRflag which means that we want to use the driver for both reading and writing
(messages). You can also use the O_NOBLOCKflag in addition. For further details
regarding this flag see the LinCAN documentation.
If the opening operation succeeds, the canfd variable contains a valid file descriptor,
which is used for further communication with the driver. In the case of an error, we use
perror() function to print the reason of the error and then we exit the program with
appropriate exit code1.

4.3.1.2. Setting Filters
After the device is open, the second step is to create a filter for message receiving. The
filter assures this thread only receives messages it is waiting for.

/* setup filtering of received messages */
memset(&canfilt, 0, sizeof(canfilt));
canfilt.mask = 0xfffffff;
canfilt.id = pong_id; /* pong responces with increased id */
ret = ioctl(canfd, CANQUE_FILTER, &canfilt);

The filter is created by filling the canfilt_t structure and submitting it to the
CANQUE_FILTERioctl. Filters allow us to filter messages by various criterions. We use
only filtering by an ID. The mask member tells which bits of message ID are relevant
for filtering and the member id contains desired ID bit values. Since we need only to
receive messages with one ID mask is set to all ones and id contains the ID.
After the filter is set up it is necessary to flush driver queues. The reason for this is
that in the time between driver opening and filter setup, there can be some received
messages in the queue, which doesn’t match the filter criteria. Flushing the queue is
done by calling CANQUE_FLUSHioctl.

ret = ioctl(canfd, CANQUE_FLUSH, NULL);

OCERA. IST 35102 19

Chapter 4. CANping – a simple LinCAN testing application

4.3.1.3. Reading and Writing
As soon as these operations are done, everything is ready for message sending and re-
ception. The message is sent by calling the write() function with canmsg_t structure
as the second parameter. The canmsg_t structure should be filled according to the mes-
sage we wish to send. This comprises of a message ID, message data bytes, the length of
message etc. The structure for the ping message is filled by the following commands:

pingmsg.flags=0;
pingmsg.id=ping_id;
pingmsg.length = option_length;
for (i=0; i < option_length; i++) pingmsg.data[i] = i;

Later, the message is sent by:
ret = write(canfd, &pingmsg, sizeof(pingmsg));

After the message is sent, the program starts waiting for the response message. The
select() system call is used for this purpose because it allows us to wait with timeout.
If there is a received message, we can read it from the driver by calling read() function.
Before doing that, it is important to zero flags field of canmsg_t structure. This is due
to a feature of the driver. Pavel Pí1a describes this as follows:

Adding "msg.flags=0; " before "read() " call is required, because random value could trig-
ger RTR read patch in the driver. This obsolete driver read mode should be moved to its own
IOCTL in future.

/* Read the message */
pongmsg.flags=0;
ret = read(canfd, &pongmsg, sizeof(pongmsg));

4.3.1.4. Closing
At the end, when it is not needed to work with the driver, it should be closed in order to
remove all driver resources associated with our application. The driver is closed simply
by calling close() .

close(canfd);

4.3.2. Other parts of the application

4.3.2.1. Lists
For managing the list of executing threads and their statistics a list implementation
from Pavel Pí1a’s uLan utils (ulut) package was used. This framework allows us very
simple and efficient list handling.
First, list head should be declared:

typedef struct threads {
ul_list_head_t head;

} threads_t;

Since we don’t need any additional data, our list head has only one field of the type
ul_list_head_t. Next we declare a list element:

typedef struct thread_data {
pthread_t tid;
long int canid;

int count;
double mean; /* mean value of responses */
double moment2nd; /* used to compute variance of

* responses */
int min, max; /* min/max response times */
int timeout; /* number of timeouts */

ul_list_node_t node;
} thread_data_t;

OCERA. IST 35102 20

Chapter 4. CANping – a simple LinCAN testing application

This structure is used for storing data for every executed thread. In the next step we
declare functions for list manipulation. These functions are created automatically by
the UL_LIST_CUST_DECmacro.

UL_LIST_CUST_DEC(thread_list, threads_t, thread_data_t, head, node);

This declares some functions whose names start with the thread_list_ prefix. We
use two of these, namely thread_list_init_head() for list initialization and
thread_list_ins_tail() for adding elements to the list.
We also use a macro ul_list_for_each() (declared in ul_list.h) which traverses
through all the list elements in a loop.

4.3.2.2. Waiting for the thread completion
After the main thread starts all the communication threads, it is necessary to wait
for their completion. This is done in wait_for_threads() . In the simplest case,
waiting runs in a while loop and in every iteration is is waited for one thread using
a finish_sem semaphore. After the thread_count iterations, we are sure all the
threads finished. Whenever any thread finishes, it increments this semaphore by
calling sem_post() and this is why we can wait for a particular number of threads to
finish.
The simplest case of waiting code looks as follows:

while (thread_count > 0) {
ret = sem_wait(&finish_sem);
if (ret == 0) thread_count--;

}

In the canping application we use more difficult code because of printing of progress
messages during waiting.
Finally, when all the threads are finished, we print summary statistics for each thread
and free list elements:

ul_list_for_each_cut(thread_list, &master_threads, td) {
print_stats(td);
free(td);

}

4.3.2.3. Signal handling
In order to exit canping by pressing Ctrl-C (SIGINT) or by sending other signal such as
SIGTERMit is necessary to write and register a signal handler. The handler is registered
by:

siginterrupt(SIGINT, 1);
signal(SIGINT, term_handler);
siginterrupt(SIGTERM, 1);
signal(SIGTERM, term_handler);

This registers the term_handler function as the handler for the SIGINT and SIGTERM
signals. The call to the siginterrupt() function tells the OS that an arrived signal
should interrupt currently executed system call2. This is necessary because the master
and slave threads executes select() or read() system call, which cause waiting for
external event, which can never happen and we want the program to exit even if there
is no event.
The signal handler looks as follows:

#define NOT_INTERRUPTED_SYSCALL (errno != EINTR && errno != ERESTART)
#define IS_FINISH_FLAG() (finish_flag)

void term_handler(int signum)
{

if (!IS_FINISH_FLAG()) {
finish_flag = 1;
kill_all_threads(signum);

}
}

OCERA. IST 35102 21

Chapter 4. CANping – a simple LinCAN testing application

Whenever the main thread receives a signal it sets finish_flag to prevent recursive
call to the handler and then sends the same signal to all other threads. The other threads
receive the signal and execute the handler. Because the finish_flag is set the handler
does nothing. The only result of the signal is interruption of currently executed system
call. As a consequence, the thread exits the send-receive loop and executes exit code.
You can notice the macro IS_FINISH_FLAG . This macro is defined only for debugging
purposes so don’t be confused by it.

4.4. Assignment
1. Create a simple chat application that will send messages over the CAN bus. The

application will read the characters typed on keyboard and send them to the bus. In
addition, it will receive CAN messages from other nodes on the bus and print then
on screen.

2. Extend the chat application by displaying messages in color depending on the ID
of sender. For color and screen management use for example the ncurses library
(http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/).

Notes
1. The exit code can be used by an automatic regression tests to detect the reason of

failure.
2. The behaviour of signals is different in Linux 2.4 and Linux 2.6 with NPTL. The call

to siginterrupt() is necessary in order to get the same behaviour for both 2.4 and
2.6.

OCERA. IST 35102 22

Appendix A. Schematics of Motor Driver
Board

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

-2
4V

+2
4V

IN
T_

R
Q

FA
ZE

_1

FA
ZE

_2

M
O

TO
R

-

M
O

TO
R

+

M
O

TO
R

-
FA

ZE
_1

FA
ZE

_2
IN

T_
R

Q

M
O

TO
R

+

V
C

C

V
C

C

V
C

C

V
C

C

Ti
tle

Si
ze

D
oc

um
en

t N
um

be
r

R
e

v

D
at

e:
S

he
et

o
f

1
1

m
ot

or
 c

on
tro

lle
r s

ch
em

e

1
1

Th
ur

sd
ay

, A
pr

il
01

, 2
00

4

J2
P

C

2 4 6

1 3 5

R
9

1k
8

U
4E

74
H

C
T1

4

11
10

C
4

10
n

U
3C

74
H

C
T8

6

910
8

U
4D

74
H

C
T1

4

9
8

R
14

39
0R

R
11

10
R

/2
W

C
9

10
0n

IS
O

2

6N
13

7

8

7

5

3

2

6

J4
IR

C
+L

E
D

2 4 6 8 10 12 14

1 3 5 7 9 11 13

R
5

8k
2

U
3B

74
H

C
T8

6

45
6

R
4

1R
/2

W

C
7

10
n

C
10

10
0n

U
4F

74
H

C
T1

4

13
12

D
1

1N
40

07

U
1 C
H

12
40

5

+V
in

2

-V
in

1

+V
ou

t
4

-V
ou

t
3

R
2

1k

U
4A

74
H

C
T1

4

1
2

147

R
8

1k

C
8

22
n

R
6

8k
2

R
10

1k

Q
1

2N
39

04

F1
1.

5A

J3
M

O
TO

R

1
2

+
C

1
10

0M
/3

5V

R
13

39
0R

C
6

10
n

R
3

1k

R
12

1k

U
5

78
L0

5

IN
1

GND 2

O
U

T
3

+
C

2
47

M
/1

0V

C
3

20
0n

J1

na
pa

je
ni

1 2

R
1

1k

U
4B

74
H

C
T1

4

3
4

R
7

1k

U
4C

74
H

C
T1

4

5
6

C
5

10
n

U
2

L6
20

3

S
E

N
S

E
10

E
N

A
B

LE
11

GND 6

O
U

T2
1

V
s

2

O
U

T1
3

B
O

O
T1

4

IN
1

5

B
O

O
T2

8

IN
2

7

V
re

f
9

IS
O

1

6N
13

7

8 7

5

32

6

U
3A

74
H

C
T8

6

12
3

U
3D

74
H

C
T8

6

1213
11

Figure A-1. Motor controller scheme

23

Appendix A. Schematics of Motor Driver Board

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

INKR_1INKR_2

ENCODER +5VENCODER GND

Title

Size Document Number R ev

Date: Sheet o f

1 1

Zapojeni konektoru

A

1 2Wednesday, February 04, 2004

J3

HEADER 7X2

2
4
6
8

10
12
14

1
3
5
7
9
11
13

D3

Vcc

J1

CANNON25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

D2

FAZE_2

J2

PC

2
4
6

1
3
5

D1

FAZE_1

D5

OUT1

D4

OUT2

Figure A-2. Scheme of connectors for motor controller
Table A-1. Bill of Materials
Item Quantity Reference Part
1 1 C1 100M/35V
2 1 C2 47M/10V
3 1 C3 200n
4 4 C4,C5,C6,C7 10n
5 1 C8 22n
6 2 C9,C10 100n
7 1 D1 1N4007
8 1 F1 1.5A
9 2 ISO2,ISO1 6N137
10 1 J1 power supply
11 1 J2 PC
12 1 J3 MOTOR
13 1 J4 IRC+LED
14 1 Q1 2N3904
15 7 R1,R2,R3,R7,R8,R10,R12 1k
16 1 R4 1R/2W
17 2 R5, R6 8k2
18 1 R9 1k8
19 1 R11 10R/2W
20 2 R14, R13 390R
21 1 U1 CH12405
22 1 U2 L6203
23 1 U3 74HCT86
24 1 U4 74HCT14
25 1 U5 78L05

OCERA. IST 35102 24

