WP10 -D10.7
User Guide

OCERA User's Guide 2/225 February 2005

Ocera User's Guide 2/225

OCERA User's Guide 3/225 February 2005

Document Presentation

Project Coordinator

Organisation: UPVLC
Responsible person: Alfons Crespo
Address: Camino Vera, 14, 46022 Valencia,
Spain
Phone:+34 963877576
Fax:+34 963877576
Email: alfons@disca.upv.es

Participant List

Role [d. Participant Name Acronym Country

Universidad Politecnica de UPVLC E

CO 1 Valencia

CR 2 Scuola Superiore Santa Anna SSSA |
Czech Technical University in CTU Ccz

CR 3 Prague

CR 4 CEA/DRT/LIST/DTSI CEA FR

CR 5 Unicontrols ucC Ccz

CR 6 MNIS MNIS FR

CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
10 15/02/2004 First release
11 15/11/2004 Extend the configuration part
12 15/02/2005 Rewrite installation part, configuration part,

add components, applications

Ocera User's Guide 3/225

OCERA User's Guide 4/225 February 2005

Forword
that must disapear asap

This document is still in a draft version, the following actions are to be done to
get the document in a final version:

1) verify the names of the chapter's authors

2) Index for tables and figures

3) Glossary

4) a standard figure caption style all along the documentation

)
)
)
5) chapters missing: Onetd: network interface by Pierre Morel
6) chapter missing: performances by all

)

7) chapter still missing: Adding a new component: Kconfig and makefiles
explained by Pierre Morel

8) Re-reading and corrections by Ocera members

Ocera User's Guide 4/225

OCERA User's Guide 5/225 February 2005

Table of Contents

N 0 O 7
1) OVEIVIEW. ...ttt e e e e e e e e e e e s e aee —eeeeesennn e eeeeeas 8
2) Architecture of the OCERA System..........cccuuiiiiiiiiiii 12
N 0 | 24
3) POSIX COMPONENTS.......uuiiiiiiiiiiiiii i eeeeas 25
4) QUAitY Of SEIVICE. ...t eaaee e e e e aaa e e 29
5) CAN/CANOPEN USEI QUIAE.......uuuiiiiiiiiiiiiiiieae e eeeeeeeean e 46
6) OCERA Real-Time Ethernet............cccuuiiiiie e 64
7) Fault-tolerance COMPONENESuuiiiiiiiiiiieiiiiees e 98
N 0 150
8) Development ENVIroNmMent...........ooooiiiiiiiiiiii e 151
9) Cross COMPIIALION. ...t e 157
10) CONFIGUIALION......uiiiiiiiiiiiee e beeees 164
11) System INtegration..........ooooii e 200
o 1 0 211
12) Hardware and software iSSUES............ccooiiiiiiiiiiiiiiii e e 212
13) Qualifying an OCERA SYStem ...t e 216
14) PerfOrmManCe..........cooiiiiiii e e 219
LR 7Y] o] o7 i o o 1= U 223

Ocera User's Guide 5/225

OCERA User's Guide 6/225 February 2005

lHlustration Index

Figure 7.1.1 FT deSigN PrOCESS......cceiiiiiiiiiiitieee ettt e e e 105
Figure 7.1.2 FTbuilder : global VIEW...........coouviiiiiii e 106
Figure 7.1.3 FTbuilder : task specification................cooovrrrriiee 107
Figure 7.1.4 FTbuilder : application mode specification..................cccoeeeeriennn. 108
Figure 7.1.5 Ftbuilder: application mode transition specification....................... 109
Figure 7.1.6 FT Degraded Mode Management Architecture Overview............. 121
Figure 7.1.7 Overview of FT architecture and APIl.............ccoooiiiiiiiiiiiiiieeeeeeen, 122
Figure 7.2.1 FT Redundancy management components location within OCERA
ACNITECIUIE. .. e e e e e e e e e e e e eeeeeeee eeneees 126
Figure 7.2.2 ftr_task execution Model...........cccooiiiiiiiiiiin i 127
Figure 7.2.3 : Synchronized shared data. (observability is commited to the end of
the Period Of WIEI).......u e e 128

Figure 7.2.4 Simple example of redundancy management over two nodes.....130
Figure 7.2.5 Global FT Redundancy Management Architecture overview....... 133
Figure 7.2.6 Overview of RedundancyManagement Architecture on a node...134
Figure 7.2.7 . Internal and external interactions of ft_redundancy components.....
136

Figure 7.2.8 Global view of ft redundancy management API(S)..........cccccoeeee.. 139
Figure 7.2.9 Interactions with redundancy Management facility components form
User's APPHCAtION..... oo s 142
Figure 10.2.1 : FT Degraded Mode Management Configuration step1............. 175
Figure 10.2.2 : FT Degraded Mode Management Configuration step2-1.......... 176
Figure 10.2.3 : FT Degraded Mode Management Configuration step2-2.......... 177
Figure 10.2.4 : FT Degraded Mode Management Configuration step3 - Priority
SCNEAUIET ...t e e e e aee s 178
Figure 10.2.5 : FT Degraded Mode Management Configuration step3 -
EDF+DLM SCREAUIET.....cceiiiiiieeiee e aeen e e e 179
Figure 10.2.6 : FT Redundancy Management Configuration step1.................. 180

Ocera User's Guide 6/225

PART |

The OCERA Framework

OCERA User's Guide 8/225 February 2005

1) Overview

By Pierre Morel - MNIS

This is the OCERA User Guide. We will try through this document to help you

understanding how to use OCERA.
In this first chapter we will explain the goal of this guide and introduce OCERA to you,

so that you will be familiar with the concepts used all along the guide.

1.1) Presentation

1.1.1) Short description of OCERA

OCERA is a European project, started in April 2002, with the goal to provide the
European industry with an Open Source Real-Time system following Industry standards.
OCERA stands for Open Components for Embedded Realtime Applications and we

defined as component:
“pieces of software bringing functionalities for Scheduling, Quality Of Service, Fault

Tolerance or Communication.”

Ocera User's Guide 8/225 Overview

OCERA User's Guide 9/225 February 2005

The components are basically developed for Linux and RTLinux-GPL but may be
portable to other Realtime systems or other time sharing systems to bring to them some
realtime feature.

The component are all Open Source and most of the components licences are LGPL' or
GPL.

1.1.2) Intended Audience

This guide is intended for

software engineers who plan to build a real time embedded application for
commercial or educational use.

teachers who want to rapidly build a real-time plate-form for training of students.
In this case the teachers will also have interest in the OCERA document named
TRAINING DOCUMENTATION AND CASE STUDIES, where they will find ready to use
training exemples.

1.1.3) Pre-requisite:

To use OCERA kernel and components and understand how they work together you will
need a basic knowledge on how an Operating System is working, both for real-time OS
and time sharing OS, a basic knowledge of TCP/IP network architectures.

To develop applications using OCERA you will need some skills in a development
language, either C, C++ or Ada depending on the developments you intend to do and
which components you intend to use and certainly a knowledge of POSIX thread
programming would help a lot.

1 Actually, the licence of RTLinux-GPL as the licence of Linux are GPL but most of the Linux Libraries
licences are LGPL (Less GPL), which means that they give more freedom in the usage. If you intend to
make a commercial usage of your development using OCERA, you will have a great interest in reading
the chapter on Licensing at the end of the guide.

Ocera User's Guide 9/225 Overview

OCERA User's Guide 10/225 February 2005

1.2) What will you find in the
User's Guide

The User's guide will present you
» an overview of the different components of OCERA.
* interfaces between the realtime system and the time sharing system.
* the development tools, compiler and debuggers.
* how to build an embedded system with OCERA.
If you need details on the programing interface for hard and soft real-time applications
you will have to refer to the OCERA PROGRAMMER'S GUIDE.
The Guide will provide you the informations you need to develop a Real-Time
application and to integrate it on an embedded system using OCERA.
After the present chapter introducing OCERA, you will find the following chapters in this
guide:
Architecture: more details on OCERA project and the architecture of
the OCERA system.
Getting Started: How to get the sources and the documentation.
Defining the framework: How to generate a complete embedded
system.
Development: How to develop a dedicated application and how to add
this application to the OCERA system.
Integration:: How to generate an image, install this image on an
embedded system or on a training workstation and how to boot on this
embedded system or on the workstation?
Debugging: How to debug and test the complete system.

At the end of the Guide you will also find examples of sample applications:
control command with CAN provided by UniControl
real time Ethernet provided by the University Prague
a robotic application provided by the CEA
streaming video provided by Visual Tools

Ocera User's Guide 10/225 Overview

OCERA User's Guide 11/225 February 2005

Ocera User's Guide 11/225 Overview

OCERA User's Guide 12/225 February 2005

2) Architecture of the
OCERA System

By Pierre Morel - MNIS

2.1) History of the OCERA project

OCERA is a European project, started in April 2002, with the goal to provide the
European industry with an Open Source Real-Time system following Industry standards.
Therefor, OCERA, using existing technology like Linux and the RTLinux patch, started
to redesign the Real Time part of Linux and RTLinux to offer:

POSIX compliant interface.

Communication with an industrial bus: CAN

Quality Of Service, allowing hard and soft real time to co exist on the

same system.

Real Time Exchange over Ethernet

and Fault Tolerance.

You will need OCERA if you need one or more items of the following list:

A good hard real-time scheduling latency and response time for
embedded systems.

Ocera User's Guide 12/225 Architecture of the OCERA System

OCERA User's Guide 13/225 February 2005

A soft real-time environment with a huge choice of applications.
Quality of service with Bandwidth reservation
Fault tolerance and reconfiguration
A real time Ethernet communication layer
A POSIX compliant programming interface
Avionic certified real-time system
An OpenSource GPL licensed real-time system
A single generation interface for the complete embedded system,
kernel, drivers, tools, libraries and application
To achieve these goals, the OCERA system uses the LINUX/RTLinux combination,
which already exists and provide a good startpoint in term of latency and in term of
standard POSIX interfaces and enhanced it the following way:
- rewriting of some of the RTLinux primitives to correct it or to make
them POSIX compliant.
adding new POSIX components to RTLinux, barriers, timers
adding new realtime scheduling possibilities with EDF and CBS
schedulers and an application defined scheduler.
enhancing the Linux scheduler to add CBS scheduling
adding POSIX traces for the real time components
adding Quality Of Service primitives to both the hard real-time
(RTLinux) and the soft-real-time (LINUX with real time extensions)
integrating Components, RTLinux and Linux configuration and
generation in a single graphical tool.

Ocera User's Guide 13/225 Architecture of the OCERA System

OCERA User's Guide 14/225 February 2005

2.2) Technical choices

2.2.1) The goals

The goal we follow is to have a maximum realtime efficiancy while allowing the greater
possible number of standard applications without realtime expectations to run on our
system.

We had at the beginning the idea of using a aystem architecture based on a separation of
the functionalities, the realtime functionalities being provided by a RealTime Operating
System and the non realtime functionalities provided by a standard, non realtime,
operating system.

The study of existing real-time operating systems lead us to define what would be of
interest to have in a optimal real-time operating system. See deliverable D1.1 of the ocera
project at the OCERA main web site:
http://www.ocera.org/archives/deliverables/WP1/D1.1.pdf

Since our project is based on a cooperation between Universities and industrial
companies and has a duration of 2 and half year, we needed to start with a system already
used in the industry and enhance it.

2.2.2) The choices

We looked at what existed and studied two open source real-time system that could be
appropriate:

RTLinux-GPL and the derivative, RTAIL

We choosed RTLinux-GPL which design is closer to our goals. You can read the details
in the document RTLINUX versus RTAI that you must be able to download from
OCERA web site.

We choose the linux kernel 2.4.18 as a start for the developpement, as it was the most
stable kernel as we began the project.

Ocera User's Guide 14/225 Architecture of the OCERA System

OCERA User's Guide 15/225 February 2005

2.2.3) The drawbacks

a) Rapidity versus Security

The choices we made to achieve our goals lead to some drawbacks. The first one is that
we choose rapidity with oposition to security.

In OCERA, all realtime threads and all drivers share the same address space as the Linux
kernel. Only linux user's processes are protected against bad memory accesses.

This can lead to serious security problem which can be eliminated by a serious and
structured software development. The usage of UML to design and of Ada to developp
applications is a way to reduce it by providing a secured development framework.

For drivers and internal realtime kernel and Linux kernel development, the security is the
entire responsibility of the developper.

Other realtime operating systems provide driver's security or/and realtime task security
like L4Linux, Jaluna or RTLinux-Pro.

b) GPL and commercial usage

The kernel of the developments are RTLINUX-GPL and LINUX. Both are using the
GNU General Public Licence, the GNU-GPL also simply called GPL.

Following the General Public Licence has the following implications:

All development made by the OCERA consortium within Linux or RTLinux must be
GPL.

All code developped and linked to these sofware must be GPL. The RTLinux-GPL
applications threads are linked with RTLinux-GPL libraries and must be GPL.

On the other hand ORTE, the Fault tolerance system and the Quality Of Service, as used
in the Linux User's environment may use the licence scheme they want and use LGPL ,
Less GPL Licence, allowing an application linked to these libraries to use the licence type
the developper want to use. Thus allowing commercial applications to use the interfaces.

Ocera User's Guide 15/225 Architecture of the OCERA System

OCERA User's Guide 16/225 February 2005

2.3) Quick overview of the
architecture

2.3.1) RTLinux-GPL

Original RTLinux-GPL architecture can be divided in two levels:
A basic real-time operating system, handling interrupts and providing a
minimal development interface for real-time threads. We will sometime refer to
this level by simply RTLinux-GPL. It is a Hard real-time level with interrupt
latency and thread switch latency in the order of a few tens of micro seconds
(on a PIII-1GHZ).
A time sharing operating system, the Linux level, having the full
functionalities of the original Linux operating system, and running as the iddle
thread of the basic real-time system.

Both operatlng systems co-operate in many ways:
interrupts: the original Linux Operating system is modified so that it does not
do any direct hardware access for interrupts handling, letting the work to be
done by RTLinux-GPL. If a Linux ISR is associated with the Interrupt,
RTLinux-GPL, mark the Interrupt as to be served and calls the Linux handlers
as soon as nothing more is to be done at real-time level.
Realtime-FIFO: if a real-time thread and a Linux task want to exchange data,
they can do it through real-time fifo, this is a good way to ensure a proper
switch between the real-time OS and the shared time OS. The real-time fifo use
soft IRQ to synchronize the Linux task and the real-time thread.
Shared Memory: is another way to exchange data between Linux and
RTLinux-GPL. The synchronization must be done by the application by
atomic_test and_set() calls for exemple.
BSD Socket: an implementation of the BSD Socket interface for UDP protocol
allow a real-time thread and a Linux process to communicate. The
synhronization, as with the real-time FIFOs is done by Soft-IRQs.

Ocera User's Guide 16/225 Architecture of the OCERA System

OCERA User's Guide 17/225 February 2005

We also found of great interest to have the possibility to add a soft real-time level to
Linux, using and enhancing the LOW LATENCY and the PREEMPTION patches, this
are the first bricks to provide Soft real-time and Quality Of Service at the Linux (shared
time OS) level, and then to applications running on Linux, like Video Streaming.

You can see a much deeper description of the architecture in the document “OCERA
ARCHITECTURE” DO02-1.pdf and we advise you to do so if you want to have a good
understanding of the internals of OCERA.

Ocera User's Guide 17/225 Architecture of the OCERA System

OCERA User's Guide 18/225 February 2005

POSIX

VFS

NET

Memory Mgt

/ Tasklet k
ISR /

pseudo_IDT LINUX Driver
RTLINUX pr_f

TFO

POSIX
RTL_do_IRQ /
-~

IDT
'\ 1}

Mateériel PIC Mateéeriel l

lllustration 1
Drawing 10CERA Frameworf

Ocera User's Guide 18/225 Architecture of the OCERA System

OCERA User's Guide 19/225 February 2005

2.3.2) The components

We define a component as:
LA piece of software that brings some new functionality or feature at different
levels in some of the fields: Scheduling, Quality Of Service, Fault Tolerance
or Communications.*“

Remember that our goal is to enhance an existing Operating system, RTLinux-GPL, to
achieve an industry ready operating system and that to achieve this want to give
RTLinux:
« A real POSIX 1.1 development interface and new scheduling algorithm and
new synchronization mechanisms for RTLinux.
Quality Of Service, to allow bandwidth reservation
Fault Tolerance and reconfiguration
« Communication with industry standard control/command devices
All the component interact with some of the other components:

a) Communication

CANBUS

CANBUS drivers works under Linux and/or RTLinux and provides a virtual interface for
testing and development purpose under Linux.

We will explain deeper the CANBUS drivers and the usage of the drivers in the chapter
XX: CANBUS.

Socket Interface

A BSD like socket interface provides access to the network for the RealTime threads by
using the Linux socket implementation.
We will explain deeper the socket interface and its usage in the chapter XX: Onetd.

ORTE

ORTE stands for OCERA Real Time Ethernet and implements the Real Time
Publisher Subscriber protocol.

The RTSP protocol allow publishers to reserve some of the ethernet bandwidth and
manage this reservation so that the bandwidth allocated for each participant allow the
data transfert time over ethernet to be predictable.

ORTE is able to work under Linux or under RTLinux with the Onetd socket interface, the
choice is made at compile time.

We will see ORTE in deep in the chapter XX: ORTE.

Ocera User's Guide 19/225 Architecture of the OCERA System

OCERA User's Guide 20/225 February 2005

b) Fault Tolerance

Fault tolerance can collaborate with the Quality Of Service component to handle budget
reservation exceptions.

In the case of a distributed network, Fault Tolerance must use a real-time aware
communication protocol like the RTSP protocol implemented by the communication
component ORTE.

We will investigate the way to use Fault Tolerance in deep in the chapter XX: Faul
Tolerance

¢) Quality Of Service

Quality Of Service in OCERA allows a Linux Process to do a CPU Bandwidth
reservation.

This means that, the process having done this reservation is given access to the CPU at
regular times without the influence of any other processes.

This has the following implications:

« First, the Linux Scheduler must be made preemptive. To do this we have to use
the preemptive patch for Linux. We also reduced the Linux latency by using the
low latency patch.

Second the Linux scheduler algorithm must be modified to allow a CBS
Constant Bandwidth Scheduler, algorithm.
Third, in the case of Linux working over RTLinux-GPL, RTLinux-GPL
scheduling algorithm must be changed to also allow a CBS algorithm.
Fourth: both Linux and RTLinux scheduler must be aware of the bandwidth
reservation
This Quality Of Service is, for example, very useful in the case we have real time
constraint at both Linux and RTLinux levels.
A good exemple for this is the real time video streaming application made by Visual
Tools and presented at the end of this guide.
We will go deeper in the way to use the Quality Of service in the chapter XXX: Quality
Of Service.

d) RTLinux components

RTLinux-GPL had to be enhanced to achieve our goals. As we saw earlier, we have to
provide a POSIX 1.1 development interface, and modify the scheduling algorithm.

By the way OCERA integrated new components: a socket interface used by the RTLinux-
GPL implementation of ORTE and Ada runtime.

We will see all POSIX components in the Programmer's Guide, and we will take a look at
the possibilities offered by the Onetd Socket interface in the chapter XXX and at the Ada
runtime in the chapter XX.

Ocera User's Guide 20/225 Architecture of the OCERA System

OCERA User's Guide 21/225 February 2005

Ocera User's Guide 21/225 Architecture of the OCERA System

OCERA User's Guide 22/225 February 2005

2.4) Future developments

The OCERA consortium released OCERA 1.0 in mai 2004 and OCERA-1.1 in february
2005 based on Linux 2.4.18 and has a nomber of sub-projects being developped but not
actually included in the stable release.

* SA-RTLinux: a stand alone RTLinux, providing a little and fast realtime
kernel.

* RTLide: a realtime aware IDE driver.

* RTLfs: a realtime file system to access the disk from within RTLinux

* RTLwWIP: a realtime UDP stack providing complete TCP/IP stack within
RTLinux-GPL

* JAVA: port of a JAVA machine inside RTLinux-GPL

* C++: port of a C++ runtime in RTLinux-GPL

Other projects are under design like:

* RTST: RealTime Secured Threads, giving to special RTLinux-GPL
applications a memory protection using unused LDT in Linux and the
application scheduler from RTLinux-GPL

* RTSD: RealTime Secured Drivers, allowing to write a Driver for
RTLinux with memory protection.

These two project will have an important side effect, as the application or driver will use
a segmented environment to run inside, they will use an interrupt mechanism to access to
RTLinux-GPL resources.

The interrupt mechanism being considered to break the GPL license, we will be able to
provide a way to develop commercial applications with OCERA.

The drawback of this implementation will be a lost in speed when communicating with
other tasks and by task switch.

Ocera User's Guide 22/225 Architecture of the OCERA System

OCERA User's Guide 23/225 February 2005

2.4.1) The documentation on the CD-ROM

Another advantage of the OCERA CD-ROM is that you get all the documentation on the
CD-ROM in pdf format.

2.5) Supported target

Basicaly, OCERA is able to support all targets supported by RTLinux-GPL and Linux.
The most restrictive being RTLinux-GPL.
OCERA support architectures based on

* Intel ix86,

* powerPC 603e / Mototola 8240

* ARM and Strong ARM,
while the Board Support Package (BSP) include:

» Standard PC

* PC104

* PPC6000

* iPAQ
The OCERA system can be loaded on the target on IDE and SCSI disks, Flash memory,
SD-Memory, ROM or even use the network to be downloaded using TFTP or BootP and
a PXE boot loader in ROM..
We provide more information on these in the chapter on “uploading the target”.

Ocera User's Guide 23/225 Architecture of the OCERA System

OCERA User's Guide 24/225 February 2005

PART |

OCERA components

Ocera User's Guide 24/225 Architecture of the OCERA System

OCERA User's Guide 25/225 February 2005

3) Posix Components

By
Patricia Balbastre

3.1) Posix Signals

Signals are an important part of multitasking in the UNIX/POSIX environment. Signals are used
for many purposes, including: exception handling, task notification of asynchronous event
occurrence (timer expiration,...), emulation of multitasking or interprocess communication.

A POSIX signal is the software equivalent of an interrupt or exception occurrence. When a task
receives a signal, it means that something has happened which requires the task's attention.

POSIX define two types of signals: basic signals and real-time signals extensions. This
component provides only the basic signal mechanisms. The real-time POSIX signals extension is
far more complex (they are closer to message queues than to interrupts) and require complex
data structures.

POSIX signals were designed to be used in weight-processes systems, where each process has
its own signal handlers, signal mask and status. But in RTLinux, as well as most embedded
RTOS, the programming model is based on lightweight processes (threads). The standard is not
as clear and unambiguous as it should be. We had to extend the semantics of the signals API to
thread.

RTLinux-3.1 code already had partial signal support, some systems signals are supported but
user signals and the facility to define signal handlers are not supported. We completed the signal
support to be fully UNIX compatible.

Ocera User's Guide 25/225 Posix Components

OCERA User's Guide 26/225 February 2005

Configuration options: The selection of this component sets RTL_OC_PSIGNALS to true and
allows you to send signals (RTL_SIGUSR1, RTL_SIGUSR2 and from signal RTL_SIGRTMIN to
RTL_SIGRTMAX) to threads (pthread_kill), blocking signals (pthread_sigmask), suspend a thread
waiting for a signal to arrive (sigsuspend) and install signal handlers, among other things.

3.2) Posix Timers

POSIX timers provides mechanisms to notify a thread when the time (measured by a particular
clock) has reached a specified value, or when a specified amount of time has passed. Although
RTLinux has good and accurate timing facilities, it do not provides general timer functionality.
RTLinux defines only one timer for each thread, which is used to implement the periodic
behaviour of the thread. This component implements the POSIX real-time extensions.

Configuration options: This component depends on Posix Signals. If Posix Timers is selected,
then RTL _OC PTIMERS variable is set to true and the funciotns defined in
kernel/rtlinux/include/rtl_timer.h are available.

Ocera User's Guide 26/225 Posix Components

OCERA User's Guide 27/225 February 2005

3.3) Posix Barriers

Barriers, are defined in the advanced real-time POSIX (IEEE Std 1003.1-2001), as part of the
advanced real-time threads extensions. A barrier is a simple and efficient synchronisation utility.
Threads using a barrier must wait at a specific point until all have finished before any of them can
continue.

POSIX barriers are a relatively new feature and are not supported on all systems.

Configuration options: Select this option to have defined RTL_OC_PBARRIERS variable. Then,
barriers API will be available in file kernel/rtlinux/include/rtl_barrier.h

3.4) Posix Trace

This component adds (most of) the tracing support defined in the POSIX Trace standard to
RTLinux. The POSIX Trace standard defines a set of portable interfaces for tracing applications.

This standard was recently approved (September 2000) and now can be found integrated with the
rest of POSIX 1003.1 standards in a single document issued in 2001 after the approval of both the
IEEE-SA Standards Board and the Open Group.

Configuration options: To enable this option (RTL_OC_PTRACE) you need "Shared Memory
Driver" (Memory Management->Shared Memory Support)

Ocera User's Guide 27/225 Posix Components

OCERA User's Guide 28/225 February 2005

3.5) Posix Message Queues

This component implement The POSIX message queues facility between RTLinux
threads. POSIX Message Queues is a message passing facility that relies only on services
that are already available or that are going to be incorporated by other components to the
RTLinux core. As they do not require any modification of the RTLinux, they can be
located at the High-Level RTLinux layer.

Configuration options: RTL. OC_PMQUEUE is set when you enable this option. Then,
the API implemented in directory /kernel/rtlinux/pmqueue is available.

Ocera User's Guide 28/225 Posix Components

OCERA User's Guide 29/225 February 2005

4) Quality Of Service

Giuseppe Lipari - SSSA
Luigi Palopoli - SSSA
Luca Marzario - SSSA

4.1) Resource Reservation
Scheduling module

4.1.1) Summary

Name: gres

Description: It isadynamically loadable module for the Linux kernel, that provides a
resource reservation scheduler for soft real-time tasks in user space.

- Authors: Luca Abeni (luca@sssup.it), Luca Marzario
(lukesky@gandalf.sssup.it), Claudio Scordino (scordino@gandalf.sssup.it)

Reviewer
Layer High Level Linux Component
Version 1.0

Ocera User's Guide 29/225 Quality Of Service

OCERA User's Guide 30/225 February 2005

Status Beta

Dependencies Depends on the Generic Scheduler Patch (gen_sched: see
Chapter). It may use the High Resolution Timer Patch. It may use the
Preemption Compatibility Patch (pcomp: see Chapter)

Release date: Aprile 2003 (MS2)

4.1.2) Description

This component implements a resource reservation scheduler. The algorithm is
based on the Constant Bandwidth Server (CBS) algorithm [Abe98]. However, we
modified and extended the original algorithm to take into account several
practical issues. In our implementation, a server can handle more than one task;
an automatic reclamation mechanism [Lip00] can be optionally activated;
bandwidths can be tightly bounded through a self suspension mechanism. All
these features are currently available on a single software module and they can
be enabled/disabled through conditional compilation (see Section for more
details on how to compile and install the component). In the next version (second
phase of this workpackage), we will provide different custom modules available
separately.

The complete algorithm is described in the following.

Common definitions and assumptions

A CBS S, is described by: the server budget O, and the server period P, .
The server bandwidth U,=Q./P, is the fraction of the CPU bandwidth reserved
to S, . To avoid inconsistencies and overload situations, the following condition
must hold at all times:

> U<

Therefore, a variation in the parameters (like for example the budget) is allowed
only at replenishment time, and only if the above condition is respected.

Ocera User's Guide 30/225 Quality Of Service

OCERA User's Guide 31/225 February 2005

Dynamically, each server updates two variables (¢;,d;) . Variable ¢, isthe
current budget and keeps track of the consumed bandwidth. Variable d; is the
server's scheduling deadline. A server is active if any of its tasks has a pending
instance and the current budget is greater than 0. If there a is pending instance
and the current budget is 0, the server is suspended until the current budget is
recharged. If at time t there is no pending task's instance and the current budget
is greater than 0, the server is still active if t<d,—q,P;/Q, , otherwise it is
inactive.

The system consists of n servers and a global scheduler based on the Earliest
Deadline First (EDF) priority assignment. At each instant, the active server with
the earliest scheduling deadline is selected and the corresponding task is
dispatched to execute.

A task corresponds to a Linux thread. A task instance (or job) is activated (or
arrives) just after it has been created with a fork() or with a pthread_create(), and
when it is unblocked. A task instance finishes when the thread is blocked. In
this version of the scheduler we do not distinguish between different blocking
situations; every time a thread is blocked, the scheduler interprets it as the
finishing of the job.

Basic CBS Algorithm
The algorithm's rules are the following.
1. Initially, ¢,=0 , d,=0 and the server is inactive.

2. When a task is activated at time t, if the server is inactive, then ¢,=Q; and
d,=t+P; ,and the server becomes active. If the server is already active,
then ¢, and d; remain unchanged.

3. At any time t, the global scheduling algorithm selects the active server with the
earliest deadline d; . When the server is selected, it executes the first task
in its ready queue (which may be order according to any policy).

4. If some of its tasks is executing for x units of time, the server's current budget
q; is decremented by the same amount x.

5. The global scheduler can preempt the server for executing another server: in
this case, the current budget ¢, is no longer decremented.

6. If ¢,=0 and some of the server tasks has not yet finished, then the server is
suspended until time d, ;attime d, , g, isrechargedto O, , d, is
setto d,=d,+P,; and the server can execute again.

Ocera User's Guide 31/225 Quality Of Service

OCERA User's Guide 32/225 February 2005

7. When, at time ¢, the last task has finished executing and there is no other
pending task in the server, the server yields to another server. Moreover, if
t<d,—q,P,/Q, ,the server becomes inactive; otherwise it remains active,
and it will become inactive attime d,—q,0./P, , unless another task is
activated before.

Reclamation

An optional reclamation mechanism has been implemented. We choose
Algorithm GRUB [Lip00], which does a greedy reclamation of the unused
bandwidth, i.e. it gives all free bandwidth to the currently executing task. For this
reason GRUB is not a fair algorithm. However, it can be implemented with little
additional overhead, and it can also be used as a voltage scheduling algorithm,
allowing energy saving.

The GRUB algorithm keeps track of a global variable U,,(t) called Total
Bandwidth, which is the sum of the bandwidth of all active servers at time t.
Therefore, when a server becomes active (rule 2) its bandwidth is added to

U..(t) ;when a server becomes inactive (rule 7), its bandwidth is
decremented from U,,(¢) . Finally, rule 4 is modified to take into account the
reclamation:

4'.If If some of its tasks is executing for x units of time, the server's current
budget ¢, is decrementedby xU,, .

A proof of the correctness of the GRUB algorithm can be found in [Lip0OO].

Energy saving (voltage scheduling)

The same algorithm can be used as a voltage scheduling algorithm. Suppose
that the processor supports two different voltages, which results in two different
processor speeds, the nominal speed s,,, and the low speed s,,, , and
suppose that the processor normally works at speed s,,, . We define a
minimum bandwidth and two thresholds:

U, = U, <U,,<U
low ™ thl th2

S

nom

low

Then, we add two additional rules:

8. if U,, isbelow the first threshold U,, ,the speed of the processor is set to

Slow ;

Ocera User's Guide 32/225 Quality Of Service

OCERA User's Guide 33/225 February 2005

9.if U,, is greaterthan the second threshold U,, , the speed of the
processor is setto s,,, .

These additional rules are currently under implementation and test on a version
of Linux that runs on a Intel PXA250 processor. Therefore, this feature it is only
available as an alpha release.

4.1.3) APl / Compatibility

The provided module does not introduce any new primitive. However, it modifies
an existing primitive, the sched_setscheduler() standard Linux primitive, by
allowing a new kind of scheduler to be selected by the user.

The standard interface of the sched_setscheduler primitive is the following:

i nt sched_setscheduler(pit_t pid, int policy,
const struct sched_param *p);

where pid is the id of the process for which the new scheduling strategy can be
set; policy can be one of SCHED_FIFO, SCHED_RR, or SCHED_OTHER; pis a
pointer to a structure sched_parms that contains the scheduling parameters.
The CBS module provides a new scheduling policy, called SCHED_CBS.

Thanks to the use the gensched patch (see Chapter), sched_parm has an
additional field sched_p, of type (void *), which can point to a dedicated
structure that holds our scheduling parameters for the CBS. The size of this
structure must be put into another field of sched_parms, called sched_size.

The CBS dedicated structure is listed below:

struct cbs_param{

unsi gned | ong int signature;
I nt peri od;

I nt max_budget;

};

To set the CBS scheduler for a certain process, it is necessary to write the
following lines of code:

struct sched_param sp;
struct cbs_param cs;

Ocera User's Guide 33/225 Quality Of Service

OCERA User's Guide 34/225 February 2005

sp. sched_si ze = sizeof (struct cbs_param
sp.sched p = &cs;

cs.signature = CBS_SI GNATURE;

cs. max_budget = Q

cs.period = T,

res = sched_setschedul er(getpid(), SCHED CBS, &sp);

Notice that only the superuser can call the sched_setscheduler() primitive.

PROC interface

Also, an interface through the standard /proc file system is available. Currently,
the interface is only meant for debugging purposes. It is possible to analyse the
status of the scheduler by reading all important scheduling parameters for each
task. The CBS module can optionally provide the following file in the standard
Linux virtual file system:

/ proc/ cbs/ schedul er

which can be read as a normal text file and contains one line for each task
served by a CBS, in which all sensitive informations are listed. We are evaluating
the overhead of using such interface to see if it would be possible to send basic
commands to the scheduler through such interface.

4.1.4) Implementation issues

The gres module uses the generic scheduler patch to provide its services. In
particular, when the module is loaded (see function init_module in src/init.c),
the hook function pointers defined in the generic scheduler patch are assigned
particular functions provided by the qres module. All the rules presented in
Section are implemented in such functions.

The CBS implements the EDF ready queue internally. Every task descriptor has
a pointer to a structure (called cbs_struct, in file src/include/cbs.h) where the
CBS puts its own task's related data. Among these data is the current budget,
the period, the absolute deadline, and so on.

Ocera User's Guide 34/225 Quality Of Service

OCERA User's Guide 35/225 February 2005

If the MULTI option is defined (see Section), each CBS can handle more than
one task. How these tasks are scheduled by Linux is up to the standard Linux
scheduler.

4.1.5) Tests

The gres module is currently distributed together with a test program that can be
used to verify the correct behavior of the module trough a graphical trace of the
scheduling process.

The test program is made up of two executable file: Schedtest and Filter.

The Schedtest program run a time consuming CBS task with a specified budget
and period. The syntax is:

schedtest Q T seconds > tracefile

where Q is the budget of the server (in micro-sec), T is the period of the server
(in micro-sec), seconds is the execution time of the test and tracefile is the name
of the file for saving the trace. You can run more than one Schedtest program at
the same time with different budget and period to see the scheduling execution
of CBS tasks.

Filter extracts some information from the output of Schedtest, the tracefile, and
creates a graphic trace file that can be visualized using the program xfig. The
syntax is:

filter tracefile 1 ... tracefile_n > trace.fig

where tracefile 1 ... tracefile_n are the file previous created by the Schedtest
program.

For example, to view the scheduling trace of two CBS tasks, the first with a
budget of 20000 and a period of 60000 micro-sec, the second with a budget of
40000 micro-sec and a period of 600000 micro-sec, for 30 seconds, just type:

./ schedt est 200000 600000 30 > tracel & ./schedtest
400000 600000 30 > trace?

This command runs two tests and creates two output files, called trace1 and
trace2.

To create a grafic trace file, type:

Ocera User's Guide 35/225 Quality Of Service

OCERA User's Guide 36/225 February 2005

Ifilter tracel trace2 > trace.fig

This command creates a file called c.fig, that can be viewed using the xfig
program.

4.1.6) Examples

The gres module is currently distributed together with two examples that can be
used as utilities.

Wrapper is a program that can be used to schedule a task with CBS scheduler.
The syntax is the following:

wr apper Q T COMVAND

where Q is the budget of the server (in micro-sec), T is the period of the server
(in micro-sec), and COMMAND is the name of the command to start (with its
absolute path). For example, to run the program fop with a budget of 20000 and
a period of 60000 micro-sec, just type

./ wrapper 20000 60000 /usr/bin/top

Cbser is a program that transforms a task running on the Linux system in a CBS
task; its syntax is the following:

cbser QT PID

where Q is the budget of the server (in micro-sec), T is the period of the server
(in micro-sec), and PID is the Process ID of the task (to know the pid of the task
is possible to use the command top). For example, if the program find is running
with the PID 2001, and you want to run it with a budget of 20000 and a period of
60000 micro-sec, just type:

./ cbser 20000 60000 2001

Ocera User's Guide 36/225 Quality Of Service

OCERA User's Guide 37/225 February 2005

4.1.7) Installation instructions

CBS is a loadable Kernel Module that can be inserted on a Linux platform to
distribute the CPU time to the system tasks. Before using this feature, the
following steps are needed:

Patching the Linux kernel with the 'Generic Scheduler Patch'
Compiling the qres module
Installing the gres module

Patching the kernel

Locate the directory of the kernel on your Linux system (usually /usr/src/linux).
Be sure that the release of the kernel used on your system is 2.4.18 (to verify the
kernel release run the command 'uname -r'). If there isn't any kernel directory on
the system, or if the kernel release is wrong, download the kernel from
http://www.kernel.org, and extract the content of the file on a directory of your
choice. Copy the 'Generic Scheduler Patch' on the kernel directory, and type

patch -pl < generic_schedul er. patch

Now the kernel is patched. To continue, it's necessary to compile and install the
patched kernel. Compile the kernel using the following commands:

make dep

make bzlmage

make modules

make modules_install

Restart your system.

Compiling the qres module

If the kernel directory isn't '/usr/src/linux’, set the environment variable
KERNEL_DIR typing the command 'export
KERNEL_DIR=your_kernel_directory'. Go in the directory containing the CBS
code (usually gres/src). This directory should contain a file called Makefile.
There are many options that can be set during the compilation. The easiest way
to compile the module is to type 'make'. This will create a module with the basic
features. However, it's possible to specify the following options (which should be
appended to the 'make' command):

Ocera User's Guide 37/225 Quality Of Service

OCERA User's Guide 38/225 February 2005

DEBUG =1 The module prints some warnings during the execution. To read the
warnings printed, type 'dmesg'

MULTI=1 Gives a bandwidth of 10% to all Linux tasks. In this way these tasks
can execute during the execution of the tasks scheduled by CBS
scheduler. In addition this option lets you assign an amount of
bandwidth to a set of tasks.

HRT=1 Use this option if you patched the kernel with 'High Resolution
Timers' patch. This gives to the system a good precision (below
10msec).

PRECISE_ALLOC=1 Any task scheduled by CBS scheduler executes exactly as
specified by its bandwidth (even if there is only one CBS task on the
system). This is a possible solution to solve some problems that the
CBS algorithm encounters when used to schedule very long jobs.

LOG=... During debugging often happens that the kernel is unable to
correctly log all the warning messages printed by the module. This
option specifies the directory of the logger to be used, and is usually
set when the option DEBUG is set too.

GRUB=1 The module uses the algorithm GRUB instead of CBS (GRUB is
capable of reclaiming the unused bandwidth).

GRUB_DEBUG=1 Works like the option 'DEBUG', and should be used when
the option 'GRUB' is set.

GRUB_EXTRA_BANDWIDTH=1 When a task blocks, its remaining budget is
given to next running task.

GRUB_PWR=1 Adds the feature of power saving to the GRUB scheduler, and
must be used only when the option 'GRUB' is set. By now, it is
possible to use this feature only on Intel PXA250 processors (see
the option 'PXA250").

ARM=1 Enables a cross compiling for ARM processors. It requires the 'arm-
linux' utilities (i.e. Arm-linux-gcc).

PXA250=1 Enables a cross compiling for Intel PXA250 processor.
PROC=1 Enables the /proc FileSystem support for CBS scheduler.

QMGR=1 Support the gmgr module. You must enable this modules if you
want to use the qos manager module.

Ocera User's Guide 38/225 Quality Of Service

OCERA User's Guide 39/225 February 2005

Installing the qres module

To install the module in the system, type 'make load' (equivalent to insmod).
To remove the module from the system, type 'make unload' (equivalent to
rmmod).

Ocera User's Guide 39/225 Quality Of Service

OCERA User's Guide 40/225 February 2005

4.2) Quality of Service Manager

4.2.1) Summary

Name qmgr

Description: it is adynamically loadable module for the Linux kernel that provides QoS
management Sservices.

Author : Luca Marzario (lukesky@gandalf.sssup.it)
Reviewer:

Layer: Linux High Level.

Version 1.0

Status alpha

Dependencies: the module depends on the generic scheduler patch and on
the qres component. It takes advantage of the High Resolution Patch and of
the Preemption Patch [PRK].

Release date (milestone) April 2003.

4.2.2) Description

The use of computer based solutions for time-sensitive applications is
increasingly popular. Important examples include multimedia streaming, video-
conference, CD/DVD burning and so forth. Such applications are certainly time-
sensitive but classical hard real-time techniques prove unsuitable to support
them.

Ocera User's Guide 40/225 Quality Of Service

OCERA User's Guide 41/225 February 2005

Soft real-time scheduling solutions are commonly regarded as a better solution
since they provide temporal isolation, thus allowing for individual task timing
guarantees. Moreover, they approximate a fluid allocation of resources, which is
certainly a desirable feature to have, for instance, in multimedia applications.
However, the problem of finding a correct allocation of bandwidth to the different
tasks is still to be considered as a tough problem.

This problem is addressed in this software components and it essentially
amounts to finding an appropriate allocation of resources to competing activities.
To this regard, a static policy, in our evaluation, confronts unfavorably to a
dynamic one. The main argument to support this point of view is that there is
often a structure in the dynamic variations of resource requirements for tasks.
For instance a typical movie alternates “'fast scenes" (which induce a heavy
computation workload) to "slow" dialogues between the characters (which on the
contrary require a light computation). To take advantage of this structure, we
propose a dynamic adjustment of the bandwidth, in which a software module
complementary to the scheduler collects QoS measures for the executing tasks
and varies the assigned bandwidth accordingly.

The design of this module is largely based on concepts borrowed from control
theory. The application of control theory to scheduling problem has been
explored in the recent years. In our context, the design of a feedback controller is
greatly aided by the availability of a a dynamic model for CPU reservations
[Abe02] combining accuracy with analytically tractability. This result has opened
up an interesting research field on appropriate design of a feedback controller. A
first result of this kind is shown in [Pal03] and is the theoretical foundation for the
algorithms used in the package. However, the exploration of different alternatives
is under way.

4.2.3) APl /| Compatibility

As in the qres scheduler component, the only way of setting the parameters for
the feedback scheduler is through the sched_setscheduler() standard API. The
gmgr module defines a new data structure:

struct gngr_param {
unsi gned | ong int signature;
unsi gned | ong int cbs_period;
unsigned | ong |long int qngr_peri od,;
unsi gned | ong int qngr_nax_budget;

Ocera User's Guide 41/225 Quality Of Service

OCERA User's Guide 42/225 February 2005

unsi gned int delta;

unsi gned | ong int h;
unsigned long int H,
unsigned long int ei;
unsi gned long int Ei;
unsi gned long int e;
unsigned long int E

s

The parameters have the following meaning:

signature identifies the structure and must be assigned the value
QMGR_SIGNATURE.

cbs_period is the same as the CBS parameter (see Section).

gmgr_period is the period of the task. It may be different from the period of
the CBS server. Usually, the period of the task is a multiple of the period of
the server.

gmgr_max_budget is the maximum possible budget that can be assigned to
the server. The CBS inizial max_budget is inizialized with this value.

delta is the maximum estimated variation of the execution time between two
consecutive instances, and it is expressed in microseconds.

H and h are the maximum and minimum values, respectively, of each task's
instance computation time, expressed in microseconds.

Ei and ei are the maximum and minimum values, respectively, of the desired
scheduling error.

E and e are the maximum and minimum value, respectively, of the guaranteed
scheduling error.

To specify that a task has to be served by a CBS server with a feedback
scheduler, we have to invoke the sched_setscheduler in the following way:

struct gngr_param par ns;
struct sched_parns sp;

par ms. si gnature = QVGR_SI GNATURE;
par ms. max_budget = ...;
/'l set all paraneters...

sp. sched_si ze = sizeof (struct qngr_paran);

Ocera User's Guide 42/225 Quality Of Service

OCERA User's Guide 43/225 February 2005

sp. sched_p = &par ns;

sched_set schedul er (getpi d(), SCHED QVER, &sp);

4.2.4) Implementation issues

The gqmgr module requires the presence of the qres module, as it completely
relies on it for task scheduling. When the gmgr module is loaded, it substitutes
all the generic scheduler hook with its own functions. When the
sched_setscheduler() is called, it checks if the signature is equal to
QMGR_SIGNATURE. If it is not, it invokes the original hook (i.e. the qres
function). Otherwise, it simply sets the parameters to the internal data structures,
and then invokes the original qres hook, passing the correct data structure.

When a task is blocked, the gmgr hook is called: it computes the new bandwidth
to assign to the CBS task and updates the corresponding max_budget field.

When a task forks, the new task by default is not handled by the gmgr module to
not compromise the execution of the parent.

When a task ends, the relative qmgr_struct is freed.

4.2.5) Tests and validation

A test suite has been devised and evaluated, but its application on the module is
under way upon the release of this document.

4.2.6) Examples

The gmgr module is currently distributed together with one examples that can be
used as utilities.

Qmgr_wrapper is a program that can be used to schedule a task with the qos-
manager. The syntax is

gngr _wr apper Qmax Tcbs Tgngr h Hei E e E <COWAND>

Ocera User's Guide 43/225 Quality Of Service

OCERA User's Guide 44/225 February 2005

where Qmax is the maximum budget that can be assigned to the CBS server (in
microsec), Tcbs is the period of the CBS server (in microsec), Tqmgr is the
period of the task, h, H, ei ,Ei, e E are the execution time's profile of the task
(see Section 5.3), and COMMAND is the name of the command or of the
program to start (with its absoulte path). For example, for a task with a period of
32000 microsec (i.e. an mpegplayer):

./ gmgr _wr apper 10000 20000 32000 5000 90000 15000 O
20000 12000 /usr/ bi n/ npegpl ayer ny_vi deo. npeg

Simulplay is a program that simulate the execution of a generic periodic task.

This program can be used together with gmgr_wrapper to verify the correctness
of the gmgr component (NB: you need a kernel with high resolution timer to use
this program).

In more details, the program read the execution time (expressed in usec) of each
instance from an input file and waste cpu time for the read time.

The syntax is:
.Isimulplay <file>

where file is the file of a previous traced of execution times.

In the same directory of simulplay there is a trace of an mpeg video that can be
used as a trace file for simulplay (file mpeg_trace.txt).

To run an example that executes gmgr_wrapper using simulplay as program and
mpegq_trace.txt as trace file, just load the qres module and type in the utility
directory the following script:

./ run_exanpl e. sh

4.2.7) Installation instructions

The gqmgr module is based on the CBS module, so if you want to install this
module, the following steps are needed:

Installing the qres module (see Section 4.7)
Compiling the gmgr module

Ocera User's Guide 44/225 Quality Of Service

OCERA User's Guide 45/225 February 2005

Installing the gmgr module

Compiling the gmgr module

If the kernel directory isn't '/usr/src/linux’, set the environment variable
KERNEL_DIR typing the command 'export
KERNEL_DIR=your_kernel_directory'. Go in the directory containing the gmgr
code (usually gmgr/src) and type 'make'. This will create a module called gmgr.o.

Installing the gmgr module

To install the module in the system, type 'make load' (it's equivalent to the
command 'insmod'). To remove the module from the system, type 'make unload'
(it's equivalent to the command 'rmmod').

Ocera User's Guide 45/225 Quality Of Service

OCERA User's Guide 46/225 February 2005

5) CAN/CANopen user
guide

Frantisek Vacek — CTU
Pavel Pisa - CTU

Introduction

The CAN/CANopen component consists of four main parts.
LinCAN driver
Virtual CAN API (VCA) and libvca
CAN device
CAN monitor

Ocera User's Guide 46/225 CAN/CANopen user guide

OCERA User's Guide 47/225 February 2005

Virtual CAN API (VCA) and libvca

5.1.1) Description and implementation issues

The libvca consists of five parts.
VCA base (vca_base.c)
Object dictionary acces (vca_od.c)
SDO processing (vcasdo_fsm.c)
PDO processing (vca_pdo.c)
Miscelaneous and utility functions

The main idea of VCA is to have only one interface between application/library
and CAN driver (LInCAN). The access to the CAN driver is different in RTLinux
and Linux user space. While the function calls are used in RTLinux, the user
space application uses /dev/can device. This is why we need VCA.

Next figures shows how to incorporate all the parts of libvca to work together in
both spaces.

Ocera User's Guide 47/225 CAN/CANopen user guide

OCERA User's Guide 48/225 February 2005
A HW, RT-Linux / kernel space , user space
;5; CANmaster| —» canmod <: > remote
E - CAN driver P 'y yamed| <> applications
© @ c . pipes
o @ write Tcp/p|(for ex.
*—)> <Z(<> ~‘;’Loct|l libvea " CanMonitor)
o = il ;
CANslave |l communication <€—»
Y linking «----1 »

Figure 1.1. Usage of libvca in the Linux user space

A HW, RT-Linux / kernel space i user space
ES communication €—»
2 - i linking < ----1
<2(< >CAN driver nameld pipes g < >
Co—>» &
<Z(read/writefioctl 8 TCP/P
(6] e <—»|remote
CANmaster T canmod - e
libvca - P iZ <> applications
[
(for ex.
€----- > CANslave CanMonitor)

Figure 1.2. Usage of libvca in the RTLinux space

Ocera User's Guide 48/225 CAN/CANopen user guide

OCERA User's Guide 49/225 February 2005

a) VCA base

VCA base is primarily a set of primitive functions used open/close CAN driver
and send/receive CAN message. Where are also couple od IOCTLs shielded by
VCA base. Most of VCA base is implemented in vca_base. c. One part of VCA
base is also logging support used by whole CAN/CANopen component. Log
support is implemented in vca log.c.

Next code fragment shows simple usage of VCA primitives.

vca_handle_t canhandle;

const char *candev = "/dev/canQ";

printf("Opening %s\n", candev);

if (vca_open_handle(&canhandle, candev, NULL, 0) I= VCA_OK) {
perror("open");
exit(1);

while (1) {
struct canmsg_t readmsg;
int ret = vca_rec_msg_seq(canhandle, &readmsg, 1);
if(ret < 0) {
vca_log("cantest", LOG_ERR, "Error reading message from '%'s\n", candev);

else {
printf("Received message #%Iu: id:%Ix data:[",i,readmsg.id);
for(n=0 ; n<readmsg.length ; n++) {
if(n > 0) printf(" ");
printf("%.2x", (unsigned char)readmsg.data[n]);

}
printf("I\n");
i++;

b) Object dictionary acces

The Object Dictionary (OD) is implemented as a GAVL tree of vcaod_object_t
objects. It can be also a GSA array for embeded devices with small amount of
memory, but this feature is not implemented yet.

There are three main functions for access to objects in OD.
e vcaod_find_object
e vcaod_get value

e vcaod_set value

Ocera User's Guide 49/225 CAN/CANopen user guide

OCERA User's Guide 50/225 February 2005

Using this function one can read or change objects in OD.

vca_handle_t canhandle;

const char *candev = "/dev/can0";

printf("Opening %s\n", candev);

if (vca_open_handle(&canhandle, candev, NULL, 0) != VCA_ OK) {
perror("open");

exit(1);
}
while (1) {
struct canmsg_t readmsg;
int ret = vca_rec_msg_seq(canhandle, &readmsg, 1);
if(ret < 0) {
vca_log("cantest", LOG_ERR, "Error reading message from '%'s\n", candev);
}
else {
printf("Received message #%Iu: id:%Ix data:[",i,readmsg.id);
for(n=0 ; n<readmsg.length ; n++) {
if(n > 0) printf(" ");
printf("%.2x", (unsigned char)readmsg.data[n]);
printf("I\n");
i++;
}
}

c) SDO processing

The core structure for the SDO processing is a vcasdo_fsm_t. This structure
holds all the status information about current SDO handshake and also other
information like SDO COB IDs, node number etc. SDO processing library do not
contain any synchronous call like select(), read(), write() etc. This aproach gives
it independancy on used comunication model. Next code example showes, how
to deploy SDO library. Fragment is taken from canslave. c.

/I slave SDO communication loop
vcasdo_fsm_t fsm;
/l use default SDO COB IDs
vcasdo_init_fsm(&fsm, 0, 0, node);
while(1) {
/I read CAN driver loop
struct canmsg_t readmsg;
int ret = vca_rec_msg_seq(canhandle, &readmsg, 1); // 1.
if(ret <= 0) continue;

if(fsm->state == sdofsmldle) { // 2.

Ocera User's Guide 50/225 CAN/CANopen user guide

OCERA User's Guide 51/225 February 2005

/l init communicated data in fsm for new communication
//'load object data and prepare FSM for new communication handshake
do {// 3.
int cmd,;
vcasdo_read_multiplexor(readmsg.data + 1, &fsm->index, &fsm->subindex);
cmd = VCA_SDO_GET_COMMAND(readmsg.data[0]);
ifcmd == VCA_SDO_INIT_UPLOAD_R){
uint32_t abort_code;
ul_dbuff t *db = &fsm->data;
vcaod_object t *odo;
int [;
/l load data from OD
odo = vcaod_find_object(&od_root, fsm->index, fsm->subindex, &abort_code);
if(lodo) {
mylog(LOG_ERR, "[%04x:%02x] not found, ABORTING transfer\n", fsm->index,
fsm->subindex);
vcasdo_fsm_abort(fsm, abort_code);
break;
/I further function calls returns check are omitted for the example brevity.
}
| = vcaod_get_object_data_size(odo, &abort_code);
ul_dbuff_set_len(db, I);
/I because object can be an array, wee should set parameter array_index to fsm-
>subindex
| = vcaod_get_value(odo, fsm->subindex, db->data, db->len, &abort_code);
/[FSM is prepared, make it run
vcasdo_fsm_run(fsm);

}

else if(cmd == VCA_SDO_INIT_DOWNLOAD_R){
/I 'in case of download nothing special should be done with FSM
vcasdo_fsm_run(fsm);

}
} while(0);

/ now run new communication or continue in previous one (segmented or block transfer)
/[vcasdo_fsm_taste_msg() generate answer CAN message for incoming CAN message
/[according to state of fsm
/I if(fsm->state = sdofsmRun) vcasdo_fsm_taste_msg() returns -1 and it does not do
anything more.

if(vcasdo_fsm_taste_msg(fsm, &readmsg) == 0) { // 4.

// bad cobid

mylog(LOG_DEB, "message REFUSED\n");

}
else {// 5.
if(fsm->state == sdofsmDone) {
do {
/I SDO transfer complete

Ocera User's Guide 51/225 CAN/CANopen user guide

OCERA User's Guide 52/225 February 2005

mylog(LOG_INF, "SDO transfer done\n");
if(Ifsm->is_uploader) {
/I store downloaded data to OD
uint32_t abort_code;if
ul_dbuff_t *db = &fsm->data;
intl;
I/ store downloaded data to OD
vcaod_object t *odo;
odo = vcaod_find_object(&od_root, fsm->index, fsm->subindex, &abort_code);
| = vcaod_set value(odo, fsm->subindex, db->data, db->len, &abort_code);
/[transfer is done, no answer will be sent to the CAN
ul_dbuff_set_len(&fsm->data, 0);

}
} while(0);

else if(fsm->state == sdofsmAbort) {
// SDO transfer aborted
mylog(LOG_MSG, "SDO transfer ABORTED: error %x '%s"\n", fsm->err_no,
vcasdo_abort_msg(fsm->err_no));

else if(fsm->state == sdofsmError) {
/I SDO transfer error
mylog(LOG_MSG, "SDO transfer ERROR: error %x '%s"'\n", fsm->err_no,
vcasdo_abort_msg(fsm->err_no));

else if(fsm->state == sdofsmRun) {
mylog(LOG_DEB, "SDO transfer RUNNING\n");

else {
/[unexpected state
mylog(LOG_ERR, "SDO FSM unexpected state: %i\n", fsm->state);
fsm->out_msg.length = 0;

}

if(fsm->out_msg.length > 0) { // 7.
/I fsm->out_msg.length > 0 signals that message should be sent to CAN
vca_send_msg_seq(canhandle, &fsm->out_msg, 1);

/1 if fsm is not still running reinit communication after all errors, aborting or successfull
handshake
if(fsm->state |= sdofsmRun) {
vcasdo_fsm_idle(fsm);

}
}
}

vcasdo_destroy_fsm(&fsm);

Ocera User's Guide 52/225 CAN/CANopen user guide

OCERA User's Guide 53/225 February 2005

The example above is long but lot of code is OD object getting/setting and
extraordinary states logging. The main idea is following.

1. get one CAN message
2. check FSM state, if it is currently serving SDO communication or if it is idle

3. if FSM is idle, parse message, get SDO command and get data from OD in
case of upload, than make FSM run.

4. give CAN message to the FSM's vcasdo_fsm_taste_msg() function, it ether
process message (and change FSM state in appropriate way) or simply
refuses it.

5. if message is not refused, check FSM state again.
6. if fsm->out_msg contains data, send data to CAN
7. goto 1. again

CANopen master SDO communication uses the same library in a very similar
manner (see canmaster. c). The diference is only in fact that master initialize
communication (starts with send) while slave allways starts with CAN message
read. If the master wants to start SDO communication it should init SDO FSM for
upload or download calling vcasdo_fsm_uploadl() or
vcasdo fsm _downloadl().

d) 2.1.4. PDO processing

PDO processing is made using a structure vcaPDOProcessor_t. PDO prosessor
knows which OD objects are PDO mapped (because it is written in EDS) and it
can store/retrieve them to/from OD automaticaly. Core function is
vcaPDOProcessor_processMsqg(). If one call this function with a message
just read from CAN, PDO processor check if it is PDO object and it takes care
about appropriate behaviour. For more details see canslave. c.

e) Miscelaneous and utility functions

This is set of help function to parse text, convert it to number or serialize CAN
messages to human readable form.

Ocera User's Guide 53/225 CAN/CANopen user guide

OCERA User's Guide

5.2) CAN device

5.2.1) CAN slave

Can slave consist of two main parts

54/225 February 2005

a) Description and implementation issues

® CANslave core
o HW module

i—?

| CAN card |

CAN bus

[hardware |

<— SDO request

4—> PDO request

1
1
: CAN CAN CAN device||¢ SDO FSM 4+—> dinfo API
1 |driver (S} messages, [application 4“—> ODAP|
6 O] € >
] > >|message ~ 1
| loop |
e b 3 + !
a I
4y| W driver 1 |pDo Object dictionary | :
] (d|| modu|e) i oooroocedd _
1 | processor (oD) "load/compile
! dinfo table : I mapped objs i il 2 :
| | -
: dinfol0] | |[€7|[PDO obiect[o] gf dinfol0l { fi [Hps
n T H |
: | B _ st ||
1 dinfo[n] i : PDO object[n] T | m dinfo[n] 1
re I
: : : counted reference — Ir
1DLL module T

- load/compile

Figure 1.3. CAN Slave block schema

Ocera User's Guide

54/225 CAN/CANopen user guide

OCERA User's Guide 55/225 February 2005

The core is a canslave part which is allways the same. It is responsible for PDO
& SDO communication and OD storage. Slave message loop takes CAN
messages from CAN. Every message is passed to PDO processor, if it is not
processed here than it is passed to SDO FSM (Service Data Object Finite State
Machine). SDO FSM process message, if it is part of SDO communication frame
or refuse it. If it is SDO, FSM makes all neccessary actions (mainly OD
exchange) and prepare CAN answer message. Slave message loop sends such
a message back to CAN bus. CAN slave core has also timer (timer is missing in
figure below), which is responsible for trigering of synchronous PDOs.

When one starts CAN slave, he should provide EDS and HDS file to it. Slave
reads EDS file and it build OD tree according to its contens. In future work will be
possible to compile parsed EDS directly to CAN slave core.

EDS Electronic Data Sheet file is a text file describing all objects in the slave
object dictionary and its mapping into the PDOs. It has normalized form
according to CiA Draft Standard 301.

HDS file contains information which CANopen object in OD is linked to which
dinfo in HW module. It is a simple text file with following structure.

6000:01 /nascanhw/input01
6200:01 /nascanhw/output01

Every line of HDS contains OD object index and subindex and dinfo name to be
connected to. Dinfos can be stored in a arbitrary tree like files in directories. First
directory on dinfo path is name of DLL which contains this dinfo. For example /
nascanhw/input@1lisin libnascanhw.so. When HDS file is parsed all
needed DLLs are dynamicaly loaded. Thats mean that HW module can consist
of more than one *.so file.

What is dinfo? Dinfo is generic structure for passing arbitrary data type among
canslave components. Every process value has to have its dinfo in HW module.
Every dinfo has getter and setter functions for the primitive data types. At
present only the long int and ul_dbuff t is supported.

Ocera User's Guide 55/225 CAN/CANopen user guide

OCERA User's Guide 56/225 February 2005

You can see the dinfo table on figure inside the OD and also inside the HW
module. During CAN device initialization some dinfo structures are allocated.
There are two kind of them. HW dinfos resiststing in the driver module are
initialized when module is loaded. Every object mentioned in HDS file has also
HW dinfo reference in OD. When some object, that do not have HW dinfo (not
connected to the hardware), is PDO mapped the fake dinfo is created for that
object in OD because the PDO processor allways use only dinfo API for access
to any PDO processed object data wheather it comes from HW module or not.
All dinfo structures are reference counted, so they are destroyed automatically
when they are not needed anymore.

b) Testing
See “CanMonitor testing”.

5.2.2) CAN master

a) Description and implementation issues

CAN master is very similar to the CAN slave. Big difference is in ability of
CANmaster to communicate with hierarchically higher application via named
pipes. This gives an application opportunity to communicate with CANmaster
placed in the user space (via named pipes) or in the RT-linux space (via /
dev/rtfxx).

For more information see canmaster.cC.

b) Testing
See CanMonitor testing”.

Ocera User's Guide 56/225 CAN/CANopen user guide

OCERA User's Guide 57/225 February 2005

5.3) CAN monitor

5.3.1) Description and implementation issues

Can monitor component consists of two parts. CAN proxy - canmond and Java
GUI canmond client CanMonitor.

- 5 amed &Cjz\ monitor #1
2 pipes
=z or ;
< canmaster) canmond 3 CAN
S CAN RTfifos : monitor #2
<«—y|driver 8 > —] :
> >
Y local machine other
application

Figure 1.4. CAN monitor component

Ocera User's Guide 57/225 CAN/CANopen user guide

OCERA User's Guide 58/225 February 2005

Canmond is the heard of component. It works like CAN proxy, it is connected
using named pipes to the canmaster and resends CANopen objects to the all
connected applications. Actualy it is a TCP server listenning on port 10001. TCP
connection allows clients to be placed wherever on Internet. One can for
example read/send CAN messages using a Java applet on his HTML browser.
Canmond uses named pipes for communication with canmaster because
canmaster can be placed in kernel space (using /dev/rtfxx) orin user space
and use arbitrary couple of named pipes. This decomposition gives us oportuniti
place canmaster in every memory space.

CanMonitor is a GUI Java based application connected to the canmond using
UNIX TCP socket. One can send/monitor CAN messages using it. If one has
slave EDS (Electronic Data Sheet), he can read/write device OD (Object
Dictionary) just by clicking on the mouse.

5.3.2) CanMonitor testing

Program from this package does not need special installation. They can run from
any directory. Just type make in can/canmon directory. And copy desired files
from can/ compiled directory. If you want to compile only one component,
type make in the component's directory.

Restrictions on versions of GNU C or glibc are not known in this stage of project.
Java SDK ver. 1.4 or above is recommended.
Component was tested with real CANopen device WAGO 750-307.

All VCA sources were compiled by GNU C ver. 3.2 and linked with glibc ver.
2.2.5.

All components were also tested with canmaster and canslave components. In
following example is written how.
a) Example 1 - connecting to real CANopen device

Make sure, that CAN driver and the CAN monitor component is installed and
works properly. Check that real CANopen device is connected to your CAN card.

Open two terminal windows. In first window launch canmaster.
You should see something like this

[fanda@mandrake bin]$./canmaster

Ocera User's Guide 58/225 CAN/CANopen user guide

OCERA User's Guide 59/225 February 2005

CANMASTER - CANopen master

canmaster: entering state STATE_INITIALIZING
canmaster: entering state STATE_PREOPERATIONAL
canmaster: entering state STATE_ OPERATIONAL

Than you should launch canmond on the same machine.

[fanda@mandrake bin]$./canmond
CANMOND - CAN monitor server

If you have a graphical environment with Java installed, you can launch
CanMonitor with CANopen device EDS file issuing:

[fanda@mandrake bin]$ canmonitor -e nascan.eds

loading config from '/home/fanda/.canmonitor/CanMonitor.conf.xml'

connecting to localhost/127.0.0.1
connected OK

If everything works right, you should see Java application window.

Ocera User's Guide 59/225 CAN/CANopen user guide

OCERA User's Guide 60/225 February 2005

g

Quit

[Show rough messages Clear log

connhecting to lacalhost .

connected Ok

RECEMNE[L]: CAM message {id=&01, length=8, data=[40 00 10 00 00 00 00 O]k
FECENWE[Z]: CAM message {id=5%81, length=5, data=[41 00 10 00 08 00 00 00]}
RECENE[Z]: CAM message {id=&01, length=8, data=[&0 00 00 Q0 00 00 00 00]}
RECENE[4]: CAMN message {id=5%81, length=8, data=[02 31 01 03 00 00 00 00t
FECEIVE[S]: CAM message {id=&01, length=8, data=[70 Q0 00 Q0 00 00 00 00]}
RECEMNE[G]: CAM message {id=5%81, length=8, data=[1F 00 00 Q0 00 Q0 G0 001}

ID byte[0] byte[1] byte[2] byte[3] byte[4] byte[S] byte[6] byte[7]
| L J{ [Send

Socket[addr=localhost/127.0.0.1,port=10001,localport=48084] | ‘ | | i

Figure 1.5. CanMonitor message window

Ocera User's Guide 60/225 CAN/CANopen user guide

OCERA User's Guide 61/225 February 2005

ANOpER Montor - Beta 008 = & W
Quit
@ [jhome/fandajocerafo 91 01 03 00 00 00 00 00 | 4= uptoad | | = Download | node [1 |

Comments

[y Filelnfo

[Devicelnfa

D StandardDataTypes

[y oumrmyisage

D MandatornyObjects

D Cptionaldbjects

[Manuracturerobjecy | fhighLimit |

[y 1000 - device type| | [defaultvalue 10x000320151

[1001 - errar regist| |-
@ [1003 - pre-defineq |-
@ [1004 - number of e

| Value | Description
|device tyoe.
L8]

Tz
§ |INTEGERE4 ()
I |READ /WRITE
|false

H Socket[addr=localhost/127.0.0.1,port=10001,localport=48084] | | | !

Figure 1.6. CanMonitor EDS node window

Now you can load device EDS file and upload/download CANopen objects.

b) Example 2 - connecting to canslave

In this example canslave is tested, that means that you do not need any real
CANopen device. Tested canslave can resist on same computer as canmaster
on can be on other computer connected by CAN bus. If both programs resist on
same computer make sure that CAN driver lincan was configured to send CAN
messages to all other who have open CAN driver on same computer.

Do all steps from example 1. Open terminal window and launch canslave. You
can launch more canslaves with different node numbers. Do not forget introduce
*.EDS file name after -e switch in command line. You should see something like
this

[fanda@mandrake bin]$ canslave -e nascan.eds

CANSLAVE - CAN slave
canslave: Opening CAN driver: /dev/can0

Ocera User's Guide 61/225 CAN/CANopen user guide

OCERA User's Guide 62/225

February 2005

canslave
canslave
canslave
canslave
canslave

: Opening EDS: nascan.eds

: entering state STATE_INITIALIZING

: SYNC COB_ID: 0, SYNC period: 0

: entering state STATE_ PREOPERATIONAL
: entering state STATE_OPERATIONAL

Than you can load to the running CanMonitor next EDS file and work with
canslave OD or scan the CAN bus traffic.

5.4) Installation

CAN commponet uses the OMK make system. There is no ./configure script.
The component can be built as a part of OCERA tree or as a stanalone. If it is
build as a standalone you should run script can/switch2standalone.

[fanda@lab3-2 can]$./switch2standalone

Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo
Default config fo

r /utils/suiut

r /utils/ulut

r /utils/flib

r /utils

r /canvcallibvca

r /canvcal/cantest

r /canvca

r /candev/cpickle

r /candev/nascanhw
r /candev

r /lcanmon/canmond
r /canmon/canmonitor
r /canmon

r /lincan/src

Ocera User's Guide 62/225

CAN/CANopen user guide

OCERA User's Guide 63/225 February 2005

Default config for /lincan/utils
Default config for /lincan
Default config for

To modify required configuration options, create "config.omk" file
and add modified lines from "config.omk-default” file into it

To build project, call simple "make"

GNU make program version 3.81beta1 or newer is required to build project
check by "make --version" command

Default configuration of any subcommponent can be changed by introducing a
file config.omk in the subcommponent directory. Defines in this file simply
beats defines in file config.omk-default, so you can put there only defines
that are different that the default ones in the config.omk-default.

For example by default the building of Java application is disabled. That means
that there is a line CONFIG_OC_CANMONITOR=n in the config.omk-
default. If you have the Java SDK and the ant build system installed, add the
line CONFIG_OC_CANMONITOR=y to the file config.omk to enable the Java
applications to be build.

When you switch to standalone, you can build any particular commponent by
running make in the commponent directory.

For more details see file can/README .makerules.

You can download make version 3.81beta1 source from

http://cmp.felk.cvut.cz/~pisa/can/make-3.81betai.tar.gz or the binary from
http://cmp.felk.cvut.cz/~pisa/can/make-3.81beta1-i586-0.gz.

Programs in this package does not need special installation. They can run from
any directory. Just type make in can/canmon directory and copy desired files
wherever you want. The make process is an out source build. After make you
can find your binaries in directory can/ compiled/bin. If you want to compile
only one component, type make in the component's directory. That commponent
and all commponents in subdirectories will be build.

Restrictions on versions of GNU C or glibc are not known in this stage of project
but gcc ver >= 3.0 is recommended. Java SDK ver. 1.4 or above is also
recommended (assert keyword support).

Ocera User's Guide 63/225 CAN/CANopen user guide

OCERA User's Guide 64/225 February 2005

6) OCERA Real-Time
Ethernet

Petr Smolik - CTU

The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS
communication protocol. RTPS is new application layer protocol targeted to real-
time communication area, which is build on the top of standard UDP stack. Since
there are many TCP/IP stack implementations under many operating systems
and RTPS protocol does not have any other special HW/SW requirements, it
should be easily ported to many HW/SW target platforms. Because it uses only
UDP protocol, it retains control of timing and reliability.

Ocera User's Guide 64/225 OCERA Real-Time Ethernet

OCERA User's Guide 65/225 February 2005

6.1) ORTE Summary

6.1.1) Summary

Name of the component
OCERA Real-Time Ethernet (ORTE)
Author
Petr Smolik
ORTE Internet resources
http://www.ocera.org OCERA project home page
http://sourceforge.net/projects/ocera OCERA SourceForge project page. The
OCERA CVS relative path to ORTE driver sources is
ocera/components/comm/eth/orte.
http://www.rti.com Real-Time Innovation home page
Reviewer
not validated
Layer
High-level
Version
orte-0.2.3
Status
Beta
Dependencies
Ethernet adapter with a UDP stack.
Multi-threaded operating system OS
Memory allocator (functions malloc, free)
Supported OS
Unix - Linux, FreeBSD, Solaris, MacOS
Windows
RTAI with RTNet
Release date
September 2004

Ocera User's Guide 65/225 OCERA Real-Time Ethernet

OCERA User's Guide 66/225 February 2005

6.2) ORTE Description

6.2.1) Introduction

The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS
communication protocol. This protocol is being to submit to IETF as an
informational RFC and has been adopted by the IDA group.

6.2.2) The Publish-Subscribe Architecture

The publish-subscribe architecture is designed to simplify one-to-many data-
distribution requirements. In this model, an application "publishes" data and
"subscribes" to data. Publishers and subscribers are decoupled from each other
too. That is:

Publishers simply send data anonymously, they do not need any
knowledge of the number or network location of subscribers.

Subscribers simply receive data anonymously, they do not need any
knowledge of the number or network location of the publisher.

An application can be a publisher, subscriber, or both a publisher and a
subscriber.

Ocera User's Guide 66/225 OCERA Real-Time Ethernet

OCERA User's Guide 67/225 February 2005

Subsctibet Y

-
@

Subsctibet "X
Sobsctibet "K" -
=

=
—

| —
= =
Publishet "X
= Publishet "Y"
Publishet "Z" ©

Figure 1-1. Publish-Subscribe Architecture

Publish-subscribe supports anonymous, event-driven transfer between many
nodes. The developer simply writes the application to send or receive the data.

Publish-subscribe architectures are best-suited to distributed applications with
complex data flows. The primary advantages of publish-subscribe to applications
developers are:

Publish-subscribe applications are modular and scalable. The data flow is
easy to manage regardless of the number of publishers and subscribers.

Ocera User's Guide 67/225 OCERA Real-Time Ethernet

OCERA User's Guide 68/225 February 2005

The application subscribes to the data by name rather than to a specific
publisher or publisher location. It can thus accommodate configuration
changes without disrupting the data flow.

Redundant publishers and subscribers can be supported, allowing
programs to be replicated (e.g. multiple control stations) and moved
transparently.

Publish-subscribe is much more efficient, especially over client-server,
with bandwidth utilization.

Publish-subscribe architectures are not good at sporadic request/response
traffic, such as file transfers. However, this architecture offers practical
advantages for applications with repetitive, time-critical data flows.

a) The Publish-Subscribe Model

Publish-subscribe (PS) data distribution is gaining popularity in many distributed
applications, such as financial communications, command and control systems.
PS popularity can be attributed to the dramatically reduced system development,
deployment and maintenance effort and the performance advantages for
applications with one-to-many and many-to-many data flows.

Several main features characterize all publish-subscribe architectures:

Distinct declaration and delivery. Communications occur in three simple steps:
Publisher declares intent to publish a publication.
Subscriber declares interest in a publication.
Publisher sends a publication issue.

The publish-subscribe services are typically made available to applications
through middleware that sits on top of the operating system s network interface
and presents an application programming interface.

Ocera User's Guide 68/225 OCERA Real-Time Ethernet

OCERA User's Guide 69/225 February 2005

Application

Figure 1-2. Generic Publish-Subscribe Architecture

Publish-subscribe is typically implemented through middleware that sits on top of
the operating system s network interface. The middleware presents a
publishsubscribe API so that applications make just a few simple calls to send
and receive publications. The middleware performs the many and complex
network functions that physically distribute the data.

The middleware handles three basic programming chores:

Maintain the database that maps publishers to subscribers resulting in
logical data channels for each publication between publishers and
subscribers.

Ocera User's Guide 69/225 OCERA Real-Time Ethernet

OCERA User's Guide 70/225 February 2005

Serialize (also called marshal) and deserialize (demarshal) the data on its
way to and from the network to reconcile publisher and subscriber
platform differences.

Deliver the data when it is published.

b) Publish-Subscribe in Real Time

Publish-subscribe offers some clear advantages for real-time applications:

Because it is very efficient in both bandwidth and latency for periodic data
exchange, PS offers the best transport for distributing data quickly.

Because it provides many-to-many connectivity, PS is ideal for
applications in which publishers and subscribers are added and removed
dynamically.

Real-time applications require more functionality than what is provided by
desktop and Internet publish-subscribe semantics. For instance, real-time
applications often require:

Delivery timing control: Real-time subscribers are concerned with
timing; for example, when the data is delivered and how long it remains
valid.

Reliability control: Reliable delivery conflicts with deterministic timing.
Each subscriber typically requires the ability to specify its own reliability
characteristics.

Request-reply semantics: Complex real-time applications often have
one-time requests for actions or data. These do not fit well into the PS
semantics.

Flexible delivery bandwidth: Typical real-time applications include both
real-time and non-realtime subscribers. Each subscriber s bandwidth
requirements - even for the same publication - can be different.

Fault tolerance: Real-time applications often require "hot standby"
publishers and/or subscribers.

Thread priority awareness: Real-time communications often must work
without affecting publisher or subscriber threads.

Robustness: The communications layer should not introduce any single-
node points-of-failure to the application.

Ocera User's Guide 70/225 OCERA Real-Time Ethernet

OCERA User's Guide 71/225 February 2005

Efficiency: Real-time systems require efficient data collection and
delivery. Only minimal delays should be introduced into the critical data-
transfer path.

6.2.3) The Real-Time Publish-Subscribe Model

The Real-Time Publish-Subscribe (RTPS) communications model was
developed to address these limitations of PS. RTPS adds publication and
subscription timing parameters and properties so the developer can control the
different types of data flows and achieve their application s performance and
reliability goals.

a) Publication Parameters

Each publication is characterized by four parameters: topic, type, strength and
persistence. The topic is the label that identifies each data flow. The type
describes the data format. The strength indicates a publisher s weight relative to
other publishers of the same topic. The persistence indicates how long each
publication issue is valid. Next figure illustrates how a subscriber arbitrates
among publications using the strength and persistence properties.

Accept issues of equal Accept any issue
or higher strength

Time s s
_ﬁ-

Last issue ; P

received ’ Persistence

Figure 1-3. Publication Arbitration

Ocera User's Guide 71/225 OCERA Real-Time Ethernet

OCERA User's Guide 72/225 February 2005

Fault tolerant applications use redundant publishers sending publications with
the same topic to ensure continuous operation. Subscribers arbitrate among the
publications on an issue-by-issue basis based on the strength and persistence of
each issue.

When there are multiple publishers sending the same publication, the subscriber
accepts the issue if its strength is greater than the last-received issue or if the
last issue s persistence has expired. Typically, a publisher that sends issues with
a period of length T will set its persistence to some time Tp where Tp > T. Thus,
while the strongest publisher is functional, its issues will take precedence over
publication issues of lesser strength. Should the strongest publisher stop sending
issues (willingly or due to a failure), other publisher(s) sending issues for the
same publication will take over after Tp elapses. This mechanism establishes an
inherently robust, quasi-stateless communications channel between the then-
strongest publisher of a publication and all its subscribers.

b) Subscription Paramters

Subscriptions are identified by four parameters: topic, type, minimum separation
and deadline. The topic the label that identifies the data flow, and type describes
the data format (same as the publication properties). Minimum separation
defines a period during which no new issues are accepted for that subscription.
The deadline specifies how long the subscriber is willing to wait for the next
issue. Next figure illustrates the use of these parameters.

Figure 1-4. Subscription Issue Separation

Once the subscriber has received an issue, it will not receive another issue for at
least the minimum separation time. If a new issue does not arrive by the
deadline, the application is notified.

The minimum separation protects a slow subscriber against publishers that are
publishing too fast. The deadline provides a guaranteed wait time that can be
used to take appropriate action in case of communication delays.

Ocera User's Guide 72/225 OCERA Real-Time Ethernet

OCERA User's Guide 73/225 February 2005

c) Reliability and Time-Determinism

Publish-subscribe can support a variety of message delivery reliability models,
not all of which are suitable to real-time applications. The RTPS reliability model
recognizes that the optimal balance between time determinism and data-delivery
reliability varies between real-time applications, and often among different
subscriptions within the same application. For example, signal subscribers will
want only the most up-to-date issues and will not care about missed issues.
Command subscribers, on the other hand, must get every issue in sequence.
Therefore, RTPS provides a mechanism for the application to customize the
determinism versus reliability trade-off on a per subscription basis.

The RTPS determinism vs. reliability model is subscriber-driven. Publishers
simply send publication issues. However, to provide message delivery reliability,
publishers must be prepared to resend missed issues to subscriptions that
require reliable delivery.

The RTPS reliability model uses publication buffers publisher and subscriber and
retries to ensure that subscribers who need each issue receive them in the
proper sequence. In addition, the publisher applies sequence number to each
publication issue.

The publisher uses the publication buffer to store history of the most recently
sent issues. The subscriber uses its publication buffer to cache the most recently
received issues. The subscriber acknowledges issues received in order and
sends a request for the missing issue when the most recent issue s sequence
number out of order. The publisher responds by sending the missed update
again.

Publishers remove an issue from their history buffers in two cases: the issue has
been acknowledged by all reliable subscribers or the publisher overflows the
history buffer space. Flow control can be implemented by setting high and low
watermarks for the buffer. These publication-specific parameters let the
publisher balance the subscribers need for issues against its need to maintain a
set publication rate.

Ocera User's Guide 73/225 OCERA Real-Time Ethernet

OCERA User's Guide 74/225 February 2005

6.3) ORTE Implementation Issues

ORTE is network middleware for distributed, real-time application development
that uses the real-time, publish-subscribe model. The middleware is available for
a variety of platforms including RTAI, RTLinux, Windows, and a several versions
of Unix. The compilation system is mainly based on autoconf.

ORTE is middleware composed of a database, and tasks. On the top of ORTE
architecture is application interface (API). By using API users should write self
application. The tasks perform all of the message addressing
serialization/deserialization, and transporting. The ORTE components are shown

in Figure 1-5

Ocera User's Guide 74/225 OCERA Real-Time Ethernet

OCERA User's Guide 75/225 February 2005

Application

ORTE - RTPS midleware

¢
|

Tasks Database — domain

Sending task, event system

Receive metatraffic task

Receive userdata task

¢

Network Interface, UDP Stack

Figure 1-5. ORTE Architecture
The RTPS protocol defines two kinds of Applications:

Manager: The manager is a special Application that helps applications
automatically discover each other on the Network.

ManagedApplication: A ManagedApplication is an Application that is
managed by one or more Managers. Every ManagedApplication is
managed by at least one Manager.

The manager is mostly designed like separate application. In RTPS architecture
is able to create application which contains manager and managedapplication,
but for easy managing is better split both. The ORTE contains a separate
instance of manager located in directory orte/manager.

The manager is composed from five kinds of objects:

WriterApplicationSelf: through which the Manager provides information
about its own parameters to Managers on other nodes.

Ocera User's Guide 75/225 OCERA Real-Time Ethernet

OCERA User's Guide 76/225 February 2005

ReaderManagers: CSTReader through which the Manager obtains
information on the state of all other Managers on the Network.

ReaderApplications: CSTReader which is used for the registration of
local and remote managedApplications.

WriterManagers: CSTWriter through which the Manager will send the
state of all Managers in the Network to all its managees.

WriterApplications: CSTWriter through which the Manager will send
information about its managees to other Managers in the Network.

A Manager that discovers a new ManagedApplication through its
readerApplications must decide whether it must manage this
ManagedApplication or not. For this purpose, the attribute managerKeyList of the
Application is used. If one of the ManagedApplication's keys (in the attribute
managerKeyList) is equal to one of the Manager's keys, the Manager accepts
the Application as a managee. If none of the keys are equal, the managed
application is ignored. At the end of this process all Managers have discovered
their managees and the ManagedApplications know all Managers in the
Network.

The managedApplication is composed from seven kinds of objects:

WriterApplicationSelf: a CSTWriter through which the
ManagedApplication registers itself with the local Manager.

ReaderApplications: a CSTReader through which the
ManagedApplication receives information about another
ManagedApplications in the network.

ReaderManagers: a CSTReader through which the ManagedApplication
receives information about Managers.

WriterPublications: CSTWriter through which the Manager will send the
state of all Managers in the Network to all its managees.

ReaderPublications: a Reader through which the Publication receives
information about Subscriptions.

WriterSubscriptions: a Writer that provides information about
Subscription to Publications.

ReaderSubscriptions: a Reader that receives issues from one or more
instances of Publication, using the publish-subscribe service.

Ocera User's Guide 76/225 OCERA Real-Time Ethernet

OCERA User's Guide 77/225 February 2005

The ManagedApplication has a special CSTWriter writerApplicationSelf. The
Composite State (CS) of the ManagedApplication's writerApplicationSelf object
contains only one NetworkObject - the application itself. The
writerApplicationSelf of the ManagedApplication must be configured to announce
its presence repeatedly and does not request nor expect acknowledgments.

The ManagedApplications now use the CST Protocol between the
writerApplications of the Managers and the readerApplications of the
ManagedApplications in order to discover other ManagedApplications in the
Network. Every ManagedApplication has two special CSTWriters,
writerPublications and writerSubscriptions, and two special CSTReaders,
readerPublications and readerSubscriptions.

Once ManagedApplications have discovered each other, they use the standard
CST protocol through these special CSTReaders and CSTWriter to transfer the
attributes of all Publications and Subscriptions in the Network.

The ORTE stores all data in local database per application. There isn't central
store where are data saved. If an application comes into communication, than
will be created local mirror of all applications parameters. Parts of internal
structures are shown in Figure 1-6.

Ocera User's Guide 77/225 OCERA Real-Time Ethernet

OCERA User's Guide

78/225

February 2005

ORTEDomain 4,—’ CSTWriter I CSTRemoteReader
Writetd pplicationSe If +CSTRemcteR eadets +CSCha ngeFotReadets
WritetA pplicatiohs +CSChahges LastlssueTiioe
Wiitethlanagets RefieshPetiod Tiwe i
Readetapplications Tupch
Readerblanagers
WritctPublicaticha
WiitetSubsctiptions
Bese b C5Change CS ChangeForReader
ReadetSubscti ptichs
+Publications Iy fetalen
+Subscti ptians Ehehteam
i Attibotes
objectEntty -
HypeEntry
Rty CSTReader I CSTRemoteWriter
Tasks CSTRemoteWritets +CSCha ngeFtaWiitets
5 +CEChahges DelayResponceTimet
Petsistenoe Timet &
— - TypeRegistet
[GbjectEniyHID
M +ObjestEnttyALD
2
CS5Change S ChangeFromWriter
QUL CSChange
= VAID CDRStream i
—— Attibutes
+ObjectEntty O1D :
(Tires Qs
e
ObjectBatry0 (D TypeRegit:
CallBackFunctions Topic/Type
EnpitationTioet Subscti ptiohCalBack
Object Atttibutes e Tate:)
e + means list entty

Figure 1-6. ORTE Internal Attributes

Following example shows communication between two nodes (N1, N2). There
are applications running on each node - MA1.2 on node N1 and MA2.1, MA2.2
on node N2. Each node has it own manager (M1, M2). The example shows,
what's happen when a new application comes into communication (MA1.1).

1. MA1.1 introduces itself to local manager M1

. M1 sends back list of remote managers Mx and other local applications MA1.x
. MA1.1 is introduced to all Mx by M1

. All remote MAs are reported now to M1.1

a A ODN

. MA1.1 is queried for self services (publishers and subscriberes) from others
MAX.

6. MA1.1 asks for services to others MAX.
7. All MAs know information about others.

Ocera User's Guide 78/225 OCERA Real-Time Ethernet

OCERA User's Guide 79/225 February 2005

The corresponding publishers and subscribers with matching Topic and Type are
connected and starts their data communication.

Node N1 | Node N2
IPPUDP 7400 | TP/UDP 7400
Manager M1 E Manager M2
ORTE/RTI —E ORTE/RTI
1 4
2 o MAZ,2
/ pllb
MALL % sub
pub i
sub | MAZ,1
5 | MALZ - pub
\\’\ pub : sub
6 sub !

Figure 1-7. RTPS Communication among Network Objects

Ocera User's Guide 79/225 OCERA Real-Time Ethernet

OCERA User's Guide 80/225 February 2005

6.4) ORTE Examples

This chapter expect that you are familiar with RTPS communication architecture
described in the Section called ORTE Description.

Publications can offer multiple reliability policies ranging from best-efforts to strict
(blocking) reliability. Subscription can request multiple policies of desired
reliability and specify the relative precedence of each policy. Publications will
automatically select among the highest precedence requested policy that is
offered by the publication.

BestEffort: This reliability policy is suitable for data that are sending with
a period. There are no message resending when a message is lost. On
other hand, this policy offer maximal predictable behaviour. For instance,
consider a publication which send data from a sensor (pressure,
temperature, ...).

Ocera User's Guide 80/225 OCERA Real-Time Ethernet

OCERA User's Guide 81/225 February 2005

Temmpetatute

\

Tioe

Figure 1-8. Periodic Snapshots of a BestEffort Publisher

StrictReliable: The ORTE supports the reliable delivery of issues. This
kind of communication is used where a publication want to be sure that all
data will be delivered to subscriptions. For instance, consider a publication
which send commands.

Command data flow requires that each instruction in the sequence is
delivered reliably once and only once. Commands are often not time
critical.

6.4.1) BestEffort Communication

Before creating a Publication or Subscription is necessary to create a domain by
using function ORTEDomainAppCreate. The code should looks like:

Ocera User's Guide 81/225 OCERA Real-Time Ethernet

OCERA User's Guide 82/225 February 2005

int main(int argc, char *argv[])

{
ORTEDomain *d = NULL;

ORTEBoolean suspended= ORTE_FALSE;
ORTEInit();

d = ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN, NULL, NULL, suspended);
if (1d)
{

printf("ORTEDomainAppCreate failed\n");
return -1;

}
}

The ORTEDomainAppCreate allocates and initializes resources that are needed
for communication. The parameter suspended says if ORTEDomain takes
suspend communicating threads. In positive case you have to start threads
manually by using ORTEDomainStart.

Next step in creation of a application is registration serialization and
deserialization routines for the specific type. You can't specify this functions, but
the incoming data will be only copied to output buffer.

ORTETypeRegisterAdd(d, "HelloMsg", NULL, NULL, 64);

To create a publication in specific domain use the function
ORTEPublicationCreate.

char instance2send[64];
NtpTime persistence, delay;

NTPTIME_BUILD(persistence, 3); /* this issue is valid for 3 seconds */
NTPTIME_DELAY (delay, 1); /* a callback function will be called every 1 second */
p = ORTEPublicationCreate(d,

"Example HelloMsg",

"HelloMsg",

&instance2Send,

&persistence,

1,

sendCallBack,

NULL,

&delay);

Ocera User's Guide 82/225 OCERA Real-Time Ethernet

OCERA User's Guide 83/225 February 2005

The callback function will be then called when a new issue from publisher has to
be sent. It's the case when you specify callback routine in
ORTEPublicationCreate. When there isn't a routine you have to send data
manually by call function ORTEPublicationSend. This option is useful for
sending periodic data.

void sendCallBack(const ORTESendInfo *info, void *vinstance, void *sendCallBackParam)

char *instance = (char *) vinstance;
switch (info->status)

case NEED DATA:
printf("Sending publication, count %d\n", counter);
sprintf(instance, "Hello world (%d)", counter++);
break;

case CQL: //criticalQueuelLevel has been reached
break;
}
}

Subscribing application needs to create a subscription with publication's Topic
and TypeName. A callback function will be then called when a new issue from
publisher will be received.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD(deadline, 20);

NTPTIME_BUILD(minimumSeparation, 0);

p = ORTESubscriptionCreate(d,
IMMEDIATE,
BEST_EFFORTS,
"Example HelloMsg",
"HelloMsg",
&instance2Recv,
&deadline,
&minimumSeparation,
recvCallBack,
NULL);

The callback function is shown in the following example:

void recvCallBack(const ORTERecvInfo *info, void *vinstance, void *recvCallBackParam)

{

Ocera User's Guide 83/225 OCERA Real-Time Ethernet

OCERA User's Guide 84/225 February 2005

char *instance = (char *) vinstance;
switch (info->status)

case NEW_DATA:
printf("%s\n", instance);
break;

case DEADLINE: //deadline occurred
break;

}
}

Similarly examples are located in ORTE subdirectory orte/examples/hello.
There are demonstrating programs how to create an application which will
publish some data and another application, which will subscribe to this
publication.

6.4.2) Reliable communication

The reliable communication is used especially in situations where we need
guarantee data delivery. The ORTE supports the inorder delivery of issues with
built-in retry mechanism

The creation of reliable communication starts like besteffort communication.
Difference is in creation a subscription. Third parameter is just only changed to
STRICT_RELIABLE.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD(deadline, 20);

NTPTIME_BUILD(minimumSeparation, 0);

p = ORTESubscriptionCreate(d,
IMMEDIATE,
STRICT_RELIABLE,
"Example HelloMsg",
"HelloMsg",
&instance2Recv,
&deadline,
&minimumSeparation,

Ocera User's Guide 84/225 OCERA Real-Time Ethernet

OCERA User's Guide 85/225 February 2005

recvCallBack,
NULL);

Note:

Strict reliable subscription must set minimumSeparation to zero! The middleware
can't guarantee that the data will be delivered on first attempt (retry mechanism).

Sending of a data is blocking operation. It's strongly recommended to setup
sending queue to higher value. Default value is 1.

ORTEPubIProp *pp;

ORTEPublicationPropertiesGet(publisher,pp);
pp->sendQueueSize=10;
pp->criticalQueuelLevel=8;
ORTEPublicationPropertiesSet(publisher,pp);

An example of reliable communication is in ORTE subdirectory
orte/examples/reliable. There are located a strictreliable subscription and
publication.

6.4.3) Serialization/Deserialization

Actually the ORTE doesn't support any automatic creation of
serialization/deserializaction routines. This routines have to be designed
manually by the user. In next is shown, how should looks both for the structure
BoxType.

typedef struct BoxType {
int32_t color;
int32_t shape;

} BoxType;

void
BoxTypeSerialize(ORTECDRStream *cdr_stream, void *instance) {
BoxType *boxType=(BoxType*)instance;

(int32_t)cdr_stream->bufferPtr=boxType->color;

cdr_stream->bufferPtr+=sizeof(int32_t);
(int32_t)cdr_stream->bufferPtr=boxType->shape;

Ocera User's Guide 85/225 OCERA Real-Time Ethernet

OCERA User's Guide 86/225 February 2005

cdr_stream->bufferPtr+=sizeof(int32_t);

}

void
BoxTypeDeserialize(ORTECDRStream *cdr_stream, void *instance) {
BoxType *boxType=(BoxType*)instance;

boxType->color=*(int32_t*)cdr_stream->bufferPtr;
cdr_stream->bufferPtr+=sizeof(int32_t);
boxType->shape=*(int32_t*)cdr_stream->bufferPtr;
cdr_stream->bufferPtr+=sizeof(int32_t);
}
When we have written a serialization/deserialization routine we need to register
this routines to midleware by function ORTETypeRegisterAdd

ORTETypeRegisterAdd(
domain,
"BoxType",
BoxTypeSerialize,
BoxTypeDeserialize,
sizeof(BoxType));
The registration must be called before creation a publication or subscription.
Normally is ORTETypeRegisterAdd called immediately after creation of a

domain (ORTEDomainCreate).

All of codes are part of the Shapedemo located in subdirectory
orte/contrib/shape.

6.4.4) ORTE Tests

There were not any serious tests performed yet. Current version has been
intensively tested against reference implementation of the protocol. Results of
these test indicate that ORTE is fully interoperable with implementation provided
by another vendor.

Ocera User's Guide 86/225 OCERA Real-Time Ethernet

OCERA User's Guide 87/225 February 2005

6.5) ORTE Usage Information

6.5.1) Installation and Setup

In this chapter is described basic steps how to makes installation and setup
process of the ORTE. The process includes next steps:

1. Downloading the ORTE distribution

2. Compilation

3. Installing the ORTE library and utilities
4. Testing the installation

Note:

On windows systems we are recommend to use Mingw or Cygwin systems. The
ORTE support also MSVC compilation, but this kind of installation is not
described here.

a) Downloading

The ORTE component can be obtained from OCERA SourceForge web page
(http://www.sf.net/projects/oceral). Here is the component located also in self
distribution branch as well as in OCERA distribution. Before developing any
application check if there is a new file release.

The CVS version of ORTE repository can be checked out be anonymous
(pserver) CVS with the following commands.

cvs -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera login

Ocera User's Guide 87/225 OCERA Real-Time Ethernet

OCERA User's Guide 88/225 February 2005

cvs -z3 -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera co
ocera/components/comm/eth/orte/

Attention, there is developing version and can't be stable!

b) Compilation

Before the compilation process is necessary to prepare the source. Create a new
directory for ORTE distribution. We will assume name of this directory /orte for
Linux case. Copy or move downloaded ORTE sources to /orte (assume the
name of sources orte-0.2.3.tar.gz). Untar and unzip this files by using next
commands:

gunzip orte-0.2.3.tar.gz
tar xvf orte-0.2.3.tar

Now is the source prepared for compilation. Infrastructure of the ORTE is
designed to support GNU make (needs version 3.81) as well as autoconf
compilation. In next we will continue with description of autoconf compilation,
which is more general. The compilation can follows with commands:

mkdir build
cd build
../configure
make

This is the case of outside autoconf compilation. In directory build are all
changes made over ORTE project. The source can be easy move to original
state be removing of directory build.

c) Installing

The result of compilation process are binary programs and ORTE library. For the
next developing is necessary to install this result. It can be easy done be typing:

make install

Ocera User's Guide 88/225 OCERA Real-Time Ethernet

OCERA User's Guide 89/225 February 2005

All developing support is transferred into directories with direct access of design
tools.

name target path
ortemanager, orteping, :
ortespy /usr/local/bin
library /usr/local/lib
include /usr/local/include

The installation prefix /usr/local/ can be changed during configuration. Use
command ../configure --help for check more autoconf options.

d) Testing the Installation
To check of correct installation of ORTE open three shells.

1. In first shell type

ortemanager
2. In second shell type
orteping -s
This command will invoked creation of a subscription. You should see:

deadline occurred
deadline occurred

3. In third shell type

orteping -p

This command will invoked creation of a publication. You should see:
sent issue 1
sent issue 2

sent issue 3
sent issue 4

Ocera User's Guide 89/225 OCERA Real-Time Ethernet

OCERA User's Guide 90/225 February 2005

If the ORTE installation is properly, you will see incoming messages in second
shell (orteping -s).

received fresh issue 1
received fresh issue 2
received fresh issue 3
received fresh issue 4

It's sign, that communication is working correctly.

6.6) The ORTE Manager

A manager is special application that helps applications automatically discover
each other on the Network. Each time an object is created or destroyed, the
manager propagate new information to the objects that are internally registered.

Every application precipitate in communication is managed by least one

manager. The manager should be designed like separated application as well as
part of designed application.

Ocera User's Guide 90/225 OCERA Real-Time Ethernet

OCERA User's Guide 91/225 February 2005

1 Manager 1
i)
e L e |

Figure 1-9. Position of Managers in RTPS communication

The ORTE provides one instance of a manager. Name of this utility is
ortemanager and is located in directory orte/ortemanager. Normally is
necessary to start ortemanager manually or use a script on UNIX systems. For
Mandrake and Red-hat distribution is this script created in subdirectory rc.
Windows users can install ortemanager like service by using option /
install service.

Note:

Don't forget to run a manager (ortemanager) on each RTPS participate node.
During live of applications is necessary to be running this manager.

6.6.1) Example of Usage ortemanager

Table of Contents
ortemanager -- the utility for discovery others applications and managers on the network

Each manager has to know where are other managers in the network. Their IP
addresses are therefore specified as IPAddressX parameters of ortemanager. All
managers participate in one kind of communication use the same domain
number. The domain number is transferred to port number by equation defined
in RTPS specification (normally domain 0 is transferred to 7400 port).

Ocera User's Guide 91/225 OCERA Real-Time Ethernet

OCERA User's Guide 92/225 February 2005

Let's want to distribute the RTPS communication of nodes with IP addresses
192.168.0.2 and 192.168.0.3. Private IP address is 192.168.0.1. The
ortemanager can be execute with parameters:

ortemanager -p 192.168.0.2:192.168.0.3

To communicate in different domain use (parameter -d):
ortemanager -d 1 -p 192.168.0.2:192.168.0.3

Very nice feature of ortemanager is use event system to inform of
creation/destruction objects (parameter -e).

ortemanager -e -p 192.168.0.2:192.168.0.3

Now, YyOuU Can see messages:

[smolik@localhost smolik]$ortemanager -e -p 192.168.0.2:192.168.0.3
manager 0xc0a80001-0x123402 was accepted

application 0xc0a80002-0x800301 was accepted

application 0xc0a80002-0x800501 was accepted

application 0xc0a80002-0x800501 was deleted

manager 0xc0a80001-0x123402 was deleted

Ocera User's Guide 92/225 OCERA Real-Time Ethernet

OCERA User's Guide 93/225 February 2005

ortemanager

Name

ortemanager -- the utility for discovery others applications and managers on the
network

Synopsis

ortemanager [-d domain][-p iIp addresses][-k ip addresses][-R
refresh][-p purge]l[-D][-E expiration][-e][-v verbosity][-1
filename] [-V][-h]

Description

Main purpose of the utility ortemanager is debug and test ORTE
communication.

OPTIONS

-d -—domain
The number of working ORTE domain. Default is 0.
-p —-peers
The IP addresses parsipiates in RTPS communication. See the Section called The
ORTE Manager in Chapter 1 for example of usage.
-R --refresh
The refresh time in manager. Default 60 seconds.
-P --purge
The searching time in local database for finding expired application. Default 60
seconds.
-E —-—expiration
Expiration time in other applications.
-m -—-minimumSeparation
The minimum time between two issues.
-v —-verbosity
Set verbosity level.
-1 --logfile

Ocera User's Guide 93/225 OCERA Real-Time Ethernet

OCERA User's Guide 94/225 February 2005

All debug messages can be redirect into specific file.
-V --version

Print the version of ortemanager.
-h --help

Print usage screen.

6.6.2) Simple Utilities

Table of Contents
orteping -- the utility for debugging and testing of ORTE communication
ortespy -- the utility for monitoring of ORTE issues

The simple utilities can be found in the orte/examples subdirectory of the

ORTE source subtree. These utilities are useful for testing and monitoring RTPS
communication.

The utilities provided directly by ORTE are:
orteping

the utility for easy creating of publications and subscriptions.
ortespy

monitors issues produced by other application in specific domain.

Ocera User's Guide 94/225 OCERA Real-Time Ethernet

OCERA User's Guide 95/225 February 2005

orteping

Name
orteping -- the utility for debugging and testing of ORTE communication
Synopsis

orteping [-d domain][-p][-S strength][-D delay][-s][-R refresh]
[-P purge] [-E expiration][-m minimumSeparation][-v verbosity]
[-g 1[-1 filename][-V][-h]

Description

Main purpose of the utility orteping is debug and test ORTE communication.

OPTIONS

-d ——domain
The number of working ORTE domain. Default is 0.
-p ——publisher
Create a publisher with Topic - Ping and Type - PingData. The publisher will
publish a issue with period by parameter delay.
-s ——-strength
Setups relative weight against other publishers. Default is 1.
-D --delay
The time between two issues. Default 1 second.
-s —-subscriber
Create a subscriber with Topic - Ping and Type - PingData.
-R --refresh
The refresh time in manager. Default 60 seconds.
-P —--purge
The searching time in local database for finding expired application. Default 60
seconds.
-E --expiration
Expiration time in other applications.
-m --minimumSeparation

Ocera User's Guide 95/225 OCERA Real-Time Ethernet

OCERA User's Guide 96/225 February 2005

The minimum time between two issues.
-v —-verbosity

Set verbosity level.

-g--quite
Nothing messages will be printed on screen. It can be useful for testing maximal
throughput.

-1 --logfile

All debug messages can be redirect into specific file.
-V --version

Print the version of orteping.
-h --help
Print usage screen.

Ocera User's Guide 96/225 OCERA Real-Time Ethernet

OCERA User's Guide 97/225 February 2005

ortespy

Name
ortespy -- the utility for monitoring of ORTE issues

Synopsis

orteping [-d domain][-v verbosity][-R refresh][-P purge][-e
expiration][-1 filename][-V][-h]

Description

Main purpose of the utility ortespy is monitoring data traffic between publications
and subscriptions.

OPTIONS

-d --domain
The number of working ORTE domain. Default is 0.
-v ——-verbosity
Set verbosity level.
-R --refresh
The refresh time in manager. Default 60 seconds.
-P --purge
Create publisher
-e ——expiration
Expiration time in other applications.
-1 --logfile
All debug messages can be redirect into specific file.
-V --version
Print the version of orteping.
-h --help
Print usage screen.

Ocera User's Guide 97/225 OCERA Real-Time Ethernet

OCERA User's Guide 98/225 February 2005

7) Fault-tolerance
components

By
A. Lanusse -CEA
P. Vanuxeem - CEA

The main objective of the fault-tolerant work-package in OCERA is to provide
two types of facilities : degraded mode management in mono-node applications
and redundancy management in distributed applications. The next sections
describe briefly the two corresponding frameworks. For more complete
descriptions the user can refer to documents D6.1 , D6.2_rep (related to
Degraded Mode Management and D6.3_rep and D6.4_rep for Redundancy
Management

Ocera User's Guide 98/225 Fault-tolerance components

OCERA User's Guide 99/225 February 2005

7.1) Degraded Mode Management.

In this section we describe how to use the fault-tolerance (from now on FT)
facilities provided by OCERA V1.0 which concern degraded mode management
support for real-time embedded applications.

The objective is to insure, as far as possible, continuity of service (even if
degraded) in spite of errors or faults. Errors considered are either timing errors or
Kill events detected on application threads. When such errors occur,
replacement behaviors are activated depending on rules provided by users
during design.

The role of FT_components is to provide transparent run-time modules that
detect errors and apply replacement strategies according to user's specification.
An additional off-line component, the FT-builder provides support for the
specification of desired behaviors. Altogether these components constitute a
basic framework to handle degraded mode management that will be
progressively enriched.

7.1.1) Introduction

a) Design choices

The design choices for these FT facilities have been based on a declarative
approach combined with transparent error handling mechanisms. This choice is
driven by the fact that we consider fault-tolerance as non-functional requirements
that must not interfere with application core coding for two main reasons: first to
get a better control over consistency of fault-tolerance related coding and
second, to facilitate maintainability since such requirements may be subject to
change. Propagation of requirements change must be handled in a consistent
manner which is much more complex if fault-tolerance programming is
embedded in the user code.

Ocera User's Guide 99/225 Fault-tolerance components

OCERA User's Guide 100/225 February 2005

According to these choices, non functional requirements related to fault-
tolerance are collected through a design/build tool and used to instantiate the
various run-time components in charge of the behavioural control of the
application.

b) Main principles

The approach retained for degraded mode management, relies on a specific
programming model providing the concepts of ft_task and application_mode
(along with the notions of ft_task _behaviour and application_mode _transition);
and on two specific run-time components that implement degraded mode
management through activation of ft_task _behaviour change and
application_mode switching.

The role of these ft_components is to insure a transparent and safe
management of such transitions at task and application level. A particular
attention has been paid to the overall application logical and temporal
consistency and to a clean resource management so that aborting a task does
not produce subsequent tasks blocking. The basic principles of degraded mode
management according to this approach are the following: when an error is
detected at task level, it triggers a task behaviour change to a degraded mode
and propagates the notification of abnormal event at the application level where
a decision is taken to apply or not an application mode change.

Degraded mode management is thus based on two levels : first a reactive level
provides facilities for immediate handling of abnormal events detected at task
level (events considered are Kill or deadline_miss on the current thread of the
task); second, facilities for global management of event at application level,
possibly involving application mode change.

The declarative approach chosen forces the user to specify transition conditions
both at application level and at task level to handle properly reactions to
abnormal events. These transition conditions are used to instantiate specific
error handling hooks.

Practically, the building tool provides the user with means to specify for each
task the related temporal constraints, the different possible alternative
behaviours (functions to be activated in threads), and the transition conditions for
switching behaviour. It permits also the definition of application modes and of
transition conditions for application mode switch. The modelling of the
application relies on the task model described in the next section.

Ocera User's Guide 100/225 Fault-tolerance components

OCERA User's Guide 101/225 February 2005

7.1.2) Assumptions on application characteristics

The framework currently available relies on a simplified model of applications.
According to this model only simple applications with periodic tasks are handled
at the moment. Though these are indeed quite restrictive hypotheses, they
represent a large range of effective current real-time embedded applications. We
list hereunder the main characteristics of applications handled.

a) Task model
An application consists of a set of periodic tasks.

The tasks are considered as independent thanks to a specific synchronization
model for communication.

Communication between tasks are restricted to data exchange on a cyclic
basis (data are updated at each end of execution cycle of writer and made
available to other tasks at each start of new cycle). There is only one writer,
the owning task for a data. Client tasks read the data elaborated during
previous period.

No other synchronization is defined between tasks.
At design the user associates several possible behaviors to a task.

For the moment two behaviors definitions are expected : a normal
behavior and a degraded behavior. These behaviors are actually the
routines that will be executed depending on the current task behavior
which may be one of : NOT_STARTED, NORMAL, DEGRADED,
TERMINATED. In the current implementation, once a task has become
DEGRADED, it cannot recover and become NORMAL again.

b) Application model

The application is defined as having possibly several modes of execution.
These are predefined at design and specify the possible degraded modes of
functioning. Choice similar to OSEK/VDX][13]

An application mode defines a specific configuration of active ft_tasks. That is,
the specification of the tasks that must be active in the mode and the relevant
behavior for each one. This results in a list of pairs (task,behavior).

The init mode is the mode in which the application will be started (initial
configuration).

Ocera User's Guide 101/225 Fault-tolerance components

OCERA User's Guide 102/225 February 2005

Transitions between modes are triggered by the detection of specific events.
In the current implementation, the possible triggering events are Kill Event and
deadline_miss Event.

c) Events leading to application mode changes

KILL Event results from the detection of a thread abortion by the kernel due to
a software error.

DEADLINE_MISS Event results from the detection of a deadline_miss by the
OCERA EDF scheduler.

It is planned that User Events can also be triggering conditions for mode
change.

d) Application mode transition

On detection of one of the above abnormal events, the application mode can be
automatically shifted to an other mode. This transition is defined at design time
by the application developer.

Application mode transition is defined by a triggering event, the task on which
the event occurs, the initial application mode, the target application mode.

When fired an application mode transition has the following effect :

the termination of all tasks that are specified TERMINATED in the target
application mode;

the change of behaviors of all the tasks that are present in the target
application mode with a different behavior;

The start of tasks that were created but NOT_STARTED in the current
application mode and that must be active in the target application mode.

7.1.3) Degraded Mode Management specific entities

In this section, we describe practically what are the entities introduced in order to
offer a programming model usable for RTLinux developers. This programming
model relies mainly on four entities.

a) FT_task

A FT_task is an encapsulation of a RTLinux real-time periodic task, it actually

Ocera User's Guide 102/225 Fault-tolerance components

OCERA User's Guide 103/225 February 2005

offers an abstraction for the management of the multi-behaviors of a task.

When a user declares a FT_task, it actually creates an entity that will manage
several threads corresponding to the different possible behaviors of the task
along with the resources attached to the task. Three primitives have been
introduced to manipulate ft_tasks : ft_task_init(), ft_task_create(), ft_task_end
(), these constitute the core of the user API required to program applications.

b) FT_task_behavior and FT_task_routine

The FT_task behavior can be one of NOT_STARTED, NORMAL, DEGRADED
or TERMINATED. For each ft task, two ft task routines are defined
corresponding to the code to be run within the threads related to its NORMAL
and DEGRADED behaviors. These routines are standard RTLinux routine.

c) FT_application_mode

The FT_application_mode entity is a data structure that is used by the run-time
FT components implementing the degraded mode management facility. This
entity is not seen by the developer in its coding. The data structure is populated
by the Design/build tool named Ftbuilder that permits interactive definition of
application modes and application modes transitions. We describe its utilization
in the development process section.

d) FT_application_mode_transition

The FT_application_mode_transition entity as FT_application_mode entity is
used internally by the FT run_time components, the developer does not
manipulate it directly in its coding but defines it during design through the
Ftbuilder.

Ocera User's Guide 103/225 Fault-tolerance components

OCERA User's Guide 104/225 February 2005

7.1.4) How to use FT Degraded Mode Management
Framework

One of the major issue in the introduction of FT facilities was to preserve as far
as possible user programming habits and thus to keep unchanged the way he
writes tasks routines. We have thus introduced a limited number of primitives
mainly used at init to declare what we call ft_tasks while the rest of code writing
is kept unchanged. The only important thing concerning ft_tasks is that the user
has to provide a routine for each possible behavior (actually two in the current
implementation: one for the normal behavior and one for the degraded one).

The introduction of mode management at application level implies that additional
information is provided to the system in order to handle abnormal situations in a
proper way. This information is actually gathered into internal databases within
the run-time ft_components. In order to facilitate the initialization of these internal
databases, information collected off-line is processed in order to produce specific
files used at init to instantiate them. This way the user has not to provide
additional code but only to include these files during the compilation of their
application.

a) Development process

The development process proposed to the application developer follows three
steps :

Ocera User's Guide 104/225 Fault-tolerance components

OCERA User's Guide 105/225 February 2005

Application Design 1. Application design is
achieved interactively using
the OCERA Ftbuilder tool.
The user describes tasks,
modes and mode transitions.

» mode desc

— FThuilder fir_task desc
rt_params

interactive ft_params

specifiation

code . .
! generation From these descriptions two
fi_appli_modelh fi_appli_model ¢ fl | eS .a re g e n e rated
ft_appli_model.c and
ft_appli_model.h
User coding - ET components
fi_appli_h . J . .
:llndudaft_apph_mudel,h ‘ ftiaqipmon.c ‘ ﬁimi)tm]ler.: 2. User COdIng |S done
L manually by the .appllcat_lon
\I/ ’”f“?“““’*:u—j”“"‘““_ ikt developer. It consists mainly
P s in writing the code of routines
—— Compilation | for the application threads
== | y[Fwme |[imm | identified during previous
. step.

Figure 7.1.1 FT design process . L
3. The third step Compilation

combines files issued by the
two previous steps and links it with OCERA ftcomponents.

Application design using FT_builder

FT application design covers three main stages which are supported by the
FT_builder.

Application Modeling
Application modeling consists in three main aspects :

identifying the applications tasks and specifying for each one their real_time
and FT parameters;

identifying the applications modes and specifying for each mode the relevant
behavior of tasks active in the mode;

identifying the modes transitions and specifying for each of them : the
triggering condition (event and task), the source and destination modes.

Verification

Ocera User's Guide 105/225 Fault-tolerance components

OCERA User's Guide 106/225 February 2005

Verification consists in :
- verification of consistency of tasks parameters(real_time and FT)

- verification of transitions consistency

Building (code generation)

Building consists in generating code for application control monitoring. This code
consists in two files used to instantiate internal Databases:

- ft_appli_model.h. This file contains taks and modes declarations along with
related tables and variables.

- ft_appli_model.c. This file contains calls to init functions that permit to set up
two internal DataBases, the AppliModesTable and the AppliControlDataBase.

Ftbuilder Overview

The FT_builder provides various facilities to define tasks, modes, transitions, to
edit and view them. It permits also to generate application model files used for
application compilation. The following figure shows a general overview of the tool
where tasks and modes are displayed.

- -~ OCERA : Faull-Tolerance Design;

File Edit View Build Help

PROTO_IN Name : PROTO_IN | Hame : SERVO
Type : FT task | Type: FT_task.
: ms i :

1000
0
HOMINAL wae o % e
100 Deadiine : s00

SERVO

[

WITHDRAWAL Deadline :
Priority : = Priority 5

sTor
e oK oK

name : STOP
PROTO_IN Terminated
SERVO Terminated

[-E=]

name : WITHDRAWAL
PROTO_IN Degraded
SERVO Degraded

[=]]

name : MOMINAL
PROTO_IN Hormal

SERVO Horma
oK

name : INIT
PROTO_IN HotStarted
SERVO MotStarted

[&=

SAVE e |
Figure 7.1.2 FTbuilder : global view

—

Tasks and modes are listed in the left part of the screen while details are

Ocera User's Guide 106/225 Fault-tolerance components

OCERA User's Guide 107/225 February 2005

displayed on the right part. The bottom part is devoted to the display of
messages or to list entities such as tasks, modes and mode transitions (menu
Edit/<entity>/List<entity>. Modes are described by the list of tasks and related
behaviors that must be applied in the mode. In the next sections we review
dedicated acquisition windows for task, modes, and transition specification.

Task specification

The task specification consists in providing ft_task real_time and ft_task
parameters using the FT_builder.

The task specification consists in providing ft task real time and ft_task
parameters. This is done using the FT_builder NewTask or ModifyTask facility.

The consistency of parameters entered is checked before storing information
and it is planned that in the future a global analysis of these parameters will be
done (RMA tool). In the current (V1.0) implementation, only FT_tasks are
handled.

Real-time parameters associated to a ft_task are :

PerIOd’ .- =% OCERA : Task Modification (Task PROTO_IN) [=][a][x]
Start Time,
Task description:
Estimated Duration Hame [PROTO_IN Type [FTiask
. [FT_task
Deadline
Pr|0r|ty RealTime parameters : Fault-Tolerance Parameters:
Task ime unitis: -5 % ms - ns W Fault-Tolerant Task
Period [looo—
M Mode Mngt Required
StartTime [a
EstimatedDuration |20 R ¥ Required
Deadline 100
Priority [
ValidateAndExit | cancel |

Figure 7.1.3 FThuilder : task specification

Mode specification

The mode specification consists in selecting for each application task the behavior
expected in the mode. This is done using the option NewMode facility.

Ocera User's Guide 107/225 Fault-tolerance components

OCERA User's Guide 108/225 February 2005

2= Mode Conf_l_g_]l_uratmn
Enter name for new mode
Mode Hame : [NOMINAL
Task B PROTO_IN | Task i SERVO
ActiveBehavior ActiveBehavior
~ NotStarted +r NotStarted
¥ Hormal 4 HNormal
. Degraded ~ Degraded
~ Termminated + Terminated
Sawve and Exit | Cancel I
The user has Jus Figure 7.1.4 FTbuilder : application mode o enter a mode
name (which specification must be different

from an existing one) and to select for each task, the right behavior to adopt in
this mode. Once these choices have been made, just save and exit (or cancel if
you wish).

In this figure, the NOMINAL mode is defined. This configuration consists of two
active ft_tasks PROTO_IN and SERVO running their normal behavior. Other
modes have been defined for the application : namely: INIT, WITHDRAWAL and
STOPPED. They appear in the global view of the Ftbuilder .

Mode Transition specification
Specifying a mode transition consists in providing :

a Source Mode

Ocera User's Guide 108/225 Fault-tolerance components

OCERA User's Guide 109/225 February 2005

“~* Application Mode Transition definition

a Destination Mode o
Transition from SourceMode to DestMode
a TranSItlon Condltlon Source Mode [NomiNeL Dest. Mode [WiTHDREWAL
where the transition
e 3elect name IMIT Select name INIT
condition NOMINAL NOMINAL
. tS o f \S'!IT'I;{;JRAWAL \:lTTOHPDRAWAL
consis
a trlggerlng event Enler Condition (event and task) :
(th e eve nt Ca n be TrigyeringEvent. : iKILL— Triggering task : EEFT\TCJ_
KILL or deadline
M iss) Select Event : W Select Task : m
a triggering task S— :
Validate Choice Quit
(the task that
reCGIVGS the event) SOURCE MODE TRIGGERING TASK

Figure 7.1.5 Ftbuilder: application mode transition‘
specification

In this example, the transition between NORMAL and WITHDRAWAL modes is

triggered when a Kill event occurs on SERVO task.

The user must enter the source and dest. Modes, then select the type of event
and the triggering task.

Then he can validate his choice, a confirmation step displays a summary of the
choices made for the transition, and waits for confirmation or cancellation.

The user <can list the existing defined transitions with the
Edit/Modes/ListModesTransitions facility.

The transitions are displayed in the bottom part of the main window.

Code generation

Once the desired entities have been defined, the user can generate the
corresponding appli_model files using the build menu in the main window. Two
files are produced ft_model.h and ft_model.h. By default they are located under

<Ftbuilder_dir>/appli_generated_files/<model_name>

Ocera User's Guide 109/225 Fault-tolerance components

OCERA User's Guide 110/225 February 2005

User application coding

prerequisites

FT facilities for degraded mode management of real_time embedded
applications are available for Hard RTLinux environments only.

All application tasks are RTLinux tasks created within one single application
module that can be dynamically loaded into the system. A user application must
thus consist in one single RTLinux module. As usual this module must contain
declarations, one init_module function and one cleanup_module function.

The prerequisites are thus a running OCERA RTLinux kernel with PosixTrace
and FT_components installed (see FT configuration section in chapter three).
More precisely, the prerequisites are :

Configuration level

-> 0OS Type
+ Hard and Soft realtime (RTLinux + Linux)

-> Fault Tolerance components
+ FT dependencies + Bigphysarea support
+ Hard Realtime + Degraded Management
+ FT Controller
+ FT Application Monitoring
+ Utilities + Fault Tolerant Building Tool

-> Scheduling
+ Application defined scheduler
+ or EDF
+ or EDF + Deadline miss detection (very experimental)

Scheduling of tasks versus event detection is chosen at the configuration
level :

- either priority (PRIO) by Application defined scheduler or EDF for only
Pthread_kill events detection,

- or EDF and Deadline_miss detection for Pthread_kill and Deadline_miss
events detection.

Ocera User's Guide 110/225 Fault-tolerance components

OCERA User's Guide 111/225 February 2005

It is important to consider that the scheduling choice versus event detection
has to be consistent with application modes transitions in the application
model specification in FT_builder. Remember that the scheduling
configuration choice automatically configures the FT components at
compilation level for Pthread_kill and/or deadline-miss events detection on
threads by ftcontroller.

-> Posix API
+ Posix Trace support

FT tasks real-time parameters

The ft_tasks real-time parameters (period, start_time, estimated_duration,
deadline, priority) are entered via the FT_builder (see FT task specification in
chapter eight). Static scheduling plan on ft-tasks has to be faisable.
The following using restriction and recommandation for these real-time
parameters are :

1 ms <= period < =100 s

0 <= start_time < period

0 < estimated_duration < periode

1 ms <= deadline <= period

0 <= priority <=10
Note that the FT components ftappmon and ftcontroller have a priority value
superior to the ft_tasks priority values.

headers
The application header must include the following ft specific files:

header of the ft_components API : ft_api_appmon_appli.h

header file for the application model (generated by the FT_builder) :
ft_appli_model.h

#include "ft_api_appmon_appli.h" // include api ft_appli_monitor
#include "ft_appli_model.h" // include modele application model (header file)
init_module

The init_module function looks like regular RTLinux init_module except for the
initialization of ft_tasks.

Ocera User's Guide 111/225 Fault-tolerance components

OCERA User's Guide 112/225 February 2005

Since ft_tasks correspond to an encapsulation of several threads, specific
primitives have been introduced for the init, creation and deletion of such
ft_tasks (see FT_API section).

Within the init_module, two primitives are used :
ft_task_init

This primitive initializes data structures related to ft_tasks within
internal FT_components. Its arguments are : a name, pointers to
normal and degraded routines associated to the ft_task along with
arguments and scheduling parameters (for normal and degraded
behavior).

ft_task_create

This primitive creates and starts ft_task threads. Two arguments are
provided : the ft_task id and the behavior to be activated. Usually the
Normal behavior is activated which means that two threads are
created respectively with normal and degraded routines and the
thread with normal behavior is made periodic while the other one
(with degraded behavior routine) is suspended.

Ocera User's Guide 112/225 Fault-tolerance components

OCERA User's Guide 113/225 February 2005

int init_module(void) { // init module RTLinux
#include "ft_appli_model.c" // include application model
FT_sched_param ap_normal_sched_param, ap_degraded_sched_param;

for (ap_task_id=1; ap_task_id < APPLI_TASKS_MAX_ NB+1; ap_task_id++)
{ /I tasks building loop
/I FT_task initialization
strcpy(&ap_task_name_tab[ap_task_id][0],"PROTO_IN");
// Initialization of FT scheduling parameters
ap_normal_sched_param.prio=SERVO_PRIORITY;
ap_normal_sched param.period=SERVO_PERIOD;
ap_normal_sched_param.start_time=SERVO_START_TIME;
ap_normal_sched param.deadline=SERVO_DEADLINE;
ap_normal_sched_param.duration=SERVO_DURATION;
/I |dem for ap_degraded_sched_param

ft_task_init(/I call to ft_task _init
&ap_task _name_tab[ap_task_id][0], /I ft_task_name
ap_normal_behavior_routine, /I normal routine (pointer)
ap_degraded_behavior_routine, I/l degraded routine (pointer)
ap_normal_behavior_rout_arg, // normal routine argument
ap_degraded_behavior-rout_arg, /I degraded routine argument
ap_normal_sched_param, /I normal scheduling parameters

/I (prio, period, deadline)

ap_degraded_sched_param); /I degraded sched. Parameters

Il (prio, period, deadline)

/I FT_task creation with NORMAL behavior
/I Two threads are created :
I - one for NORMAL behavior which is made periodic
I - one for Degraded behavior which is suspended
ap_task_mode=FT_TASK_NORMAL;
ft_task_create(/I call to ft_task_create

ap_task id, /I ft_task Id

ap_task_mode); /l ft_task_mode (one of

/[FT_TASK_NORMAL,FT_TASK_DEGRADED,FT_TASK_NOT_STARTED)

Ocera User's Guide 113/225 Fault-tolerance components

OCERA User's Guide 114/225 February 2005

cleanup_module

As the init_module function, the cleanup_module function looks like regular
RTLinux cleanup_module except for the deletion of ft_tasks where the developer
has to use the ft_task_end primitive to terminate properly the threads related to
ft_tasks , free ressources and cleanup data structures.

void cleanup_module(void) { I/ deleting application module
for (ap_task_id=1; ap_task_id < APPLI_TASKS_MAX NB+1; ap_task id++)
{ /I for each ft_task
ft_task_end(ap_task id); I/ delete ft_task and free ressources

}
}

Routine coding for normal and degraded behaviors

For each ft_task, two routines are to be defined , one corresponding to the code
to be run for a normal behavior of the task and one corresponding to the code to
be run for a degraded behavior of the task. In both cases, the structure of the
code is a usual rtlinux periodic task with a main infinite loop and a body starting
by a wait for the next period.

normal behavior routine

void *ap_normal_behavior_routine(void *arg) {// routine for normal behavior
ap_task _id = (int) arg;

while(1) { // main loop
pthread_wait_np(); [/ wait for periodic wakeup
no_cycle++; /I period
... DO SOMETHING // Body for normal behavior

return (void *) O;

}

degraded behavior routine

The degraded behavior routine has exactly the same structure as the normal
one. The difference is in the content of the behavior. For instance, we can
program a different algorithm, or a smooth stop. Usually, the thread with the
degraded mode is suspended until an error occurs on the thread with normal
behavior and is resumed then.

void *ap_degraded_behavior_routine(void *arg) {// degraded behavior routine
ap_task _id = (int) arg;

Ocera User's Guide 114/225 Fault-tolerance components

OCERA User's Guide 115/225 February 2005

rtl_printf("\n\nApplication : thread %d switching to running
(degraded_behavior_%d)", pthread_self(), ap_task_id);
while(1) { /I main loop
pthread_wait_np(); // wait for periodic wakeup
no_cycle++; /I period
... DO SOMETHING // Body for degraded behavior
return (void *) O;

}

Application compiling

In order to compile an ft application (here ftappli), it is necessary to have OCERA
architecture installed and compiled (see general OCERA installation) with the
following components selected :

posixtrace
ft components : ftappmon and ft_controller

Here ftappli may be for instance an application (or example) under the directory
either SOCERA_DIR/app/fthaptic or
$OCERA_DIR/components/ft/ftcontroller/examples/ftappli directory.

The compilation of the ftappli module, is achieved by applying the following
commands at the ocera (or ftappli) directory level :

- Clean the application directory :

$ make clean
Old ftappli.o file is cleaned up if it exists.

- Compile the application module:

$ make all
The ftappli.o module is now available under the application directory.

b) Running an application

The ftappli Makefile doesn't install and execute the ftappli module. It only
compiles it (produces ftappli.o).

The general compilation and installation procedure for user application is not
finalized yet.

So for the moment, use the Makefile in ft/ftcontroller/examples directory that
installs and execute both the ft module named ftappmonctrl.o and application
example module ftappli.o.

Ocera User's Guide 115/225 Fault-tolerance components

OCERA User's Guide 116/225 February 2005

The procedure is the following :
- Go to the application (or example) directory level :

$ cd $OCERA_DIR/app/fthaptic
or:

$ cd $OCERA_DIR/components/ft/ftcontroller/examples/ftappli/
- Be aroot user

$ su
Password:
#

At this stage, it is necessary to be a root user. Further, the user has to be a
normal user.

- Install and execute all the module:

make example
or:

make start

#.make stop
- Get the modules execution traces:

tail -f /var/llog/messages
Be careful to see only the last execution traces (not the previous

ones).

Example of application trace
Two application modes are defined :
Mode NOMINAL : in which all ft_tasks have a normal behavior
Mode WITHDRAWAL : in which ft_tasks have a degraded behavior;
A mode transition is defined from NOMINAL to WITHDRAWAL on occurrence of
pthread_kill on .

Execution trace of ft appli example
The execution trace can be consulted in dmesg.
Here we can follow the main steps of this example.
1. Application loading, init and start

Ocera User's Guide 116/225 Fault-tolerance components

OCERA User's Guide

117/225 February 2005

Dec 7 11:32:46 is002404 kernel:

ocera-1.1

Dec 7 11:32:46 is002404 kernel:
Dec 7 11:32:46 is002404 kernel:
Dec 7 11:32:46 is002404 kernel:

Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:49 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:

Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:

normal or not started behavior

Dec 7 11:32:50 is002404 kernel:

mbuff: kernel shared memory driver v0.7.2 for Linux 2.4.18-

mbuff: (C) Tomasz Motylewski et al., GPL
mbuff; registered as MISC device minor 254
RTLinux Extensions Loaded (http://www.fsmlabs.com/)

*kkkkkkkhkkhkhkhkhkk

FT_Controller

*kkkkkkkkkkkkkk

*kkkkkkkkkhkkkhkhkhkkk

FT_Appli_Monitor

*kkkkkkkkkkkkkkkkk

kkkkkkkkkkkhkkkkkhkk

FT_ Haptic

kkkkkkhkhkkkkkkkkhkk

Application :
PROTO_IN_EVENT_CYCLE=60
SERVO_EVENT_CYCLE=60
PROTO_IN_TEST_CYCLE=20
SERVO_TEST_CYCLE=20

Application : PROTO_IN period=1000000000
Application : PROTO_IN deadline=0
Application : Function init_module : ft_task_init PROTO_IN

Application : SERVO period=1000000000
Application : Function init_module : ft_task_init SERVO

Application : ap_task _id_tab[1]=1
Application : ap_i=1 ap_task_behavior=FT_TASK_NORMAL
PROTO_IN normal : ft-task 1, thread -818053120 started,

PROTO_IN normal : ft-task 1, thread -818053120 switching

to wait, normal or not started behaviorDec 7 11:32:50 is002404 kernel:

Dec 7 11:32:50 is002404 kernel:

to running, normal_behavior

PROTO_IN normal : ft-task 1, thread -818053120 switching

ft_task PROTO_IN is started with normal behavior

Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:
Dec 7 11:32:50 is002404 kernel:

Ocera User's Guide

PROTO_IN normal : VPr=0
Application : ap_task_id_tab[2]=2

Application : ap_i=2 ap_task_behavior=FT_TASK_NORMAL

117/225 Fault-tolerance components

OCERA User's Guide 118/225 February 2005

Dec 7 11:32:50 is002404 kernel:

Dec 7 11:32:50 is002404 kernel: SERVO normal : ft-task 2, thread -850526208 started, normal
or not started behavior

Dec 7 11:32:50 is002404 kernel: SERVO normal : ft-task 2, thread -850526208 switching to
wait, normal or not started behavior

Dec 7 11:32:50 is002404 kernel:

Dec 7 11:32:50 is002404 kernel: SERVO normal : ft-task 2, thread -850526208 switching to
running, normal_behavior

ft_task SERVO is started with NORMAL behavior. PROTO_IN and SERVO
exchange data

Dec 7 11:32:50 is002404 kernel: SERVO normal : data=0
Dec 7 11:32:51 is002404 kernel:
Dec 7 11:32:51 is002404 kernel: PROTO_IN normal : VPr=0

Dec 7 11:32:51 is002404 kernel:

Dec 7 11:32:51 is002404 kernel: SERVO normal : data=0
Dec 7 11:32:52 is002404 kernel:

Dec 7 11:32:52 is002404 kernel: PROTO_IN normal : VPr=0
Dec 7 11:32:52 is002404 kernel:

Dec 7 11:32:52 is002404 kernel: SERVO normal : data=0
Dec 7 11:32:53 is002404 kernel:

Dec 7 11:32:53 is002404 kernel: PROTO_IN normal : VPr=1
Dec 7 11:32:53 is002404 kernel:

Dec 7 11:32:53 is002404 kernel: SERVO normal : data=1
Dec 7 11:32:54 is002404 kernel

A KILL event on ft_task SERVO is produced to test event detection and the task
switching mechanism

Dec 7 11:33:49 is002404 kernel: SERVO normal : ft-task 2, thread -850526208 cancelling,
no_cycle=60, normal_behavior

Dec 7 11:33:49 is002404 kernel: FT_Controller : ft_task_id=2 PTHREAD_KILL

Dec 7 11:33:49 is002404 kernel: FT_Appli_Monitor : Function ft_notify failed_thread

Dec 7 11:33:49 is002404 kernel: FT_Appli_Monitor : before switch ft_current_appli_mode= {2 ,
NOMINAL}

Dec 7 11:33:49 is002404 kernel:

The THREAD_KILL event is detected by the ft_controller
A notification is issued to ft_appli_monitor

Dec 7 11:33:49 is002404 kernel: FT_Appli_Monitor : ft_new_appli_mode= {3 , WITHDRAWAL}
Dec 7 11:33:49is002404 kernel:
Dec 7 11:33:49 is002404 kernel: SERVO degraded : ft-task 2, thread -852590592 switching to
running, degraded_behavior
Dec 7 11:33:49 is002404 kernel:

ft_task SERVO has been switched to degraded behavior as a result of local

reaction to abnormal event.

Ocera User's Guide 118/225 Fault-tolerance components

OCERA User's Guide 119/225 February 2005

Dec 7 11:33:49 is002404 kernel: SERVO degraded : data=57

Dec 7 11:33:49 is002404 kernel:

Dec 7 11:33:49 is002404 kernel: PROTO_IN degraded : ft-task 1, thread -242483200
switching to running, degraded_behavior

Dec 7 11:33:49 is002404 kernel:

ft_task PROTO_IN has been switched to degraded behavior as a result of
application mode change. ft_task SERVO has already commutted to degraded
mode so nothing more is done for application mode change completion. The new
application mode is WITHDRAWAL

Dec 7 11:33:49 is002404 kernel: PROTO_IN degraded : VPr=57
Dec 7 11:33:50 is002404 kernel:

Dec 7 11:33:50 is002404 kernel: SERVO degraded : data=57
Dec 7 11:33:50 is002404 kernel:

Dec 7 11:34:47 is002404 kernel: PROTO_IN degraded : VPr=114
Dec 7 11:34:48 is002404 kernel:

Dec 7 11:34:48 is002404 kernel: SERVO degraded : data=114
Dec 7 11:34:48 is002404 kernel:

A second KILL is emitted towards ft_task SERVO.

Dec 7 11:34:48 is002404 kernel: SERVO degraded : ft-task 2, thread -852590592 cancelling,
no_cycle=60, degraded_behavior

Dec 7 11:34:48 is002404 kernel:

Dec 7 11:34:48 is002404 kernel: PROTO_IN degraded : VPr=115

Dec 7 11:34:48 is002404 kernel:

Dec 7 11:34:48 is002404 kernel: FT_Controller : ft_task id=2 PTHREAD_KILL

Dec 7 11:34:48 is002404 kernel: FT_Controller : Cancel the degraded thread !!!

Dec 7 11:34:48 is002404 kernel: FT_Controller : ft task id - 2

Dec 7 11:34:48 is002404 kernel: FT_Controller : ft degraded thread kid --- ¢d2e8000

The event is detected by ft_controller and corresponding thread is killed. A
notification is issued to ft_application monitor.

Dec 7 11:34:48 is002404 kernel: FT_Appli_Monitor : Function ft_notify failed_thread

Dec 7 11:34:48 is002404 kernel: FT_Appli_Monitor : before switch ft_current_appli_mode= {3,
WITHDRAWAL}

Dec 7 11:34:48 is002404 kernel:

Dec 7 11:34:48 is002404 kernel: FT_Appli_Monitor : ft_new_appli_mode= {4 , STOP}

Dec 7 11:34:48 is002404 kernel:

New application mode must be STOP.
Dec 7 11:34:48 is002404 kernel: FT_Controller : Cancel the degraded thread !!!
Dec 7 11:34:48 is002404 kernel: FT_Controller : ft task id -1

Dec 7 11:34:48 is002404 kernel: FT_Controller : ft degraded thread kid --- f18c0000
Dec 7 11:36:23 is002404 kernel:

Ocera User's Guide 119/225 Fault-tolerance components

OCERA User's Guide 120/225 February 2005

The thread corresponding to ft_task PROTO _IN is killed, then the application is
terminated and unloaded.

Dec 7 11:36:23 is002404 kernel: Application : CLEANUP application !!!
Dec 7 11:36:23 is002404 kernel: unloading mbuff
Dec 7 11:36:23 is002404 kernel: mbuff device deregistered

7.1.5) Degraded Mode Management: architecture
overview

The current implementation architecture is based on the OCERA hard real-time
platform which consists of RTLinux hard RT level extended with OCERA
components (mainly Posix extensions and various high level schedulers
implementing algorithms such as cbs, edf).

The fault-tolerance components consists of two complementary components:
ftappmon and ftcontroller; that provide a framework for implementing degraded
mode management support. Located at the application level, they provide both
global monitoring of application and local control of execution. The current
version handles only Hard real-time RTLinux level. The two components must be
used together.

Ocera User's Guide 120/225 Fault-tolerance components

OCERA User's Guide 121/225 February 2005

OCERA-FT
Architecture

Anplication tasks

/Hard real-tim e\

Figure 7.1.6 FT Degraded Mode Management Architecture Overview

The ftappmon (application fault-tolerance monitor) component is in charge of
applying application mode change on notification (from ftcontroller) of an
abnormal situation related to a particular ft_task. A ft_task is a user task for
which fault-tolerance is required. It involves two alternate threads, one
implementing a nominal behavior and the second one implementing a degraded
behavior. These two threads are created during the application init phase but
only the nominal behavior is made active. The ftappmon defines the impact of
the event on the current running tasks and decides of a new configuration (stops
tasks, switch tasks modes, activates new tasks).

Ocera User's Guide 121/225 Fault-tolerance components

OCERA User's Guide 122/225 February 2005

The ftcontrollercomponent is a low-level RTLinux application component in
charge of controlling execution of ft_tasks. On detection of an abnormal situation
on a thread related to a ft-task (deadline miss or abort), the ftcontroller activates
if possible the alternate thread (degraded behavior thread) and propagates the
event to the ftappmonitor.

The implementation of the FT components in kernel space provides thus :
an application programming interface FT-API,
a component ftappmon dedicated to the monitoring of the application,
a component ftcontroller dedicated to the control of the ft-tasks behaviors,

a cooperation between ftappmon and ftcontroller to manage switching
behavioral operations,

an interaction with the scheduler in order to detect abnormal kernel events.

ftappli
init_module ft-task 1| | ft-task 2|
? cleanup_module ? ? ? é

thread routines

ft_init_appli() ft_task_init()
ft_set_appli_mode(fask_create()

ft_notify_failed_thread()
ft_select_new _appli_mode

ft_notify_task_created()
ft_switch_task_behavior()

ft_notify_thread_aborted()

K ft_notify_thread_deadline_m|
@i

L posix trace ‘ kernel stream ‘ }
{

O= & | }

Figure 7.1.7 Overview of FT architecture and API

(rtl scheduler

The FT core architecture is the ftappmonctrl upper-component which integrates
both ftappmon and ftcontroller components. The ftappmonctrl uper-component
constitutes a single RTLinux module.

The ftappmon component is designed for the monitoring of the FT application. It

Ocera User's Guide 122/225 Fault-tolerance components

OCERA User's Guide 123/225 February 2005

offer a FT-API to the application developer, to create the ft-tasks and to manage
the application model for application mode transitions.

The ftcontroller component is designed for the control of the threads of the ft-
tasks and for the detection and reaction to abnormal kernel events provided by
the scheduler. The ftcontroller component uses the posix tracing facility offered
by the OCERA ptrace component to survey the kernel events and react
adequately. It is implemented as a periodic task at kernel level which activates
the posix trace and reads kernel events related to threads in a kernel stream
created by the ptrace component on activation of tracing facility.

The scheduler (rtl_sched) is an OCERA patched version of the RTLinux
scheduler. It uses either standard priority (PRIO) or earliest-deadline-first
(EDF+SRP) scheduling policy.

The abnormal kernel events actually managed by FT components are posix
thread kil (PTHREAD_KILL) and deadline-miss (DEADLINE_MISS). In FT
context, an error is the arrival of an abnormal kernel event on a normal or
degraded thread of a ft_task. The processing of deadline-miss kernel event
needs a particular OCERA patch on RTLinux kernel and the use of EDF
scheduling policy.

The use of FT components requires the selection of the following facilities when
configuring the OCERA kernel: Hard+SoftRTLinux, the FT Application Monitor
ftappmon, the FT Controller ftcontroller, the FT Builder ftbuilder, the posix
trace ptrace and the EDF scheduling.

a) Functioning principle of the FT components

The ftappli application (see fig. 5), developed by application developer, calls
external FT-API functions of ftappmon component at initialization (1), this
induces the instantiation of the application model, the creation of the ft-tasks (so
relative normal and degraded threads) and the notification of ft-task created to
the ftcontroller (2). The scheduler produces some kernel events related to the
threads (4) and the ftcontroller reads these events in the kernel stream (3). If the
ftcontroller detects an abnormal kernel event relative to a thread of a ft-task, a
notification of thread aborted is issued and a local behavior switch is performed
on this ft-task only (5). A notification of failed thread is then issued from the
ftcontroller towards the ftappmon (6). Then, if a new application mode is
selected by ftappmon, an application mode switch can be activated (7). In this
case, the ftappmon commands the ftcontroller to switch all the ft-tasks
behaviors related to the new application mode (2).

Ocera User's Guide 123/225 Fault-tolerance components

OCERA User's Guide 124/225 February 2005

7.1.6) FT Degraded Mode Management API overview

The API defined for the management of degraded modes is quite reduced. It is
divided into external API defining primitives usable by the programmer and
internal API used to communicate between ft_components. This is illustrated by
the following figure.

ft_appli ftappmon_ctrl
ft_ appmon_ctrl.c
ft_appli.c ft_appli_monitor.c 5 controller ¢ rtl_scheduler
PTHREAD KILL
ft_init appli0 ft_init appliO DEADLINE MISS
ft_set_appli_mode0Q ft_set_appli modeO
ft_set_appli_controlQ ft_set_appli controlQ
ft task init o2 ft task initQ :
ft_t:k_::l:‘;a(:e() » ft_task createQ ft_notify task createdQ
ft_task endQ ft task endQ -
-mal ti ft_notify task createdQ ft_notify thread ahortedQ Kernel
:3—:{2;:?;,1.;;";‘.,;‘;&0 & notify failed thread0 ft_notify failed thread0 Bl
= = ft_select new appli modeQ ft_switch _task modeQ
ft_switch appli modeQ Streamnt
ft_switch task modeQ ¥

The ftappmon component offers to the application developer an application
programming interface, named FT-API, that is restricted to very few functions
ft_task_init(), ft_task_create(), ft_task_end(). In addition, it offers some
additional FT-API functions used to instantiate the FT application model:
ft_init_appli(), ft_set_appli_mode(), ft_set_appli_control(). Actually calls to
these functions are automatically generated by the FT-Builder tool into a specific
file devoted to init application configuration data structures. So these last
functions may be considered as transparent to the application developer.

The ftappmon component has also an internal API for interactions with the
ftcontroller component for the notification of failed thread.

The ftcontroller has an API for the ftappmon component for the notification of
the ft-task created and for the switch of ft-task behavior. The ftcontroller has an
APl that could be used by the scheduler mainly to notify events to the
ftcontroller.

Ocera User's Guide 124/225 Fault-tolerance components

OCERA User's Guide 125/225 February 2005

7.2) Redundancy Management.

7.2.1) Introduction

The Redundancy Management facilities offered by OCERA consist of two
complementary components: ftredundancymgr and ftreplicamgr. Used
together, they provide a framework for implementing redundancy management
support for user's application. They respectively control redundancy at the
application level and at the task level on each node.

This first implementation is intended to provide a basic framework whose goal is
to offer a global set of facilities that permit transparent implementation of
redundancy for developers of real-time applications. It offers a passive
replication model, the task model is a simplified one (periodic tasks), fault-
detection is based on heartbeats and timeouts, consistency of replicas is
ensured by periodic checkpointing.

The current implementation is located at Linux user-space level using ORTE
component for communication between nodes. However implementation choices
have been made in such a way as to facilitate the port to OCERA Hard Real-
Time level when ORTE become available at this level. Indeed these facilities can
be enriched in the future.

Ocera User's Guide 125/225 Fault-tolerance components

OCERA User's Guide 126/225 February 2005

[Soft rt-tasks }

ey e [

Application level OCERA component;
UDPAPI POSIX RT API

CogEHs v

POSIX RT API

t

Figure 7.2.1 FT Redundancy management components
location within OCERA architecture

Before entering in the details of the components architecture we describe briefly,
the application and tasks model used, then we introduce the main principles of
functioning of the overall architecture.

Ocera User's Guide 126/225 Fault-tolerance components

OCERA User's Guide 127/225 February 2005

7.2.2) Application and tasks model

An application consists of a set of ftr_tasks (fault_tolerant redundant tasks).

In order to support data consistency and to facilitate tasks recovering on node
crash, a task model must verify synchronization properties. In the current
implementation, we have introduced the following task model.

a) ftr_tasks

A ftr_task is a real-time periodic task (same parameters as pthread scheduling
parameters).

All ftr_tasks are periodic, there is no other temporal synchronization than the
periodicity of the task. The basic cycle of a ftr_task instance is the following.

Read /Init context

Run to completion

Update outputs
Commit new context

Wait for next period

Figure 7.2.2 ftr_task
execution model

A context object is defined for each ftr_task, this context contains static variables
which are changed during a period and whose change is significant for the task
behavior of next periods. This context is saved at each end of execution of an
iteration. It is then broadcasted to the task group of replicas, so that one of them
can become the new master task and start with a valid context in case of node
crash.

The application developer must define the set of variables which must be part of
the context at design time. This context object is automatically updated and
broadcasted at each end of cycle.

Communication with other tasks is limited to reading and writing data in
predefined shared objects. Reading is done at beginning of the period, writing is
done at the end of the period.

Ocera User's Guide 127/225 Fault-tolerance components

OCERA User's Guide 128/225 February 2005

These objects have only one writer, the visibility of data is enabled to other tasks
after the completion of the code of the task, at the beginning of the new period.
(Which means that tasks are working on data obtained during the previous
period of the writer's task). In the figure below, he green part can be accessed by
any reader during current period.The red part is accessed only by owner and will
be committed at the end of the period to become green. In case of error during
the period a default value is issued as green value for next period.

2]

| »
R R
al_p,, Val_p,,, Val_p, Val_p,., Def_val = f(Val_p,..)
al_p, ﬂlJ) Val_p,., Val p Val_p,.;
i . [m W i W [T .

Figure 7.2.3 : Synchronized shared data. (observability is commited to the end of
the period of writer).

When defining ftr_tasks, it is required to specify :
the structure of its ftr_context object;
the ftr_shared_data objects that will be used as inputs;

the ftr_shared_data objects that will be written by the ftr_task (only one writer
per ftr-shared_data object).

b) ftr_tasks_group

The redundancy management model adopted is a passive replicas management
model.

Redundancy parameters have been introduced in the ftr_task data structure.
These parameters include :

the redundancy level required for the ftr_task (minimum and maximum
number of replicas);

the location of each replica;

From these information, and for each ftr_task, an ftr_tasks_group is defined
which gathers data on :

ftr_task _master location and status

for each ftr_task_replica of the ftr_task_master its location and status

Ocera User's Guide 128/225 Fault-tolerance components

OCERA User's Guide 129/225 February 2005

current valid context of ftr_master_task (from last period)

temporal information of ftr_task_master (date of cycle start, deadline, date of
cycle end).

c) ftr_tasks group management main principles

Tasks group management is insured by the ftreplicamgr which periodically
broadcasts the new context emitted by the fir_master_tasks if execution cycle
completed successfully.

Moreover, if the ftr_master_task is writer of a ftr_shared_data, the
ftr_shared_data new value is also broadcasted to other nodes at each end of
cycle.

Temporal behavior of ftr_master_task execution is controlled and notification of
error is done to ftredundancymagr in case of deadline miss. If necessary a
replica is elected as new master and the previous master is deactivated. The
selection of the new master is deterministic, it is simply the ftr_task_replica
located on the next available node (in an ordered list of nodes).

d) Simple example of redundancy management over two
nodes

In the following simplified example, the application is composed of two ftr_tasks
implemented on two nodes. The two master replicas for tasks T1 and T2 are
located on Node1 and two slave replicas are located on Node 2. T1 and T2
periodically (at each end of cycle of each task) transmit their contexts (CT1 and
CT2) to ftreplicamgr which broadcasts them to members of ftr_tasks_groups of
T1 and T2 (in this simple case only to T1:s1 and to T2:s2). Moreover T2 is
producer of ftr_shared_data SD1, so SD1 is also propagated to Node2.

Ocera User's Guide 129/225 Fault-tolerance components

OCERA User's Guide 130/225 February 2005

Node2
Nodel FTR Application : node2
FTR Application : nodel Tlsl T2:52
T1im T2m | | 1
‘ CT2
CT2 sSD1
CT1l
SD1

pndancy M anagement Faclity

Redundancy M anagement Faclity Lo
r edundancymgr i ftreplicamgr

iftredundancymgri ftreplicamgr

Replica management
Global Application & Network control

Figure 7.2.4 Simple example of redundancy management over two nodes

The ftredundancymgr controls global network, detects possible node crash and
decide of dynamic reconfiguration when such an event happens. Information on
application status is thus also replicated within each node. Such transmission of
information is totally transparent to the user.

7.2.3) Faults management

a) Faults management at task level

The ftreplicamgr located on each node controls the execution of each master
replica, namely: start-time, end-time, and timeliness of transmission of context.

If a deadline miss occurs on a ftr_task (the master did not transmit its context on
time), a new master is elected amongst the corresponding ftr_tasks_group and
the faulty one is terminated.

Ocera User's Guide 130/225 Fault-tolerance components

OCERA User's Guide 131/225 February 2005

The ftreplicamgr notifies the ftredundancymgr of the fault, this latter then
updates its new tasks configuration and broadcasts it to each node.

The ftreplicamgr located on the node where the new master task will from now
on be located, switches the ftr_task replica on and makes it run in master mode
instead of slave mode. It will start at the next period (P+1) of the ftr_task with the
last valid context (context P-1) . Several strategies can be envisaged to provide

smoother behavior to the application, but for the moment only this rather drastic
solution is implemented (one period is lost).

b) Faults management at node level

The ftredundancymgr of each node periodically sends a liveliness message to
all other nodes, a node_failure_detection mechanism checks arrival of these
messages.

A silent node is considered as faulty and retrieved from the set of available
nodes. All active tasks on that node are switched off and a new replacement
master task is elected for each one. The process of election is deterministic
(using the ordered list of valid nodes). If it is not possible to find a new master
task then the current default action is to end the overall application.

As said previously, this first implementation provides a global framework build on
top of OCERA Soft RT level, all the application tasks are periodic tasks.

Though the implementation of these components was initially intended to be
developed at both Hard and Soft realtime levels, the current version has been
implemented using results of OCERA available at end of phase1 before full
integration be ready. The implementation at hard RT level should however be
easily ported to Hard real-time level when ORTE components at this level are
available.

Ocera User's Guide 131/225 Fault-tolerance components

OCERA User's Guide 132/225 February 2005

7.2.4) FT redundancy management architecture overview

As viewed in the previous section, the implementation of redundancy
management requires two OCERA RTLinux components located at the Linux
application level on each machine of the network.

a Redundancy manager (ftredundancymagr) in charge of the global
application monitoring and redundancy policy. This component is in charge of
application initialization and control of overall distributed architecture. It also
performs node crash detection through liveliness control using heartbeats. On
detection of such failure, dynamic reconfiguration of application is activated.
New master tasks are elected in order to replace tasks which were located on
the faulty node. Low level control of execution of tasks is delegated to a
replica manager which is in charge on insuring consistency of groups of
redundant tasks (see below).

a Replica manager (ftreplicamgr) in charge of the low level control of the
tasks. Tasks groups are defined with a master and several slaves depending
on the redundancy level required for the task. Tasks are all periodic tasks,
only the master task of a group is active, at each end of cycle, checkpointing
is performed. The new context of the task is then broadcasted to all replicas of
the task. If a timeout is detected on a periodic task, a notification is issued to
ftredundancymgr which will then test if corresponding node is still alive and
decide about action to be undertaken. (Change current master task to an
other one or use default action, or detect node crash and reconfigure all
application).

Ocera User's Guide 132/225 Fault-tolerance components

OCERA User's Guide 133/225 February 2005

appli_controller

ftr_tasks_groups_manager

notification
_manager

1
Global Applice ion& Network control

Figure 7.2.5 Global FT Redundancy Management Architecture overview

We give a rapid overview of this overall framework functioning principles in the
following two sections.

Ocera User's Guide 133/225 Fault-tolerance components

OCERA User's Guide 134/225 February 2005

a) Architecture of redundancy management facility on a
node

On each node, the two components (ftreplicamgr and ftredundancymgr) are
implemented as two separate threads that cooperate within a Linux process in
user's space.

Node O

User Application

ftredundancymgr appliControlThread

ftreplicamgr

Figure 7.2.6 Overview of RedundancyManagement Architecture on a node.

The user application runs in a separate Linux process. In the current
implementation, all application tasks are implemented as threads within one
single application Linux process. (This choice has been made in order to be
closer to the future implementation at Hard RTLinux level where all threads
share the same space).

Within this process, an application control thread is created at application init, it
is in charge of application tasks creation and communication with the
ftredundancy management facility. This thread is transparent to the user which
uses a dedicated API to create and run application tasks.

An application task is encapsulated within a ftr_task which insures periodic
control of the task and checkpointing (communication with the ftreplicamgr).

Ocera User's Guide 134/225 Fault-tolerance components

OCERA User's Guide 135/225 February 2005

Communication between processes and between nodes are handled by ORTE
communication component.

There is one instance of each component on each node of the network. The
redundancy manager on each machine has a complete knowledge of application
current configuration and constraints, so that it can take decisions in an
autonomous way if necessary.

The replica managers maintain a table of all fir_tasks_groups and maintain the
current status of each member of a group (master, passive_replica,
unavailable_replica) and its location. Each active replica, periodically sends its
new context which is then broadcasted to all other members of the group. The
protocol must insure reliable atomic transfer to all members of the group of
replicas. The replica manager, regularly verifies that context checkpoint has
been performed on time.

Ocera User's Guide 135/225 Fault-tolerance components

OCERA User's Guide 136/225 February 2005

b) Basic interaction between components

The main interactions between components are illustrated in following figure
where the two instances of components located on a node appear as two
separate threads within one Linux process, services offered are shown within
oval forms. This framework is present on each node of the distributed
architecture required for the application.

Figure 7.2.7 . Internal and external interactions of ft_redundancy components

Ocera User's Guide 136/225 Fault-tolerance components

OCERA User's Guide 137/225 February 2005

Main functioning |oop: Task leve fault detection :

1: application init a : tak garted + deadline

2: tasksgroups creation b : task ended

3: task creation, sart or end c : timeout reached task not responding
4: task cycle started f2: task j on node n not responding

5: task cycleended + context or task end

6 : checkpoint towards passive replicas

Node level lifeliness contral :

li : lifdinessin (node_i isalive) received from each node
lo: current nodeis alive sent

f1: nodei not responding

In this figure three types of protocols are shown, the first one concerns the main functioning
loop, the second concerns node crash detection and rel ated reconfiguration process, the third one
concerns timeout detection at task level, the task may be faulty but not the node.

c) Application life-cycle

Previously to application start, the redundancy management must be made
available. A script shell permits the installation of the two components onto a set
a specified nodes. Once ftredundancymgr and ftreplicamgr are installed and
ready, one can start an application.

At init, application is started in master mode on one node which is called node_0,
information on application configuration is provided to the ftredundancymgr:

- number of tasks and tasks descriptions (including redundancy level parameter
for each task),

- number of nodes and nodes_Id
- initial mapping of tasks onto nodes

- ordered list of nodes for dynamic reconfiguration on node crash (determines
node replacement choice)

Ocera User's Guide 137/225 Fault-tolerance components

OCERA User's Guide 138/225 February 2005

According to this information, the ftredundancymgr instantiates its internal
application description table and remotely starts application on other nodes in
slave mode.

It then builds tasks groups (master task + its replicas) and sends information for
each group to the ftreplicamgr whose role is two control the functioning of each
task and to maintain the consistency of all replicas for each tasks group.

The ftreplicamgr instantiates its own tasks groups table and task control status
table, then enables creation of tasks and tasks replicas on each node (actually
task creation itself is achieved within the User Application process by the internal
application control thread, the task may be created as active or passive).

When all tasks are created on each relevant node, start of tasks is enabled.
Each task thread becomes ready and is then started according to its realtime
parameters and to scheduling policy. At each cycle, start of cycle is notified to
ftreplicamgr; at each end of cycle, end is notified and the checkpointing of the
new task context is achieved. A watchdog verifies timeliness of task completion
and a fault notification is issued in case of deadline miss on a task.

On application termination all tasks are terminated, then application instances are finished on
each node and application is deregistered. The redundancy management facilities stay available
for anew application or may be ended by a specific command.

7.2.5) Overview of Redundancy Management API

The Fault-Tolerance components described in this document have to be used
jointly since they interfere strongly. It is the reason why though each one has its
own API described in a distinct section, it may be useful to get a general
overview of them.

The external user API is actually restricted to very few functions :
ftr_application_register(),
ftr_appli_desc_init(),
ftr_appli_task_create(),
ftr_appli_task_end(),
ftr_application_terminate()

Ocera User's Guide 138/225 Fault-tolerance components

OCERA User's Guide

139/225

February 2005

They are called within user's main application thread and handled by the
ftr_control_thread (named hereafter ftr_controller) running within the application
process. Then the ftr_controller uses internal APl to communicate with
ftredundancymgr and with ftreplicamgr.

The ftredundancymgr has a small external API that is used to start or end the
redundancy management facility.

In addition, each component has also internal API(s) that permit interactions
between them.

Application

User Application Main

ftr_controller

ftr_application_register ()
ftr_appli_desc_init()
ftr_appli_task_create()
ftr_appli_task_end()
ftr_application_term nate()

Redundancy Management

tr_notify_appli_task_created()
tr_notify_appli_task_cycle_started()
tr_notify_ appli_task_cycle_finished()
tr_notify_appli_task_ended()

tr_task_context_conmmt()
tr_task_cont ext _updat e()
tr_shared_data_commit ()
tr_shared_dat a_updat e()

\/

ftredundancymgr

ftr_redundancy_nanagenent _start ()
ftr_redundancy_managenent _end()

ftr_application_config_init()
ftr_application_config_nodify()

ftr_notify_node_failed()
ftr_application_config_checkpoint ()
ftr_ftredundancyngr_heart beat ()

tr_task_group_init()
tr_task_group_destroy()

A

ftr_task_group_add_nenber ()
ftr_task_group_renove_nenber ()
ftr_task_group_nodi fy_nenmber_attributes()

’ftr_not ify _task_failed()

tr_task_checkpoi nt ()
tr_ftreplicangr_heartbeat ()

ftreplicamgr

Figure 7.2.8 Global view of ft redundancy management API(s)

The user's API is described hereunder while next chapters describe in details the two FT
components.

Ocera User's Guide

139/225

Fault-tolerance components

OCERA User's Guide 140/225 February 2005

7.2.6) How to program redundant applications

a) Implementation issues and impact on user programming

Implementation principles are driven by the will to make redundancy
management as transparent as possible to the application developer. So in
order to develop an application, the user can almost forget about underlying ft
redundancy management architecture.

To support the approach, two features are introduced and used within the user's
process :

creation of a control thread dedicated to redundancy control
(ftr_control_thread)

encapsulation of application tasks into ftr_tasks_threads

The ftr_control_thread is in charge of initialization and control of application.
Created within the user application process it communicates with
ftredundancymgr and ftreplicamgr.

The ftr_tasks_threads are generic encapsulation of redundant tasks. A

ftr_task thread is created for each user's application redundant task. It ensures
periodic execution of user's task routine, management of context entity and of
shared data entities and communication with ftreplicamgr for checkpointing.

Communication with ftreplicamgr and ftredundancymgr are achieved using
ORTE publisher/subscriber mechanisms both within a node and between nodes,
but this is transparent to the user since calls are made either from
ftr_control_thread or from ftr_tasks_threads generic part using specific internal
APIs that are described in the corresponding component sections below.

b) User's API

The approach chosen results in a very limited user's API necessary mainly for
initialization and termination of user application. Most of user' s application code
consists in routines that will be run within ftr_tasks_threads.

int ftr_application_register(char *, FTR_APPLI_DESC *,
ManagedApp *);

int ftr_appli_desc_init(FTR_APPLI_DESC *);

int fir_appli_task _create(FTR_APPLI_TASK DESC *);

int ftr_appli_task_end(int);

int ftr_application_terminate(char*);

FT redundancy management User API

Ocera User's Guide 140/225 Fault-tolerance components

OCERA User's Guide 141/225 February 2005

The important issue is to specify the context data and shared resources for each
task at design. Concurrency control over such shared data is then automatically
insured by the execution model. Then threads routine can be written simply in a

usual way.

Ocera User's Guide 141/225 Fault-tolerance components

OCERA User's Guide 142/225 February 2005

In the following figure we illustrate on a very simple example how an application
is started.

Once the design is done, the resulting architecture on a node is composed of the
user's process and of the Redundancy Management Facility process (in the
following view we do not show ORTE process).

Within the user's process the yellow (or white) parts concern code written by
users and blue (or gray) part concern generic ftr code.

Nodel
FTR Application : nodel
main | 1 | fir_control |
2 1L”>>—-
5 w»=
g > - ftr_task
- . < 10 }I:[Tl:m
= rlm
4 al L3 7 =
CT1
e Y
— |
ftredundancymgr 3 | ftreplicamgr
,,,,,,,,,,,,,,,,,,,,,,,,,,,, ™ e
Redundancy Management Faclity

Replica management
Global Application & Network control

Figure 7.2.9 Interactions with redundancy Management facility components form User's
Application

Ocera User's Guide 142/225 Fault-tolerance components

OCERA User's Guide 143/225 February 2005

First the application creates the ftr_control_thread (1), then it calls the
ftr_application_register primitive to register the application (2), the
ftr_control_thread then communicates with the ftredundancymgr to setup data
(3) for the new application, and waits for acknowledgment (4) from it before
returning OK (5) to the user main thread.

Thenthe ftr_appli_desc_init primitive is called to setup application data
structures and ftr_tasks_threads (6). At this stage ftr_tasks_threads are created
but the corresponding users routines are not started. When all the infrastructure
is ready, the ftreplicamgr notifies the ftr_control_thread (7) which returns OK (8)
to user's main thread.

Finally the user can call the ftr_appli_task_create primitiveto start aftr_task.(9).
Theftr_controller_thread then makes the ftr_task thread start periodic call to the corresponding
user's ftr_task_routine (10).

Two other primitives are available to end an ftr_appli_task (ftr_appli _task_end)
and to terminate the overall application(ftr_applicati on_t ermi nate).

The user has to define specific data structures, one to describe the overall
application structure and one to describe each fir_task.

It is intended that the Ftbuilder tool (already available for the specification of
degraded mode management) will assist the designer to determine these
features and automatically generate the corresponding data structures. For the
moment this facility is not implemented yet, and data is provided in a file read by
the ftr_appli_desc_init primitive.

c) Coding steps
An application can be written rather simply following the different generic steps :

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <orte.h>

#include <netdb.h>

#include <pthread.h>
#include <simple_appli.h>
#include <ftredundancymgr.h>
#include <appli_controller.h>
ManagedApp *appli;
pthread_t ftr_control_thread;
int main(void)

{

Ocera User's Guide 143/225 Fault-tolerance components

OCERA User's Guide 144/225 February 2005

intres = 0;

void *ret;

FTR_APPLI_DESC application_desc;
FTR_APPLI_TASK_ DESC application_task_desc_1;
FTR_APPLI_TASK_DESC application_task_desc_2;

1. Declarations for ftr_application

[* Creation of ftr_control thread */
pthread_create(&ftr_control_thread, NULL,(*ftr_main_control_routine),
NULL);

if (res 1= 0) {

perror("Redundancy Management thread creation failure ...
exiting");

exit(-1);

2

2. Creation of ftr_control_thread of ftr_application

The ftr_control_thread of the application is created in the beginning of the main
thread to install the ftr architecture within the application process. In the future, it
will be replaced by a macro. The ftr_main_control_routine, is a generic control
loop that monitors events from and to the ftr_process. It also accepts requests
form the user main thread.

[* Init appli_desc structure */

res = ftr_appli_desc_init(&application_desc);

if res ==-1) {
perror("Redundancy Management : application desc init failed ...
exiting");

exit(-1);

3

3. initialization of application data structures
During this step, data structures describing application and tasks are initialized.

/* Register application */

res = ftr_application_register(APPLI_NAME, &application_desc,appli);

if (res ==-1) {

perror("Redundancy Management : application registration failed...
exiting");

exit(-1);

h

4. Registration of application

Ocera User's Guide 144/225 Fault-tolerance components

OCERA User's Guide 145/225 February 2005

Application registration is done towards ftr process which in turn propagate
information over network (thanks to ORTE) to other ftr processes. (Application is
also registered as ORTE Application). (Internal tables are initialized, groups of
replicas are created and instances created on each node).

[* Tasks creation */
application_task desc_1 = application_desc.appli_tasks_tab[1];
application_task_desc_1.appli_task_routine = ft1;
res = ftr_appli_task_create(&application_task_desc_1);
if (res ==-1){
perror("Redundancy Management : task creation (1) failed...
exiting");
exit(-1);
2

5. ftr_tasks creation for ftr_application

During this step each application task is created using the ftr_task desc of each
one. This steps defines mainly the routine to be run within the generic

ftr_task thread and the related real-time parameters (period,
estimated_duration, deadline). At the end of each period, the current context is
sent to all its replicas on other nodes.

Once this is done for each task, the application runs in a nominal way.
To end a task the following call is necessary.

/* Requiring End of Task 1 */
res = ftr_appli_task_end(1);

6. ftr_tasks ending for ftr_application

This ends the corresponding ftr_task (and all its replicas). All ftr_tasks have to be
ended before application itself can be ended.

[* Requiring Application Termination */
ftr_application_terminate(APPLI_NAME);
/* Waiting for end of control_thread */
pthread_join(ftr_control_thread,&ret);
if (ret = PTHREAD_CANCELED) {

i = (int) ret;
printf("Main : end of ftr_control_thread ret = %d\n", i);

}!
printf("\nAppli ending : ");
return O;

}

Ocera User's Guide 145/225 Fault-tolerance components

OCERA User's Guide 146/225 February 2005

7. Termination of ftr_application

Once all the ftr_tasks are ended, resources are freed and the ftr_control_thread
is ended, then application terminates.

Obviously, the user must in addition provide the code of the routines that will be
run within each ftr_tasks_thread. A pointer to this routine is a member of the
ftr_task _desc structure.

In our simple example :
int ft1(int i)

printf("Function ft1 running with arg %d\n",i);
sleep(3);
return O;

}
The status of the current implementation is still in a testing phase. The example
implemented tests application setup, execution and termination.

7.2.7) How to run the examples

Up to now, the examples developed are common to the two components.
The example directory is located within the ftredundancymgr component :
ocera/components/ft/ftredundancymgr/examples/ftr_appli

It is the Makefile located within this directory that builds the test application. In
order to run the example it is necessary to compile and start the ftredundancy
management facility first.

Implementation :
The ft/ftredundancymgr/examples/ directory has the following structure:

examples
! --- README
I - INSTALL
I --- Makefile
! - ftr_appli
! I--- README
! .- INSTALL
! I--- Makefile
! 1--- include
! ! l--ftr_appli.h

Ocera User's Guide 146/225 Fault-tolerance components

OCERA User's Guide 147/225 February 2005

! l--- src
! ! I-—ftr_appli.c

The ftr_appli is a simple application that has been developed to test the
ftredundancy management facility.

The general OCERA Makefile file permits the compilation of the overall OCERA
tree provided options are selected in the configuration step (see OCERA
HOWTO for OCERA configuration steps). However examples can be compiled
separately afterwards.

Compilation :
In order to compile the example please follow next steps :

- Go to the ft/ftredundancymngr/examples directory:
$ cd ft/ftredundancymngr/examples

- Clean the ft/ftredundancymngr/examples directory:
$ make clean

- Compile the examples:
$ make

Installation/Execution :

Note that execution of examples requires a distributed architecture. So the
ftcomponents and examples must be present on each machine that will be
involved in the test. This requires additional operations and controls before the
example can be run.

Install OCERA (or at least ORTE and ftcomponents) on each machine.

Insure that rights are set so as to allow for remote execution of the code
corresponding to both components and application.

Set up environment variables
(See section 2.7 for details)

The example runs on two nodes N1 and N2. The application has two tasks T1
and T2.

T1 master task is running on node N1 and T2 master task is running on Node2.
Node1 is the master node on application start.

To run the application one must :

Ocera User's Guide 147/225 Fault-tolerance components

OCERA User's Guide 148/225 February 2005

start ftredundancy management
A shell script allows for this, it is located in ft/ftredundancymngr/src

$ ftrm_start <Node1> <Node2>
where <Nodei> is an hostname

It starts ORTEManager on each node, then starts ftredundancy
components on each node. Actually the two components of a node
are linked a single Linux executable named ft_redman.

The master node is the current node (it must be the same as the
first argument , here Node1).

start application on master node
$ cd ftr_appli/src

$./ftr_appli

The application starts first on Node1 then on Node2. Replicas are
created and ftr_tasks started.

After a given number of cycles the application ends.

7.2.8) Results and comments

The current implementation is still a prototype one. We have adopted an
incremental development cycle and some functionalities have still very basic
implementation. The main goal of this step was to provide a consistent overall
framework for redundancy management. A lot of work has still to be done to
make an efficient operational environment of it.

However, the example has permitted to test the ft redundancy management
overall structure .

Ft redundancy framework set-up and functioning
Application registration

Application execution

Application termination.

Ocera User's Guide 148/225 Fault-tolerance components

OCERA User's Guide 149/225 February 2005

Node crash detection
Application dynamic reconfiguration.

Ocera User's Guide 149/225 Fault-tolerance components

PART Il

Building the Development
Environment

OCERA User's Guide 151/225 February 2005

8) Development
Environment

By
Pierre Morel — MNIS

8.1) The tools you need

To build the application you will run on your target you will need different kind of tools,
depending on the kind of application you want to build.
First of all you will need a Linux system, because OCERA and all its tools are build using
Linux.
The OCERA system consist of the RTLinux-GPL real time kernel handling hard real time
and the Linux kernel for soft real time and time sharing applications.
You may want to build three kind of applications:

Hard real time applications

Soft real time applications on Linux

Time Sharing applications
It is obvious that you need one of the realtime applications, hard or soft if you use
OCERA and you also would like to add some time sharing application for data
presentation, debug, login or other non real time work.

Ocera User's Guide 151/225 Development Environment

OCERA User's Guide 152/225 February 2005

The table here under present the tools you need depending on your target system
assuming you develop on the same kind of plateform as your target.

Hard RT Soft RT Time Sharing Embedded
Compiler Gce-2.95
Headers RTLinux and QOS Libc uClibC
Linux
Libraries RTLinux-GPL QOS libc uClibC
and OCERA
Basic utilities Busybox or Linux Busybox
Booting Standard Linux boot utilities: lilo, grub, syslinux u-boot,
redboot, grub,
etherboot
Other utilities mke2fs Jffs2, romfs

To this basic set, you will need to add specific libraries to build the tools, like Qt libraries
to use graphical configuration for the Kernel and OCERA components, ncurses to use
menu configuration for the kernel, busybox and uClibc.
All these utilities are open source software and can be found easlily on INTERNET.
We pr0V1de four ways to build an OCERA system:
Using a CDROM distributed by one of the members of the OCERA consortium
Using DEBIAN apt-get utility and the http://www.ocera.net/ apt server.
Using one of the supported linux distribution and the OCERA tarball you van
download from the OCERA project page on sourceforge:
http://ocera.sourceforge.net/
Using the OCERA CVS, hosted on sourceforge.
The prefer way to install OCERA is with apt-get on a Debian distribution, because you
will allways get the last stable release doing so.

Ocera User's Guide 152/225 Development Environment

OCERA User's Guide 153/225 February 2005

8.2) Installing with apt-get

8.2.1) OCERA development environment

If you allready have an installed Debian 3.0 LINUX distribution on your computer and an
INTERNET access, you may also simply add a new source to your apt sources.list file
(/etc/apt/source.list).

deb http://ocera.sourceforge.net/debian woody contrib

and issue the command:

apt-get update

apt-get install ocera-dev
You should the begin to install the ocera development environment DEBIAN packages
and the eventual dependencies packages.
All the source files will be installed under the directory /usr/share/ocera X.Y where X
and Y are respectively the major and minor release number of ocera-dev package.

8.2.2) Installing independent components as binaries

You may also install some of the independent OCERA components as binaries or
sources.
Actually there is two independent components: ORTE and LINCAN.
You can get ORTE as a development package or as a binary package you can also get
ethereal enhancement for ORTE as a binary package, while LINCAN, being a Linux
driver is only available as a development package.
You can download these components from the OCERA SourceForge site or install them
as packages.
Assuming you already changed your apt sources.list file like we described in the previous
chapter, you will issue:

apt-get install orte

Ocera User's Guide 153/225 Development Environment

OCERA User's Guide 154/225 February 2005

apt-get install ortereal

or
apt-get install lincan-dev

8.2.3) The documentation

You can install the documentation the same way:
apt-get install ocera-doc
And you will get the documentation installed in the appropriate tree:
The documentation in /ust/share/doc
The man pages in /usr/share/man.

8.3) Installing from a CD-ROM

8.3.1) Getting a CDROM

You can get a CD-ROM from one of the OCERA partners, you will get the list from the
OCERA web site.

Another possibility is to download an ISO image from the OCERA web site.

This is certainly the best way to start since you will get a complete and tested
environment for the development of your embedded system.

Ocera User's Guide 154/225 Development Environment

OCERA User's Guide 155/225 February 2005

8.3.2) Installing the CD-ROM

To install the CD-ROM you simply need to boot on the CD-ROM and install the software
as you would do for a normal DEBIAN distribution: just follow the instructions at the
screen.

8.4) Supported development
environment

The OCERA consortium choosed to base the developments on the Debian 3.0 Linux
distribution.

The OCERA software should also compile on any Linux distribution as long as you use
the following tools:

Tool Version
C Compiler 2 GCC-2.95.4
GCC-3.34
Graphic environment Qt-3.1.2
OCERA qgconf libqt3-dev

development

2 Why two gcc compilers? Because the Qtlibraries used by Qconf will only compile with gee-3.3 or
newer, while gcc-2.95 is needed to compile the kernel as expected by Linux Torwald (see the main
kernel README.txt).

Ocera User's Guide 155/225 Development Environment

OCERA User's Guide 156/225 February 2005
Tool Version

Make Make_3.80

Autoconf Autoconf 2.59a

Automake Automake_1.4p4

Ada Compiler Gnat-3.15

Libc6-dev >=2.3.2

Busybox >=1.0

Syslinux >=2.11

Ncurses >=54.4

Bison Bison_1.875d

Flex Flex 2.5.31

Libstdc++ Libstd++6_3.4.3

G++ G++_3.35

Never less we encourage you to use a standard Debian 3.0 and the appropriate packages
and to download the OCERA software from the OCERA internet site or to use a ready to
install OCERA development CD-ROM.

Ocera User's Guide

156/225

Development Environment

OCERA User's Guide 157/225 February 2005

9) Cross compilation

By
Petr Cvachoucek — Unicontrol (PowerPC)
Cristina Sandoval- VisualTools (Arm)

9.1) Building a cross compiler for
Linux/PowerPC platform

9.1.1) Introduction

The process of building a cross compiler targeted to Linux on various processor
architectures isn't simple. Basically you're required to do these steps:

1. Compile and install binutils for your target.

2. Configure kernel to generate headers and copy arch-specific headers to

prefix dir.

3. Compile gcc for target (first pass)

4. Cross-compile glibc with above tools and install.

5. Compile final gcc for target (second pass).

Ocera User's Guide 157/225 Cross compilation

OCERA User's Guide 158/225 February 2005

Doing these steps by hand is a painful process, you'll run into many troubles (many
patches needed). Fortunately there is a tool widely used by developers which automates
this process.

The tool is maintained by Dan Kegel and can be downloaded from
http://kegel.com/crosstool/ It's highly recommended to use this tool instead of doing the
things by hand.

9.1.2) Prerequisities

To successfully build the toolchain, you need a host computer with a fast connection to
internet (http and ftp connectivity).

The preffered development host platform is Linux, but the toolchain can be built also on
Windows (Cygwin 1.5.12-1 or newer required).

9.1.3) Downloading the crosstool package

The crosstool package can be downloaded from site http://kegel.com/crosstool.
Download, save and unpack this file:
http://kegel.com/crosstool/crosstool-0.28-rc37.tar.gz

If you look at whats inside the package, you'll find a set of scripts, configuration files and
patches.

9.1.4) Choosing the toolchain versions

Another important step is to choose versions of toolchain components.
We will describe the process of building of following toolchains:

Gcce Glibc Binutils Kernel headerrs
2.95.3 225 2.15 2.6.8
34.2 225 2.15 2.6.8

Ocera User's Guide 158/225 Cross compilation

OCERA User's Guide 159/225 February 2005

9.1.5) Creating the configuration file for PowerPC 603e
CPU

In the package is already several configuration files for various types of PowerPC CPUs.
As our development board is equipped with Motorola 8240 CPU (603e core) we need to
prepare a configuration file for it.
The file will be named powerpc-603e.dat and will have this content:
TARGET=powerpc-603e-linux-gnu
TARGET_CFLAGS="-O -mcpu=603e"
GCC_EXTRA_CONFIG="--with-cpu=603e --enable-cxx-flags=-mcpu=603e"

The file must be placed at crosstool package directory.

9.1.6) Creating the script to build toolchains

Before invocation of a crosstool script we need to setup several environment variables,
which controls the script. So we create a small script just for the purpose of setting these
variables and then executing the crosstool script.
The file will be named build-ppc603e.sh and will have this content:

#!/bin/sh

set -ex

TARBALLS_DIR=./tarballs

RESULT_TOP=/opt/crosstool

export TARBALLS_DIR RESULT_TOP

GCC_LANGUAGES="c,c++"

export GCC_LANGUAGES

Really, you should do the mkdir before running this,

and chown /opt/crosstool to yourself so you don't need to run as root.
mkdir -p $RESULT_TOP

Build the toolchain. Takes a couple hours and a couple gigabytes.
eval “cat powerpc-603e.dat gcc-2.95.3-glibc-2.2.5.dat’ sh all.sh --notest
eval ‘cat powerpc-603e.dat gcc-3.4.2-glibc-2.3.3.dat” sh all.sh --notest

echo Done.

The file must be placed at crosstool package directory.

Ocera User's Guide 159/225 Cross compilation

OCERA User's Guide 160/225 February 2005

9.1.7) Building the toolchains

Everything is prepared, we can start building the toolchain.
Invoke the script by command:
sh build-ppc603e.sh

9.1.8) Build results

When the toolchain build completes, you'll find results in the directories:

Toolchain path
gcc/glibc
2953/2.25 /opt/crosstool/powerpc-603e-linux-gnu/gcc-2.95.3-glibc-
225
34.2 /233 /opt/crosstool/powerpc-603e-linux-gnu/gcc-3.4.2-glibc-2.3.3

Tarballs downloaded during the build of toolchains are stored in ./tarballs dir.

Ocera User's Guide 160/225 Cross compilation

OCERA User's Guide 161/225 February 2005

9.2) Cross Compilation for
ARM/iPAQ

9.2.1) ARM Processor

Because the hardware on ARM/iPAQ is different from most desktops, a cross-compiler
capable of producing code for different platform is usually needed. Toolchains contain
the neccessary tools to cross-compile code for that target machine. The easiest solution is
to use GCC, which is open-source and can be obtained for free.

a) Cross-Compiling for the iPAQ

You can compile applications for the iPAQ by using an x86 Linux machine and cross-
compiling.

The cross toolchain works just like the standard native compiler, except that
each of the tools is prefixed with "arm-linux-". For many programs, the cross-
compiler can be invoked by running make as follows:

make CC=arm-linux-gcc all
If the make process calls other target-specific tools, then these also need to be specified:

arm-linux-Id
arm-linux-ar
arm-linux-ranlib
arm-linux-strip
arm-linux-g++
arm-linux-as

9.2.2) Where to find a pre-built toolchain

You can download the toolchain from handhelds site:

Ocera User's Guide 161/225 Cross compilation

OCERA User's Guide 162/225 February 2005

ftp://ftp.handhelds.org/pub/linux/arm/toolchain/
The sources corresponding to this toolchain are in
ftp://ftp.handhelds.org/pub/linux/arm/toolchain/source/

9.2.3) Porting Software to ARM Linux

Many times the software you would like to run on the iPAQ is written in C. C is not an
inherently portable language. To write portable code in C generally requires some extra
thought.

There are some portability issues that may need some special attention when we run into
when porting applications to ARM Linux, especially from x86 Linux.

a) C Portability Issues

There are a number of areas in which the definition of a C program's behavior depend on
the architecture on which the program is run. It's behavior can depend on the peculiarities
of the OS, the compiler, the libraries, and the CPU.

b) Signed vs. Unsigned Characters

The C standard says that char may either be signed or unsigned by default. On
x86 Linux, char is signed by default. On ARM Linux, char is unsigned by default.
Comparing a char to a negative number will always return 0, because the char is
unsigned and therefore positive.

c) Pointer Alignment Issues

On many CPU architectures, the memory system requires that loads of values larger than
one byte must be properly aligned. Usually, this means that a 2-byte quantity must be
aligned on an even address boundary, a 4-byte quantity must be aliged on a multiple of 4
boundary and sometimes 8-byte quantities must be aligned to addresses that are a
multiple of 8. Depending on the CPU and the operating system, misaligned loads and
stores may cause a signal, may be handled in the OS, or may be silently rounded to the
appropriate boundary.

The x86 boundary imposes no such alignment restriction, so some programs written for
the x86 do not use the proper alignment for other architectures.

ARM Linux defaults to silently round the address to the appropriate alignment boundary.

Ocera User's Guide 162/225 Cross compilation

OCERA User's Guide 163/225 February 2005

d) Using Memory Overlays to Convert Types

This is very non-portable. The code has to be written so that alignment, size, and
endianness are all correctly handled across the supported architectures.

e) Endianness Issues

There are two basic memory layouts used by most computers, designated big
endian and little endian. On big endian machines, the most significant byte of an
object in memory is stored at the least signicant (closest to zero) address
(assuming pointers are unsigned). Conversely, on little endian machines. the
least significant byte is stored at the address closest to zero. Let's look at an
example:

int x = Oxaabbccdd;

unsigned char b = *(unsigned char *)&x;

On a big endian machine, b would receive the most significant byte of x, Oxaa.
On little endian machines, b would receive the least signficant byte of x: Oxdd.
The x86 architecture is little endian. Many ARM processors support either mode,
but usually are used in little endian mode.
Endian problems arise under two conditions:

+ When sharing binary data between machines of different endianness.

+ When casting pointers between types of different sizes
In the first case, the data appears in the correct location, but will be interpreted
differently by the different machines. If a little endian machine stored
Oxaabbccdd into a location, a big endian machine would read it as Oxddccbbaa.
In the second case, on a little endian machine there is no problem: a char, short,
or int stored in an int sized variable each have the same address. On a big
endian machine, if you want to be able to store a short and then read it as an int
you have to increment the pointer so that the MSB lands in the right place.

Ocera User's Guide 163/225 Cross compilation

OCERA User's Guide 164/225 February 2005

10) Configuration

By

Pierre Morel - MNIS

Agnes Lanusse - CEA (Fault Tolerance)
Patrick Vanuxem - CEA (Fault Tolerance)

In this chapter you will see how to build an embedded system and how to build a training
system.
A training system is a system where you install the OCERA component on the same
computer as you development system. This is useful for training.
For both installation you will need to define the components you need, adjust the kernel
parameters and compile the kernel, the libraries and the tools.
Then you will need to add your custom application.
The last step will be to launch the application and kernel, this is the only step that is
different between the two installation so we will design this chapter as:
6. Choosing the components
At this stage we will not go deep in the description of each component
but we will have a good overview of them.
For a deeper description of each component, you will need to go to the
component dedicated section later in this guide.
7. Configuration of components, kernel and libraries
There ou will see how to compile the kernel, we focus on the
configuration tool.
8. Building the tools
The tools are independent of the kernel and are compiled separately,
like debugger, tracing tools, analysers.
9. Compiling a custom application
We will see some little applications, exemples and the compilation's
directives.
10.Installing a training systems
This is certainly the first way yo will install OCERA.

Ocera User's Guide 164/225 Configuration

OCERA User's Guide 165/225 February 2005

11.Installing an embedded systems
This part is really dedicated for embedded systems, we will see how to
make a complete embedded Linux with real-time enabled.

10.1) Choosing the components

At this stage we will not go deep in the description of each component but we will have
an overview of the components.

For a deeper description of each component, you will need to go to the component
dedicated section later in this guide.

10.1.1) POSIX components and scheduling

What we call the POSIX components are the RTLinux-GPL enhancement or the new

real-time libraries OCERA added to RTLinux-GPL.

This is the basic brick to build a real-time system and are needed by most of the other

components.

They provide:
+ POSIX threads

POSIX io

POSIX signals

« POSIX messages

The scheduling components are enhancement of the basic RTLinux scheduler.

Ocera User's Guide 165/225 Configuration

OCERA User's Guide 166/225 February 2005

10.1.2) Core features

These features are enhancement of the core Linux and are needed by some of the OCERA
components. They are found as patches over the INTERNET, we had to modify some of
them to integrate them together and together with RTLinux and OCERA components.
The core features are:

bigphys area patch

provides the ability to use a big physical area for the heap of the Linux Kernel.

This is mandatory for the OCERA memory allocator.

Low latency patch

makes modifications in the kernel to provide interrupt points where the latency

is otherwise to high.

Preempt patch

makes modification of the Linux scheduler to allow task preemption.

10.1.3) Quality of services

You will need the Quality Of Service component if you intend to develop an application
under LINUX needing to have a Constant CPU Bandwidth allocated.

The best exemple may be an video application for witch you do not want the system to
steal time.

10.1.4) Fault Tolerance

Using the fault tolerance component implies that your developments follows some rules.
It is quite sure that you will need a good knowledge of what the fault tolerance can bring
to you before enabling this option. So please refer to the appropriate chapter later in this
guide.

10.1.5) Onetd

The OCERA Network Daemon is needed if your realtime application wants to access the
network. You do not need it if the network access is made by a Linux thread.

Ocera User's Guide 166/225 Configuration

OCERA User's Guide 167/225 February 2005

10.1.6) ORTE

The OCERA Real Time Ethernet may be used as is an independent component under any
Linux or even other systems or may be used inside the real time kernel, in which case it
will use most of the POSIX components.

10.1.7) Can devices

Can devices may be used as is an independent component under any Linux or even other
systems or may be used inside the real time kernel, in which case it will use most of the
POSIX components.

10.2) Configuration of
components, kernel and libraries

We begin in this chapter with the real work. You will have to effectively choose the
components for your application.

The first thing to do is to go into the mai directory of the OCERA tree, it should be /
usr/share/ocera_1.1 if you have installed your system with an OCERA ISO image or in
the sub-directory ocera_1.1 if you downloaded the tarball of the version 1.1 of OCERA.
Then, assuming you have a graphic environment, generate the configuration file with:
make xconfig

Ocera User's Guide 167/225 Configuration

OCERA User's Guide 168/225 February 2005

If you do not have a graphic environment, you can use the semi-graphic configuration
menu with:

make menuconfig

or even the bare text configuration menu with
make config

We will assume that you have a graphic interface.
The system should compile the Qt tools needed for the configuration environment and
you must get the following window on your desktop.

File Option Help

oz &E| 1 1 E

Option

~OUnstable components {Tests)

205 Type

é----@Hard and Soft realtime (RTLinux + Linux)
- 0OSoft realtime {Linux)

=-MQuality Of Service components
#-E Fault Tolerance components
E-ECommunications components

-- RTLinux: Hard real-time
®-Linux Kernel Configuration

lllustration 2General Configuration

The first thing to see is that you have the following choices:

Ocera User's Guide 168/225 Configuration

OCERA User's Guide 169/225 February 2005

Unstable components, enabling this will allow you to choose the components
considered for now as unstable. In a major release you will not have any
unstable components and in minor release you must remember that this really
enable unstable components for debugging purpose only, do not expect the
system to work correctly with the unstable switch activated since they indeed
are unstable.
OS Type, where you will choose if you want soft real time with Linux only
kernel and a typical minimum latency around 10ms or Hard real-time with a
typical latency around 10us
A component section with the three major components types; Quality Of
Service, Fault Tolerance and Communication
RTLinux with the RTLinux-GPL specific options and the OCERA real-time
and POSIX extensions.
and a Linux section, where you will find all the choice you are familiar with if
you already compiled Linux 2.4.18 kernel.

Now let see the different possibilities you have if you open the Components menu:

Ocera User's Guide 169/225 Configuration

OCERA User's Guide 170/225 February 2005

10.2.1) Quality Of Service

a) Dependencies

I=T=] | gconf | Loal
File Option Help
ol ®E | 1l E|
Option | Option
i~OUnstable components (Tests) M
05 Type > Linux Options <===========
i---@Hard and Soft realtime {RTLinux + Linux) README
L-OS0ft realtime (Linux) " Enable loadable module support
===========> Component section <=========== - Enable Generic scheduler
B-2Quality Of Service components & Enable Proc Filesystem support

BQOS dependencies

~-Hard Realtime

i Soft Realtime

“Libraries

E-E Fault Tolerance components
=2-ECommunications components

E-RTLinux: Hard real-time
~RTLinux Dependencies
f---ScheduIing

~POSIX API

Memory Management
- Debugging

:---Clock and Timers

" Inter Process Communication 1| I l
‘- Drivers

B-Linux Kernel Configuration

QO0S dependencies

The first sub-menu in Quality Of Service is the dependencies menu, you will find such a
menu at the first place in all components menu, as the name let think, this point out the
dependencies that must be resolved to be able to compile the Quality Of Service
components.

The Quality Of Service component needs "module support”, "Generic Scheduler"” and if
you want sysctl support the "Proc Filesystem support”.

The Quality Of Service component does not provide Quality Of Service to Hard-Real
time applications

b) Soft real-time

In this sub-menu, you will configure the functionalities you will use to enable Quality Of
Service in the Soft-Real-Time, i.e. Linux, environment.

Ocera User's Guide 170/225 Configuration

OCERA User's Guide 171/225 February 2005

Ea qcon I=1=1=1
File Option Help
ol ®E | Il E]
Option | Option
OUnstable components (Tests) =,
2- 0S5 Type B Resource Reservation Scheduling
‘-®Hard and Soft realtime {RTLinux + Linux) =-Select QoS scheduling algorithm
L& Soft realtime (Linux) -®CBS scheduler
===========» Component seclion <=========== O GRUB scheduler
2-#EQuality Of Service components - HAMultitasking with QoS scheduler
i---QOS dependencies ~EPrecise Allocation of tasks with QoS scheduler
~Hard Realtime ESupport for /proc FileSystem for the CBS scheduler
B2-E QoS Manager and its hooks in the CBS scheduler module
- Libraries . - UODebug QoS Manager
E-E Fault Tolerance components ODebug QoS scheduler
E-ECommunications components
===========> Core kernel section <===========
B-RTLinux: Hard real-time
E-Linux Kernel Configuration

| | |

Soft Realtime

Ressource Reservation Scheduling

QoS aware kernel module schedulers. By now this module supports X86, PPC and some
ARM processor architectures.
You can choose between:

« CBS algorithm kernel module scheduler

« GRUB algorithm kernel module scheduler

Multitasking with QoS Scheduler

Gives a bandwidth of 10% to Linux tasks. In this way these tasks can execute during the
execution of the tasks scheduled by QoS scheduler. In addition this option lets assign an
amount of bandwidth to a set of tasks

Ocera User's Guide 171/225 Configuration

OCERA User's Guide 172/225 February 2005

Precise allocation of task with QoS scheduler

Any task scheduled by QoS scheduler executes exactly as specified by its bandwidth
(even if there is only one QoS task on the system).
This let out-range some known problems associated with the QoS specific algorithm.

Support for the /proc filesystem

Enable this to allow monitoring and managing through /proc FileSystems entries of the
CBS Scheduler

QoS Manager and its hook in the CBS scheduler
module

Kernel module that allow to manage the CBS scheduler

Debug QoS scheduler
Enable printk kernel debug for QoS Manager module

Ocera User's Guide 172/225 Configuration

OCERA User's Guide 173/225 February 2005

c) Libraries

I=T=) _gconf | r=1=T=1
File Option Help

oz | 1 E

Option | = Option |

\-OUnstable components (Tests) -]
2 0S Type = QoS User Library

~®Hard and Soft realtime (RTLinux + Linux)
- O Soft realtime {Linux)

2-EQuality Of Service components
QOS dependencies
~Hard Realtime
- Soft Realtime
£ Fault Tolerance components
~FT dependencies
E-Hard Realtime
Degraded Mode Management
2-Soft Realtime
. ~Redundancy Management
“Utilities
2-ECommunications components
- CAN dependencies
~DOCAN
é---ORTE dependencies
2-E0ORTE RTPS protocol and Ethernet tools - =
Real-Time Publisher Subscriber support (ORTE) QoS User Library (OC_QLIE)

B RTL - Hard I-ti QoS Library for QoS aware applications.
7 nux: Hard rea :nm(-a ~| || At the moment this is available only on X386 processor =1

QoS Library for QoS aware applications. At the moment this is available only on X86
processor architectures.

10.2.2) Fault Tolerance

Fault-Tolerance components offer two types of facilities: Degraded Mode
Management and Redundancy Management.

This results in two separate frameworks plus a common utility, the Ftbuilder
which is a design tool that helps the developer specify the application behavior
and constraints and generate specific code to support dynamic exploitation of
such knowledge.

Ocera User's Guide 173/225 Configuration

OCERA User's Guide 174/225 February 2005

The Fault-Tolerance Building Tool, called ftbuilder is a TCL/TK 8.3 configuration
tool that helps user specify Application FT and RT features and generates code
for FT-application Management. It presently provides support for Degraded
Mode Management. The ftbuilder is not a loadable module, it is provided as a
directory that can be copied to user home environment to build ft_applications
(see documentation for details). Itis located under OCERA_DIR/components/ft.

The Degraded Mode Management framework is intended to be used at the
hard RT level of OCERA, it requires thus a specific kernel configuration using
RTLinux Hard real-time standard features, plus a few specific choices that are
described below.

The Redundancy Management framework is intended to be used at the Soft
real-time level of OCERA (Linux), it uses the ORTE communication component.

I Dependencies

Dependencies are different for each FT framework. They are detailed in the
corresponding sections. In short, for Degraded Mode Management
framework, at hard real-time level, main dependencies are related to core
RTLinux features; while for Redundancy Management framework, at soft real-
time level, dependencies concern ORTE communication components.

Il Hard Real-time

The FT facilities available at hard real-time level are Degraded Mode
Management.

Degraded Mode Management configuration process takes three steps:

1. OS Type Selection : Soft and Hard real-time must be chosen and some sub-
options must be checked.

2. Components Selection : FT components/Hard Realtime/degraded
Management.

3. Core kernel Scheduling features selection : Priority or EDF scheduling.
Only EDF scheduling will offer support for deadline miss detection.

1. OS-Type Selection

FT Degraded Mode Management support requires the selection of Hard and Soft
real-time in the OS type section. This enables hard-realtime standard RTLinux
configuration options.

General dependencies of FT components are illustrated in the following figure.

Ocera User's Guide 174/225 Configuration

OCERA User's Guide

= geont
File Option Help

175/225

February 2005

[=ITfx]

olsd] | Il E|

Option |
;---DUnstabIe components (Tests)

B-05 Type

é----@Hard and Soft realtime (RTLinux + Linux)

- O50f realtime (Linus)

~FT dependencies
El-Hard Realtime
: 5---Degraded hode Management
B Soft Realtime
: E---F{edundancy’ Management
- Utilities

~OCammunications components

El-RTLinuws: Hard real-time

i~RTLinws Dependencies

E----Scheduling

Q5 AR

emory Management

ehugging

#-Clock and Timers

i~Inter Process Communication

- Ditivers

B-Linux Kernel Canfiguratian
i

|»

Option

=

E.
~README
El-Enable loadable module support
B-RTLinux suppart
2-EPOSI Signals in RT-Linux
. ~EIPOSIX Timers in RT-Linux
BB Shared Memory Support
“EPOSIX Trace Support in RT-Linux
~[Bigphysarea support
~OPower Management support

Fault Tolerance components (OC_FT)

Ta enable the Fault Tolerance components you need
Fosix Timers and Posix Traces In the
"Hard_Realtime/Scheduling_Components” menu.

50 if you choose to use Fault Tolerance, these items will be
forced to "y"

Figure 10.2.1 : FT Degraded Mode Management Configuration step1

Required options are : loadable module support, RT-Linux support including
POSIX Signals and POSIX Timers, Shared Memory support, POSIX Trace
Support in RTLinux., BigPhysarea support.

Note that POSIX Trace Support is mandatory for FT Degraded Mode

Management components.

Power Management support should not be selected.
Normally all these options are posted correctly in the standard OCERA

distribution, so just check.

2. FT Degraded Mode management components selection

FT components for degraded Mode Management have to be selected. If you
select the Framework, these are set automatically, just verify. Two components
are necessary, the FT Controller and the FT Application Monitor, they must be
selected together.At compilation time they will be merged into one single module

named ftappmonctrl.

Ocera User's Guide

175/225

Configuration

OCERA User's Guide

= goont
File Option Help

176/225 February 2005

[=][B][x|

ol | I E|

Option

i~DUnstable components (Tests)

B-05 Type

i~ @Hard and Soft realtime {RTLinux + Linux)
O Soft realtime (Linux)

Guuality Of Service companents
Fault Tolerance components
FT dependencies

J-Hard Realtime

Redundancy Management
“ Utilities

~OCommunications components

=== Core kernel section <=

TLinux: Hard real-time

RTLinu< Dependencies

Scheduling

POSE AP

Memary Management

Debugging

Clock and Timers

Inter Process Communication

Crivers

E-Linux Kernel Configuration

=8

|

FT Application Monitor

FT Controller (OC_FTCOMNTROLLER)

FT Controller is one of the two modules that insure Degraded Maode
Management.

Itis in charge of f_tasks activation, error detection and f_tasks

hehavior change. (Errors handled are thread kills)

It propagates errors infarmation to FT &pplication Monitor

The two components are complementary and must be selected tagether.
The current implementation is only available far Hard Real-time.

If you selected Hard Real-time and you want Degraded dode Management
to be available, check this module and FT_application Maonitar.

Figure 10.2.2 : FT Degraded Mode Management Configuration step2-1

The FTController is selected

The FT Application Monitor is selected.

Ocera User's Guide

176/225 Configuration

OCERA User's Guide 177/225 February 2005

. = geonf [=][o][]
Eile Option Help
Jo/@E | Il E|
Option | = | option
E---DUnstabIe components (Tests) M
B-0S Type EIFT Controller

- @Hard and Soft reaftime (RTLinux + Linux)
O Soft realtime (Linux)

T Application konitor

~OGuality Of Service compaonents

B-EFault Tolerance components

~FT dependencies

E!--Hard Realtime =)

Redundancy Management . -
L Utilities FT Application Monitor (OC_FTAPPRMON)

- Lleanminicatens comparohis FT Application Monitar is one of the two modules that insure Degraded

Mode Management.

EFRTLinux: Hard real-time Itis in charge of FT application init, fi_tasks creation and
i+ RTLinu= Dependencies application mode management. It sets up the starting mode and decide
- 5cheduling of application mode change on error detection naotifications from FT
= POSIK AP Cantroller.
g----Memory Managemant The two components are complementary and must be selected together.
Debugging The current implementation is only availahle for Hard Real-time.

If you selected Hard Real-time and you want Degraded Mode Management

ok gtk to he available, check this module and FT_Application Manitar.

- Inter Frocess Communication

- Drivers

E-Linux Kernel Configuration j
I

Figure 10.2.3 : FT Degraded Mode Management Configuration step2-2
3. Core kernel Scheduling features selection

The last configuration step concerns the choice of scheduling policy. The
functioning of the Degraded Mode Management can follow several types of
scheduling, the facilities offered will depend on the choice done at configuration.

The error detection mechanism can handle two types of errors:
- Pthread_Kkill detection works with priority based or EDF scheduling policies;

- Timing errors (deadline miss) detection can only be detected if EDF
scheduling is selected and related option Dealline Miss Detection.

Remark: Once a scheduling policy has been chosen during the configuration all
the ft_tasks will be scheduled according to this policy.

Priority based scheduling

Standard prioity based scheduling can be configured by selecting the
Application defined scheduler option in the the Scheduling section of the
RTLinux Hard real-time part as indicated bellow. In this case the only type of
errors to be detected are Pthread-kill events.

Ocera User's Guide 177/225 Configuration

OCERA User's Guide 178/225 February 2005

XA gronf [EIEES
File Option Help
~
oz | I E]
Cption | 21 | Cption
-~ Ounstable components (Tests) CEL
B-05 Type El-Realtime Scheduling &lgatithm
- ®Hard and Soft realtime (RTLinux + Linu) # DRTLinWx Y1 APl Support
- D Soft realtime (Linus) g----OEDF scheduling (experimental)
w===========> Component section =<==ss=s======= [@].ﬂ.}:upliu:.atiw:un defined scheduler

~OGuality Of Service components
E-EFault Tolerance companents

FT dependencies

E--Hard Realtime

! 5---Degraded hode Management

B Soft Realtine — | Application defined scheduler (RTL_OC_APPSCHED)
“-Redundancy Management .
- Utilities Holk

o - This option depends on POSIX Signals and POSIX Timers,
SHICOminbICanons campotonts that you can find in the POSIX AFI menu

El-RTLinus: Hard real-time POSI¥-Compatible Application-defined scheduling is an
RTLinux Dependencies application program interface (&P that enables

S0 applications to use application-defined scheduling

POSIX AP algarithms in a way compatible with the scheduling model

Memary Management Fieﬂned in POSIAK. Se.veral application-defined ;chedulers,
i~ Debugging implemented as special user threads, can coexist in the

%----Clock A system in a predictable way.

i~Inter Process Communication

- Diivers

B-Linux Kernel Canfiguratian

E----Cnde maturity level options

é----LoadabIe module support ;l

IFigure 10.2.4 : FT Degraded Mode Management Configuration step3 - Priority scheduler
The Application defined scheduler component provides support for several
types of scheduling policies defined above the RTLinux kernel itself. By default,
the scheduling policy is based on priorities, which is the configuration that we
must use in this case. For further details see section Scheduling.

EDF scheduling

This version of scheduling is implemented directly at RTLinux kernel level and
not above as it is the case with the Application Defined scheduler.

So if you want to detect both timing errors and pthread_Kkill events, you should
select EDF + Deadline-miss detection, as shown hereunder.

Remark: If you select only EDF, scheduling policy applied will be EDF but only
pthread_kill events will be detected, there will be no emission of Deadline-miss
event.

Ocera User's Guide 178/225 Configuration

OCERA User's Guide 179/225 February 2005

Eile Optio

i ~

oz [E]

Option | A [J Ciption |
—E2 Unstable components (Tests) .

FHOS Type Realtime Scheduling Algorithm
t@Hard and Soft realtime (RTLinux + Linus) EORTLinux W1 APl Support

O Soft realtime (Linux) @EDF scheduling {experimental)
===========x Compaonent section <=========== O Application defined scheduler
O Guality Of Service components O SRP Mutex Priority Inversion (expeatimental)
F-EFault Tolerance components [ADeadline miss detaction (very experimental)
FT dependencies O Canstant Bandwidth Server
-Hard Realtime
LDegraded Mode Management
r-30ft Realtime

I—F{edundancy kanagement
—Utilities =
—OCommunications components

F-RTLinuw< Hard real-time

—RTLinux Dependencies
S cheduling

—POSE AP =

—tdemary hanagemert Scheduling

—Debugging

—Clock and Timers

—Inter Process Communication

—Drivers

E-Linux Kernel Configuration

—Code maturity level options

—Loadakle module support

—Frocesszor type and features

—General setup

—Memary Technalogy Devices (MTD) Fi

Figure 10.2.5 : FT Degraded Mode Management Configuration step3 - EDF+DLM schedulér
The configuration EDF scheduling with Deadline-miss detection (DLM) is still an
experimental functionality. For the moment, support for EDF+DLM+SRP is not offered.

Il Soft Real-time

The FT facilities available at soft real-time level are Redundancy
Management.

Redundancy Management configuration process takes three steps:

1. OS Type Selection : Soft real-time must be chosen.

2. Components Selection :
- FT components/Soft Realtime/Redundancy Management.
« Communication components/ORTE

1. OS Type Selection

Redundancy Management is provided only at soft real-time level . So the Soft
real-time must be selected in the OS type section.

2. Components Selection

Ocera User's Guide 179/225 Configuration

OCERA User's Guide

FT components selection

Select the Soft Realtime subsection in Fault Tolerance components, then the two

180/225

components Task Replica Manager and Task Redundancy Manager are

automatically selected.

L= geonf
FEile Cption Help

DIC=IES

olsE] | Il E]

Option

13 Type
g----OHard and Soft realtime (RTLinu= + Linus)
@ Soft realtime (Linus

- O@uality Of Service components

El-EFault Tolerance components

i~ FT dependencies

J-Hard Realtime

: E----Degra\ded Mode Management

- Soft Realtime

: 5----Redundancy Management

e Utilities

B[Communications components

CAN dependencies

CICAN (MEW)

+ORTE dependencies

B-EORTE RTPS protocol and Ethernet tools (MEW)
“-Real-Time Publisher Subscriber support (ORTE)

--RTLinux Disabled

E-Linux Kernel Configuration
E----Code maturity level options
E----Loadable module support

Option

-~ Task Replica Manager (NEW)
[Task Redundancy Manager (MEW)

4 | |

Unstable components {Tests) (OC_UNSTABLE)

Prompt for unstable components or components that has not being
integrated (even if stahle).

In this release: part of fault tolerance components and

Stand Alone RTLinu< are not integrated.

This is intended for tests purpose only, do not enahble this switch
in production.

Figure 10.2.6 : FT Redundancy Management Configuration step1

2.20RTE communication component selection

The Redundancy Management facility relies on ORTE (Realtime Ethernet)
components that implement RTPS (RealTime Publisher Subscriber Protocol)

communication protocol.

So you must select the following features in the communication components

section.

Ocera User's Guide

180/225

February 2005

Configuration

OCERA User's Guide 181/225 February 2005

10.2.3) CAN

The CAN menu entry allow to define the way the CANBUS drivers and utility will work
together with our system.

a) Dependencies

File Option Help
BT
Option | Option
:---EIUnstabIe components {Tests) 2
2-0S Type ~README
-@Hard and Soft realtime (RTLinux + Linux) & Enable loadable module support
O Soft realtime {(Linux) i B-RTLinux support
m===========x (Component section <=========== EI--Dynamic Memory Management support in RT-Linux
E-EQuality Of Service components E----ElBig physical memory allocation in RT-Linux
E-EFault Tolerance components EBigphysarea support
E-ECommunications components = OPower Management support
- ORTE dependencies
=-E0RTE RTPS protocol and Ethernet tools
- Real-Time Publisher Subscriber support {ORTE)
n===========x Core kernel section <===========
B-RTLinux: Hard real-time
E-Linux Kernel Configuration

| | |
CAN dependencies

The CANBUS drivers as other components depends on the enabling of Loadable module
support and you must also disable the power management.

The CANBUS drivers and utilities can be used under RTLinux-GPL, the hard real-time
environment or under the standard Linux kernel.

If you choose to work with hard real-time you will also need to enable the Dynamic
Memory Management support in RTLinux, and the Big physical memory allocation in
RTLinux switches.

Ocera User's Guide 181/225 Configuration

OCERA User's Guide 182/225 February 2005
b) CAN drivers
I=T=) _gconf | r=1=T=1
File Option Help
|o=z®E] | Il E
Option | Option =
\-OUnstable components (Tests) LE..
2 0S Type B ELiInCAN - Linux CAN driver (NEW)

~®Hard and Soft realtime (RTLinux + Linux)
- O Soft realtime {Linux)

E-HAQuality Of Service components

& Fault Tolerance components

E-ECommunications components

f---CAN dependencies

=-ECAN

S| inux/RT-Linux CAN Driver {(LinCAN)
~Hard Realtime

: Soft Realtime

--ORTE dependencies

B-EB0ORTE RTPS protocol and Ethernet tools
“-Real-Time Publisher Subscriber support {ORTE)

B-RTLinux: Hard real-time
E-Linux Kernel Configuration

MLInCAN RT-Linux API support {(NEW)
w===========x Supported peripheral access methods ==
B-Select type of card access (NEW)

2 Only plain port 10 access cards support compiled
S Only plain memory mapped cards support compiled
-~ @Both port 10 and memory mapped cards support

HAIM104CAN PC/104 card {Arcom Control Systems) (NEY
BEBfaD CAN card {(BfaD GmbH) (NEW)
-~ ACANT0E PC/104 card {Contemporary Controls) (NEW)
~EM436 PC/104 card (SECO) {(NEW)
~EMSMCAN PC/104 card (MICROSPACE) (NEW)
ECAN104 PC/104 card (NSI) (NEW)
EPC-103 I1SA card {IXXAT) (NEW)
~EPCcan-Q/D/S/F 1SA cards {KVASER) (NEW)
~EPClcan-Q/D/S PCI cards (KVASER) (NEW)
BPCCCAM card (NEW)
HPCM-3680 PC/104 card {(Advantech) (NEW) =
Pl | _'l_l

Linux/RT-Linux CAN Driver (LinCAN)

In this sub-menu you will choose the CAN driver for your card or you cards. You can
indeed have up to 4 CANBUS cards in your system.

LinCAN - Linux CAN driver

The driver can be compiled in two modes:

+ Linux only driver, prerequisite is only kernel modules support

« Linux+RT-Linux driver

The RT-Linux and RT-Linux dynamic memory support is required for the second
compilation mode. Driver provides equivalent device driver API for both Linux and RT-

Linux in such case.

LinCAN RT-Linux API support

RT-Linux application interface to LinCAN driver.
This modifies behavior of the LinCAN driver, the chips supporting interrupt routines are

called from RT-Linux worker threads

Ocera User's Guide

182/225

Configuration

OCERA User's Guide 183/225 February 2005

Select type of card access

Select the type of the card to be supported by the LinCAN driver.
The first choice is to support only cards with linear I/O port chip access style.
The second choice is to support cards with directly memory mapped chips.
The third choice enables runtime selection of the chip access style when card
registration function is invoked. This can be used for cards with segmented and
indexed mapping of the chips as well.

Using the last entry, the driver will compile with dynamic port access. This enables to

support both, memory mapped and port 10 style cards and cards, which use segmented
and indexed access to chip ports.

This is best choice for general case, but results in slightly bigger chip access overhead.

Supported cards
The following CANBUS cards are already supported:

AIM104CAN PC/104 card (Arcom Control Systems)
BfaD CAN card (BfaD GmbH)

CAN104 PC/104 card (Contemporary Controls)
M436 PC/104 card (SECO)

MSMCANPC/104 card (MICROSPACE)
CAN104PC/104 card (NSI)

PC-103ISA card (IXXAT)

PCcan-Q/D/S/FISA cards (KVASER)
PClcan-Q/D/SPCI cards (KVASER)

PCCCANCcard

PCM-3680PC/104 card (Advantech)

ISAmemory mapped sjal000 CAN card (PiIKRON Ltd.)
pipScomputer (MPL)

SmartCANcard

SSVcard

There is also a template driver Templatedriver for developing drivers for other cards

Virtual CAN board

The driver also support a virtual interface for testing purposes under Linux.

Virtual CAN board support. This enables to interconnect local clients/applications with
exactly same interface as if real CAN bus is used. It can even emulate some transfer
delays for Linux only compilation.

Ocera User's Guide 183/225 Configuration

OCERA User's Guide 184/225 February 2005

It can be used even for interconnection and testing of Linux and RT-Linux CAN devices.

¢) Hard real-time

File Onption Help

ol 1 1| E]

Option |

Option
FEL

i~OUnstable components (Tests)

05 Type

:---@Hard and Soft realtime {(RTLinux + Linux)
-G Soft realtime (Linux)

~Ovirtual CAN API for RT-Linux {Experimental) (NEW)

B-MQuality Of Service components

E-E Fault Tolerance components

2-ECommunications components

LCAN dependencies

=B CAN

-Linux/RT-Linux CAN Driver (LinCAN)

tHard Realtime

: Soft Realtime

+ORTE dependencies

E-EORTE RTPS protocol and Ethernet tools
‘-Real-Time Publisher Subscriber support {(ORTE)

E-RTLinux: Hard real-time
B-Linux Kernel Configuration

| |

Hard Realtime

Virtual CAN API for RT-Linux (Experimental)
RT-Linux version of VCA library.

CANOpen Device for RT-Linux (Not finished yet)

RT-Linux version of CANopen slave device.

d) Soft real-time

Ocera User's Guide 184/225 Configuration

OCERA User's Guide 185/225 February 2005

File Option Help
ol | | 1 E]|
Option | Option
:---EIUnstabIe components (Tests) M,
2 0S Type 2 EVirtual CAN API (NEW)
-@Hard and Soft realtime (RTLinux + Linux) HCANOpen Device (NEW)
- O Soft realtime {Linux) HCAN Buss Monitor Daemon {NEW)
~===========> Component section ============ ~DOCAN Monitor Ul Interface (requires |ava and Ant to build) (
- EQuality Of Service components ~OCANopen master/ETH bridge (NEW)
- Fault Tolerance components OCAMopen simple ETH bridge (NEW)

E-ECommunications components

~CAN dependencies

=-ECAN

| Linux/RT-Linux CAN Driver (LinCAN)

i i~Hard Realtime

:---ORTE dependencies

=-EORTE RTPS protocol and Ethernet tools
-Real-Time Publisher Subscriber support (ORTE)

B-RTLinux: Hard real-time
E-Linux Kernel Configuration

4] | |
Soft Realtime

Virtual CAN API

This library implements abstraction layer above low level system dependent CAN driver
API and basic CANopen SDO/PDO transfer protocols.

CANopen Object Dictionary functions are provided by library too.

The VCA library can be used to build CANopen master and slave devices.

CANOpen Device

Linux version of configurable dynamic CANopen slave device which builds its Object
Dictionary from EDS (CANopen Electronic Data Sheet).

CAN Buss Monitor Daemon
Daemon providing TCP/IP bridge to CAN/CANopen network.

CAN Monitor Ul Interface (requires Java and Ant to
build)

Ul interface for CAN/CANopen buss monitoring and CANopen device Object Dictionary
manipulations.

Ocera User's Guide 185/225 Configuration

OCERA User's Guide 186/225 February 2005

Communicates with CAN Monitor Daemon through TCP/IP sockets.

CANopen master/ETH bridge
CANopen master/ETH bridge (requires C++)

CANopen simple ETH bridge
CANopen simple ETH bridge

10.2.4) ORTE

ORTE,the Ocera Real-Time Ethernet, is based on Real-Time Publisher Subscriber
support (ORTE)

Ocera User's Guide 186/225 Configuration

OCERA User's Guide

187/225 February 2005
a) Dependencies
File Option Help
|z E | I E
Option Option
~OUnstable components (Tests) AL,
B-05 Type ~README
~®Hard and Soft realtime (RTLinux + Linux) & Enable loadable module support
-0 Soft realtime {(Linux) - ~RTLinux support
w===========x Component section <=========== f---Bigphysarea support
E-HAQuality Of Service components L OPower Management support
& Fault Tolerance components
EJ-Communications components
~CAN dependencies
2 ECAN
Linux/RT-Linux CAN Driver (LinCAN})
-Hard Realtime
-Soft Realtime
[BORTE dependencies
B-EB0ORTE RTPS protocol and Ethernet tools
“-Real-Time Publisher Subscriber support {ORTE)
B-RTLinux: Hard real-time
E-Linux Kernel Configuration
4] | |
ORTE dependencies

ORTE, as other components depends on the enabling of Loadable module support and
you must also disable the power management.

Ocera User's Guide

187/225

Configuration

OCERA User's Guide 188/225 February 2005

File Option Help

oz I E]

Option |

Option

~OUnstable components (Tests) 2

=-0S Type = EORTE library
~@Hard and Soft realtime {(RTLinux + Linux) EORTE manager
=0 Soft realtime {Linux)

; EExamples
m——————————s Component section <==———=——==— ~OORTE library - RTL
E-EQuality Of Service components

E-HAFault Tolerance components
E-ECommunications components

~CAN dependencies

3-ECAN

Linux/RT-Linux CAN Driver (LinCAN)
+~Hard Realtime

-Soft Realtime

:----ORTE dependencies

=-EORTE RTPS protocol and Ethernet tools

[Real-Time Publisher Subscriber support (ORTE)

B-RTLinux: Hard real-time
E-Linux Kernel Configuration

4] | |
Real-Time Publisher Subscriber support (ORTE)

b) Soft real-time

ORTE library

The Orte Library allow to develop Linux programs using the RTPS protocol to cooperate
in an ORTE network.

ORTE manager

The ORTE manager is a Linux program handling Publishers and Subscribers requests.
You need to have at least one manager in an RTPS network.

Examples

As you may expect this entry enable the building of exemples. If you begin with ORTE
we advise you to build the exemples.

Ocera User's Guide 188/225 Configuration

OCERA User's Guide 189/225 February 2005

c) hard real-time

ORTE library — RTL

The Orte Real-time Library allow to develop RTLinux tasksusing the RTPS protocol to
cooperate in an ORTE network

ORTE manager — RTL

The RTL-ORTE manager is a RTLinux task handling Publishers and Subscribers
requests.
You need to have at least one manager in an RTPS network.

Examples — RTL

As you may expect this entry enable the building of exemples of Real-time tasks. If you
begin with ORTE we advise you to build the exemples.

10.2.5) RTLinux

a) Dependencies

If you intend to use RTLinux-GPL as a real-time kernel under Linux, you will need to
enable Loadable Module Support, and to disable Power management support and Local
APIC support if you use mono-processor main-boards.

Ocera User's Guide 189/225 Configuration

OCERA User's Guide 190/225 February 2005
File Option Help
BT
Option | Option
:---EIUnstabIe components {Tests) 2
2-0S Type ~README
-@Hard and Soft realtime (RTLinux + Linux) & Enable loadable module support
O Soft realtime {(Linux) ; RTLinux support
m===========x (Component section <=========== ;---Bigphysarea support
E-EQuality Of Service components - OPower Management support
E-EFault Tolerance components - OLocal APIC support on uniprocessors
B-E Communications components
~===========> Core kernel section «<===========
E-RTLinux: Hard real-time
+~Scheduling
POSIXAPI
:---Memory Management
E---Debugging
Clock and Timers
i~ Inter Process Communication
“Drivers
E-Linux Kernel Configuration
| | |
RTLinux Dependencies

b) Scheduling

Realtime Scheduling Algorithm

You may choose between different scheduling algorithm:

+ RTLinux V1 API Support

Say Y here if you need the old RTLinux vl APIL
« EDF scheduling (experimental)
Say Y if you want to use the Earliest Deadline First scheduling (EDF) policy.
Tasks with closer deadline are scheduled first. The EDF policy is only applied
among tasks of the same priority. Therefore, it is possible to jointly use fixed
and dynamic priorities. This is an extension to the POSIX API. Therefore, you
have to disable "RTLinux V1 API Support". If you say Y here you may also
need "SRP Mutex Priority Control Inversion". It is safe to say yes

Ocera User's Guide

190/225

Configuration

OCERA User's Guide 191/225 February 2005

Application defined scheduler

This option depends on POSIX Signals and POSIX Timers, that you can find
in the POSIX API menu. POSIX-Compatible Application-defined scheduling is
an application program interface (API) that enables applications to use
application-defined scheduling algorithms in a way compatible with the
scheduling model defined in POSIX. Several application-defined schedulers,
implemented as special user threads, can coexist in the system in a predictable
way.

Library of Application Schedulers: Disabled

SRP Mutex Priority Inversion (experimental)

To enable this option you need to select "EDF Scheduling" in this same menu.

Say Y if you want to use the Stack Resource Protocol (SRP) to control the priority
inversion of the mutex. The SRP is an improvement over the "POSIX priority ceiling
protocol" to allow dynamic priorities.

This is an extension to the POSIX API. Therefore, you have to disable "RTLinux V1 API
Support".

If you use EDF scheduling and mutex, then you have to say Y here.

It is safe to say yes.

Constant Bandwidth Server

To enable this option you need to select "EDF Scheduling" in this same menu.

Say Y if you want to use the Constant Bandwidth Server scheduling policy (CBS).

This is an extension to the POSIX API. Therefore, you have to disable "RTLinux V1 API
Support".

It is safe to say yes.

c) POSIX API
POSIX Standard 10

To enable this option you need to select "EDF Scheduling" in this same menu.

Say Y if you want to use the Constant Bandwidth Server scheduling policy (CBS).

This is an extension to the POSIX API. Therefore, you have to disable "RTLinux V1 API
Support".

It is safe to say yes

Ocera User's Guide 191/225 Configuration

OCERA User's Guide 192/225 February 2005

POSIX Priority Protection

Enabling this option, RTLinux mutexes will support the PTHREAD PRIO PROTECT
protocol.

Please, remember that the default mutex protocol is PTHREAD PRIO NONE.
Therefore, you have to explicitly request to use PTHREAD PRIO PROTECT protocol
on every mutex you want (see the pthread mutexattr setprotocol and

pthread mutexattr _setprioceiling functions).

POSIX Barriers

Barriers is a synchronisation facility used to ensure that all threads have reached a
particular stage in a parallel computation before allowing any to proceed to the next stage.

POSIX Signals

A POSIX signal is the software equivalent of an interrupt or exception occurrence. Say Y
here if you want to make use of the POSIX interface to signals. This allows you to send
signals (RTL _SIGUSR1,RTL SIGUSR?2 and from signal RTL SIGRTMIN to

RTL SIGRTMAX) to threads (pthread kill) blocking signals (pthread sigmask), suspend
a thread waiting for a signal to arrive (sigsuspend) and install signal handlers, among
other things. Signals are in determinated cases a good interprocess communication
mechanism.

Handling of processor exception through POSIX signals

If you want to handle processor exceptions through POSIX signals.
This option is incompatible with RTLinux Debugger because both use the same
underlying hardware.

POSIX Timers

POSIX timers allows a mechanism that can notify a thread when the time as measured by
a particular clock has reached or passed a specified value, or when a specified amount of
time has passed. Facilities supported by POSIX timers that are desirable for real-time
operating systems:

Support for additional clocks.

Allowance for greater time resolution (modern timers are capable of

nanosecond resolution; the hardware should support it)

Ability to use POSIX Signals to indicate timer expiration.
POSIX timers depends on POSIX signals.

Ocera User's Guide 192/225 Configuration

OCERA User's Guide 193/225 February 2005

POSIX Messages Queues

The message passing facility described in IEEE Std 1003.1-2001 allows processes and
threads to communicate through system-wide queues. These message queues are accessed
through names. A message queue can be opened for use by multiple sending and/or
multiple receiving processes.
Interprocess communication utilizing message passing is a key facility for the
construction of deterministic, high-performance realtime applications.
Some characteristics of POSIX Message Queues are:

Fixed size of messages

Prioritization of messages

Asynchronous notification

Maximum number of open message queue descriptors
Maximum number of message priorities
Maximum number of message queues

Maximum number of messages in the default message
queue attributes

Maximum message size in the default message queue
attributes

POSIX Trace Support

This package adds (most of) the tracing support defined in the POSIX Trace standard.
The POSIX Trace standard defines a set of portable interfaces for tracing applications.
This standard was recently approved (September 2000) and now can be found integrated
with the rest of POSIX 1003.1 standards in a single document issued in 2001 after the
approval of both the IEEE-SA Standards Board and the Open Group.

To enable this option you need "Shared Memory Driver" (Memory Management->Shared
Memory Support).

Ocera User's Guide 193/225 Configuration

OCERA User's Guide 194/225 February 2005

d) Memory Management

Dynamic Memory Management support

This component provides the standard malloc and free functions to allocate and release
dynamic memory.

The internal design implements a good-fit policy using a two level segregated fit data
structure. The execution time is both bounded and fast. Also, wasted memory is very low
(much better than a buddy system).

As far as the authors know, this is, jointly with the half-fist allocator (proposed by
Takeshi Ogasawara), the only allocators that meet real-time requirements.

By default, the initial memory pool is allocated using the Linux vmalloc() function. If you
need a different type of memory (DMA safe), please enable the next option.

Big physical memory allocation

This option depends on linux BIGPHYSAREA option that you can also find in the
RTLinux dependencies menu.

Select this option of you need to allocate memory able to be used by DMA devices
(memory physically contiguous).

If you do NOT select this option then the RTLinux dynamic memory allocator will
allocate the initial memory pool using the vmalloc() function (which means that the
memory returned by the RTLinux allocator are not guaranteed to be physically
contiguous).

Remember to configure properly your Linux boot so that the Linux BigphysArea driver is
initialised properly (see the BigPhysArea documentation).

You will have to say yes here if you intend to use the Ada Real-Time Environment and
say "no" otherwise, unless you know need to allocate physically contiguous blocks of
memory.

Shared Memory Support

Provides a non-standard mechanism to share memory between RTLinux threads and
Linux processes.

Some RTLinux facilities (POSIX trace Support) relies on this driver.

NOTE: "POSIX Trace Support" depends on this option. If you deselect "Shared Memory
Support" then "POSIX Trace Support" will be automatically deselected.

Ocera User's Guide 194/225 Configuration

OCERA User's Guide 195/225 February 2005

e) Debugging

Enable debugging

This option compiles RTLinux modules with debugging support.
Say Y if you want to debug RT-programs but take care that this option will greatly extend
the size of the programms.

rtl_printf uses printk

Say Y here if you want rtl_printf output to be buffered and then passed to Linux printk
facility. It is useful if you are in X-Windows, since the output can then be viewed via
dmesg and/or syslog. In certain situations, you may want to disable this option, for
example when Linux has no chance to print a message (a crash occurs).

RTLinux Tracer support (experimental)

The RTLinux tracer allows tracing various events in the system.
This facility has been obsoleted by the POSIX Trace implementation.
RTLinux Debugger
This option depends on POSIX exceptions in the POSIX API menu being disabled.

f) Clock and Timers

Synchronized clock support

RT-Linux High Resolution Timers: Disabled
g) Inter Process Communication

Wait queue facility that can be used from RTLinux and
Linux

This package contains a basic mechanism for synchronising RTLinux tasks and Linux
kernel threads. This mechanism provides basic facilities for suspending RTLinux tasks
and Linux kernel threads waiting for common events.

This facility defines two functions: one for sleeping a job on a queue (shq_wait_sleep)
and another function to wakeup all jobs waiting in that queu (shq_wait wakeup).
'shq_wait_sleep' suspends the current thread or task in the corresponding queue until a
'shq_wait wakeup' is invoked over this queue.

Ocera User's Guide 195/225 Configuration

OCERA User's Guide 196/225 February 2005

Inter process communication through RTLinux FIFO
This allow you to synchronize Real-Time threads between each other and also to
synchronize Real-Time threads and Linux processes through /dev/rtf special files.

Max number of fifos
Define the maximum number of fifos used in the system. These are the real-time FIFOs
including pre-allocated and non pre-allocated fifos used by the Real-Time tasks as well as
for Linux/RTLinux synchronisation.

Preallocated fifo buffers
This permit to allocate the FIFO buffers at the system start instead of allocate the buffers
during the tasks runtime.

Size (in bytes) of preallocated fifos
If you preallocated the RTL-FIFOs you must define here the size you want to allocate for
them.
It is the real size here and all FIFOs have the same size. If you do not know what to do
with this, let the value to the 2048 default.

Number of preallocated fifos
If you preallocated the RTL-FIFOs you must define here the number of pre-allocated fifos
you want to initialize.

h) Drivers

AT the moment we do not have a lot of drivers integrated in OCERA Real-Time part.
The CAN-BUS cards drivers are defined earlier in the communication components part.

Serial Port Driver
If you want to access a serial port from a real-time task you must use this interface.
In this case, you cannot use the serial Linux driver from within Linux.

Floating Point Support

This allows the use of FP operations in real-time threads.

Ocera User's Guide 196/225 Configuration

OCERA User's Guide 197/225 February 2005

10.2.6) Linux

We advise you to use the standard LINUX documentation to configure LINUX.
You can enable any driver you want in the LINUX configuration tree, the one that would
not work with RTLinux-GPL are disabled if you did choose RTLINUX.

10.3) Building the kernel and
components

10.3.1) make

It is time now to build the kernel and the components.
Now that you have configure the system you just have to issue a make command in the

main OCERA directory.
make

Ocera User's Guide 197/225 Configuration

OCERA User's Guide 198/225 February 2005

The complete kernel, modules and components should compile and be placed in the
target-${ARCH} directory.

10.3.2) The target directory structure

Directory Usage

boot Linux kernel

lib/modules All the Linux and RTLinux modules

usr/lib/ Libraries

usr/include Headers

usr/local/orte ORTE subdirectories with manager
binary and exemples.

usr/local/can CAN-Open subdirectories with utilities
and monitor

usr/local/ft Fault Tolerance tools

usr/local/qos QoS tools

usr/local/ocera miscellaneous OCERA tools like tracer,
debuggers

Ocera User's Guide 198/225 Configuration

OCERA User's Guide 199/225 February 2005

10.4) Building the tools

The tools are independent of the kernel and are compiled separately.
Each partner developing a tool and having time in this WP should send me a chapter.
Here tools like debugger, tracing tools, analysers.

THIS CHAPTER IS TBD (To Be Done)

Ocera User's Guide 199/225 Configuration

OCERA User's Guide 200/225 February 2005

11) System Integration

Pierre Morel - MNIS

11.1) Compiling a custom
application

You will have all informations on this subject in the Programmer's Guide.
As a summary the way to build an application is the following, depending if you want to
build a Linux or an RTLinux-GPL application.

11.1.1) Linux Application

To build a Linux application using OCERA , you only need to link your application with
the components library you need.

After having built the kernel and components, you find the libraries and headers under the
target-$ {ARCH} directory.

Ocera User's Guide 200/225 System Integration

OCERA User's Guide 201/225 February 2005

File Usage
Usr/lib/liborte.a ORTE Library
Usr/lib/libperiodic.a QOS Library
Usr/include All RTLinux, Linux and components
include files
Usr/lib/libposix_trace.a POSIX trace libraries

After you built your application you will have to put it on the right place on the embedded
system or on the training system.
This is explained in the next chapter.

11.1.2) RTLinux Application

If you build a RTLinux application, you will have to build your application following
some rules.

The makefile

Here is an exemple of RTLinux application, follow it to retrieve the right compilers
options.

Remember, we give you only an overview here in this guide, you will learn much more
on the compiler options in the "OCERA programmer's Guide".

all: frank_module.o frank_app
simple.o

include ../../rtl.mk
frank_app: frank_app.c
$(CC) ${INCLUDE} ${USER_CFLAGS} -02 -Wall frank_app.c -o frank_app

frank_module.o: frank_module.c
$(CC) ${INCLUDE} ${CFLAGS} -c frank_module.c -o frank_module.o

As a summary: include the rtl.mk file and compile the RTLinux application as a Linux
module.

You will then need to install the module on your running system and insert it into the
kernel to launch your Real-Time task.

Ocera User's Guide 201/225 System Integration

OCERA User's Guide 202/225 February 2005

11.2) Installing a training systems

This is certainly the easiest way to install the OCERA system, just copy the target-
${ARCH} subdirectories to the root directory of your system.

For exemple, assuming you have compile for a i386 architecture and your system is the
target, just do:

cd target-i386
#tarcf-*|(cd/;tarxvf-)

to overwrite your OCERA libraries in /ust/lib, your kernel modules in /
lib/modules/ocera-1.0.0/ and your include files in /usr/include.

If you want to keep the old versions, take care to back it up before.

With this command you will also copy the kernel, vmlinuz-2.4.18-ocera-1.0.0, into the /
boot directory and you will need to install the kernel reference into the boot loader using
the boot loader installer.

Assuming you use lilo, you will modify the file /etc/lilo.conf with something like:

Iba32

Change boot and root !!
boot=/dev/hda
root=/dev/hda1

#
install=/boot/boot-menu.b
map=/boot/map
delay=20

prompt

timeout=150

vga=normal

image=/boot/vmlinuz-2.4.18-ocera-0.5
label=ocera(0.5)
read-only
append="bigphysarea=1024"
optional

Ocera User's Guide 202/225 System Integration

OCERA User's Guide 203/225 February 2005

Of course you must change the boot and root entries according to your settings. Look at the lilo
man pages for more informations using lilo.
After editing /etc/lilo.conf, just run the installer and reboot:
#lilo
reboot
And you must now be rebooting with the OCERA kernel ready to launch your hard real-

time and/or soft real-time applications.

11.3) Installing an embedded
systems

Trough there is many ways to install an embedded system and even more to download the
code into the embedded system we will only focus on the root file system creation and
booting on a CDROM.
The steps to build an OCERA system are:

retrieve the sources

building the tools, kernel and applications

make a working filesystem

Install a boot system

11.3.1) Retrieve the sources

You can retrieve the sources from the SourceForge server.

Ocera User's Guide 203/225 System Integration

OCERA User's Guide 204/225 February 2005

Actual sources, at the moment this paper is being written is ocera-1.0.0

a) From a Debian APT-Site

This is the best way to get the complete sources, development environment and tools if
you
have an Internet connection
use a Debian Distribution, which is strongly recommended as it is the only
supported Linux distribution.
In that cas, you may add the following lines to the sources.list file of the /etc/apt
directory:
deb http://www.ocera.net/ocera sarge main

and issue an update for the apt system followed by an installation like:
apt-get update

apt-get install ocera-dev

At the time we write this documentation, we have four packages that could be installed

package content command to issue
Development All sources: Real Time kernel, apt-get install ocera-
Soft real time linux kernel, dev
OCERA components
apt-get install ocera- Tracing tools apt-get install ocera-
tools tools
apt-get install ocera- All the documentation including apt-get install ocera-
doc white papers doc
apt-get install ocera- The Ada compiler and Real- apt-get install ocera-
rtignat time runtime rtignat

b) From the tarball

This is certainly the best way to have a stable version if you use another Linux
distribution than Debian.

Using another distribution is possible, although not recommended, you will be on your
own to resolve possible dependencies problems.

In that case, download ocera-1.0.0 from the summary page of the OCERA SourceForge
site:

Ocera User's Guide 204/225 System Integration

OCERA User's Guide 205/225 February 2005

http://sourceforge.net/projects/ocera/

c) From the CVS

If you want to retrieve the sources of OCERA Components, Linux and RTLinux from the
OCERA CVS server, you can do the following:

Make a directory (suppose /usr/share/OCERA) and change to this directory and issue the
following commands:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/ocera login

cvs checkout -P -r ocera-1_0_O-release -d ocera-1.0.0 ocera

This will check out the , at the time we write the document, actual stable version and
release of the OCERA CVS and create the /ust/shar.e/OCERA/ocera-1.0.0 directory and
the ocera structure and files inside.

If you prefer to check out the last snapshot with the last untested bug correction, you can
issue:

CVs —d:pserver:anosous—
embranchementsymous@cvs.sourceforge.net:/cvsroot/ocera login

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/ocera co ocera

This will create the ocera structure in /usr/share/OCERA/ocera

11.3.2) Compile the kernel

Refer to the Chapter 2 to learn more about the configuration options.
cd ocera

make xconfig

take care to not use the local APIC if you use a single board system because
there is still a bug in the configuration's options.

You must also enable the VT, Virtual Terminal support in the character
devices drivers and VGA text console.

If you do not want to build the documentation and the applications, you can
comment out the entries in the makefile.

Then:
make

This should give you the following directories in the ocera-1.0.0 directory:

Ocera User's Guide 205/225 System Integration

OCERA User's Guide 206/225 February 2005

target-1386

boot
vmlinuz-2.4.18-ocera-1.0.0
System.map-2.4.18-ocera-1.0.0

dev

etc
rc.d/init.d/rtlinux

lib
modules/2.4.18-ocera-1.0.0 with all drivers and RTLinux modules

usr
lib with orte and posix development libraries
bin with the ORTE binaries and tests programs
include
rtlinux with RTLinux demo and tests programs

At this point you may choose between:
Installing your ocera kernel on you system, then you can act as with any
standard linux kernel.
Installing your ocera kernel as an embedded system, using emdebsys or a
simple busybox.

11.3.3) Installing OCERA in a busybox environment

a) retrieve BusyBox and syslinux

If you have an OCERA CDROM, you will have all tools on the CDROM and if you
installed an OCERA development environment from a CDROM you must have the
busybox and syslinux tools already installed.

If not, you must download it from the network with something like:

wget http://busybox.net/downloads/busybox-1.00-pre3.tar.bz2

wget http://syslinux.zytor.com/download/syslinux-2.06.tar.gz

Then retrieve a basic template file system from mnis:
wget http://www.mnis.fr/download/basiclinuxfs-0.1.tgz

Ocera User's Guide 206/225 System Integration

OCERA User's Guide 207/225 February 2005

b) be sure to use the proper development tools

use dpkg -l to verify the versions:

Program Version definition

gcc 2.95.4-14 The GNU C compiler.

Bin86 0.16.0-2 16-bit assembler and
loader

make 3.79.1-14 The GNU version of the
"make" utility.

Autoconf 2.57-1jlb automatic configure script
builder

automake 1.4-p4-1.1 A tool for generating
GNU Standards-
compliant

c) build the tools

tar jxvf busybox-1.00-pre3.tar.bz2
tar zxvf syslinux-2.06.tar.gz

cd syslinux-2.06
make all

cd busybox-1.00-pre3
make menuconfig
make dep

make

make install

d) make the target file system:

mkdir TARGET

cd TARGET

tar zxvf basiclinuxfs-0.1.tgz

(cd ../busybox-1.00-pre3/_install; tar cf -) | tar xvf -

cp ../target-i386/boot/System.map-2.4.18-ocera-1.0.0 boot
cp ../target-i386/boot/vmlinuz-2.4.18-ocera-1.0.0 boot

cp -r ../target-i386/lib/modules lib

Ocera User's Guide 207/225 System Integration

OCERA User's Guide 208/225 February 2005

Change the configuration files in TARGET/etc to fit your needs
Make the root file system from the TARGET directory:

mke2fs /dev/ram0

mount /dev/ramO0 /mnt

(cd TARGET ; tar cf - *) | (cd /mnt ; tar xvf -)

umount /mnt

dd if=/dev/ram0 of=root

gzip root

e) make the boot system: exemple: a CDOROM

mkdir ISO

cp /usr/src/linux/arch/i386/boot/bzimage 1SO/ocera
rdev /dev/ram0 ISO/ocera

cp root ISO

cp isolinux-2.06/isolinux.bin 1ISO

cp isolinux-2.06/sample/syslogo.lss ISO

put something in ISO/boot.msg like:
AL
AXsplash.lss

AO070CERA STANDALONE CD*0O07

to change the start image, the splash, use a png file in 639x320x4 format.
edit ISO/isolinux.cfg
default ocera

prompt 1
timeout 600
display boot.msg
label ocera
kernel ocera
append initrd=root.gz
Build the image with:
mkisofs -R -b isolinux.bin -no-emul-boot -boot-load-size 4 -boot-info-table -0 ocera.iso ISO
cdrecord dev=0,0,0 ocera.iso
Then booting on the CD will install the root file system in memory (/dev/ram0) and you
can go on by testing your application.

Ocera User's Guide 208/225 System Integration

OCERA User's Guide 209/225 February 2005

11.4) Running a hard real-time
application

To run a hard real-time application you need to insert the RTLinux-GPL modules into the
kernel.
You will see more details on choosing the right modules in the next chapters describing
in details the components.
What you need to know now is

where are the modules

what they do in short

how to run a test application
The modules real-time modules are in the /lib/modules/ocera-1.1/misc directory.

Module name Component Description
cbs_sched.o Quality Of Service The RTLinux CBS scheduler is needed

if you want to use this scheduling
algorithm for your applications.

ftappli.o
ftappmonctrl.o
mbuff.o
gmgr_sched.o

Fault Tolerance
Fault Tolerance
memory
scheduling

rtl.o

rtl_fifo.o
rtl_ktrace.o
rtl_malloc.o
rtl_mqueue.o
rtl_posixio.o

RTLINUX CORE
RTLINUX CORE
RTLINUX CORE
RTLINUX CORE
RTLINUX CORE
RTLINUX CORE

Ocera User's Guide

System Integration

OCERA User's Guide 210/225 February 2005

Module name Component Description
rtl_sched.o RTLINUX CORE
rtl_time.o RTLINUX CORE

Ocera User's Guide 210/225 System Integration

OCERA User's Guide 211/225 February 2005

APENDICES

Ocera User's Guide 211/225 System Integration

OCERA User's Guide 212/225 February 2005

12) Hardware and
software issues

Pierre Morel - MNIS

The are some hardware and software issue to consider when realizing a real-time system
with RTLinux.

In particular, using a standard low cost PC may introduce some constraints due to
optimization that have been made with other goal than real-time.

Some Hardware change dynamically the way the processor or the system BUS operates
and some software change hardware configuration.

12.1) New modules and Video

You must take care when using a module that you did not compile with the patched Linux
tree you got from the OCERA CVS or from an OCERA ISO image.

Ocera User's Guide 212/225 Hardware and software issues

OCERA User's Guide 213/225 February 2005

The problem comes from un-patched CLI/STI instructions that may affect the real-time
performances of the system.

The same problem occurs with the XF86 servers because some of them will use CLI/STI
to optimize the code.

To now if a module or a X11 server uses these instructions, you can use the following
command:

objdump -d module.o | grep cli

12.2) NTP

The Network Time Protocol is used to synchronize the system clock with an external
system supposed to be accurate over the network.

To achieve its work, some implementations of NTP may slidly change the frequency of
the board to counter the derive of the clock.

While this is perfect for a time sharing system with 10ms slices, it has main drawbacks on
a real-time system with hundreds of nanoseconds accuracy.

You can still use NTP if you makes sure it does not change the frequency but makes time
jumps. These jumps are made on the GLOBAL CLOCK used by the Linux system, while
the RTLinux part will have access to other unchanged clocks like the REALTIME
CLOCK or the MONOTONIC CLOCK

Ocera User's Guide 213/225 Hardware and software issues

OCERA User's Guide 214/225 February 2005

12.3) Floppy and ISA

The ISA bus may introduce some problems in the system in case you use it. The ISA
BUS bridge slow the PCI BUS speed to allow transfers to the ISA BUS.

The floppy on an IBM PC computer may reduce the speed of the BUS when accessed.
The best ist not to use these hardware.

12.4) Power saving

APM systems usually change the CPU clock to reduce the power usage of the system.
This is of course incompatible with real-time accuracy.

It is generally better not to use the power saving mechanism and if needed to reduce the
clock speed at boot time.

Ocera User's Guide 214/225 Hardware and software issues

OCERA User's Guide 215/225 February 2005

12.5) System Management Mode

Some board use the Intel's System Management Mode, on which upon receive of a
System Management Interrupt, the processor will enter a slow mode or even stop.

Of course, this feature must be disabled.

Ocera User's Guide 215/225 Hardware and software issues

OCERA User's Guide 216/225 February 2005

13) Qualifying an OCERA
system

By
Stanislav Benes - Unicontrol

13.1) Software Criticality Level
Definitions

We can generally divide software for control systems according to the Software
Criticality Level, which is an assessment how dangerous can be an anomalous behavior of
the software for health or lives of people.
Level A: Software error can cause death of many people.
Level B: Software error can cause death of a small number of people.
Level C: Software error can cause discomfort, possibly including injuries.
Level D: Sofware error can cause discomfort.
Level E: Sofware error has no effect.

Ocera User's Guide 216/225 Qualifying an OCERA system

OCERA User's Guide 217/225 February 2005

13.2) How to keep the criticality
level when developing an
application

13.2.1) Software verification effort

Software Criticality Level affects effort which is necessary for verification of the
software.
In case of critical application (levels A, B, C) a certification authority usually gives an
approval to using of a software in an application. The certification authority can state
conditions or standards, which the software should comply with. The applicant for an
approval to using of a software in a critical application should expect following types of
guidelines both for OCERA components and for application components:
Level A: Every software requirement (i.e. every feature stated in Programmer's
Guide) and software design requirement (i.e. every feature stated in Component
Design Description document) should be verified, every conditional statement
in source code should be verified in relationship with other conditional
statements in the same module. The results of the verification should be
documented.
Level B: Every software requirement (i.e. every feature stated in Programmer's
Guide) and software design requirement (i.e. every feature stated in Component
Design Description document) should be verified, every conditional statement
in source code should be verified. The results of the verification should be
documented.
Level C: Every software requirement (i.e. every feature stated in Programmer's
Guide) should be verified. The results of the verification should be
documented.
Level D: Every verified software requirement (i.e. feature stated in
Programmer's Guide) should be documented.

Ocera User's Guide 217/225 Qualifying an OCERA system

OCERA User's Guide 218/225 February 2005

Level E: No guidelines for software verification are stated.

13.2.2) Rules for software documentation

Software Criticality Level affects detailing and an approval procedure which is necessary
for the documentation of the software. In case of critical application the certification
authority can state conditions or standards, which the software documentation should
comply with.
The applicant for an approval to using of a software in a critical application should expect
following types of guidelines both for documentation of OCERA components and for
application components:
« Level A: Every software or documentation change should be approved by a
worker responsible for software approval.
Level B: Every software or documentation change should be approved by a
worker responsible for software approval.
Level C: Every change in software requirements, source code, executable code,
software configuration index, software life cycle environment configuration
index (i.e. compilers, linkers etc.) and SW accomplishment summary should be
approved by a worker responsible for software approval.
Level D: Every change in software requirements, source code, executable code,
software configuration index and SW accomplishment summary should be
approved by a worker responsible for software approval.
Level E: No guidelines for software documentation are stated.

13.2.3) Assessment of the level of criticality of OCERA
components

Ocera components are generally designed for applications in level D. Concrete
assessment of every Ocera component will be stated in document D12.4 "Final
Assesment and Evaluation Report", including usability from criticality level point of
view. Users can turn to Ocera consortium if they need to use an Ocera component in an
application with a higher level of criticality.

Ocera User's Guide 218/225 Qualifying an OCERA system

OCERA User's Guide 219/225 February 2005

14) Performance

By
Nobody - Nowhere

14.1) Hard Realtime performances

Using OCERA, you can expect the following performances:

Table 5-1. Hard Realtime performances

type of measure done result commentary
Interrupt latency

Task switch latency

Event latency

Barrier latency

Number of threads

Ocera User's Guide 219/225 Performance

OCERA User's Guide 220/225 February 2005

CBS reservation

14.2) Soft Realtime performances

Using OCERA, you can expect the following performances:

Table 5-2. Soft Realtime performances

type of measure done result commentary
Interrupt latency

Task switch latency

Semaphore latency

Number of tasks

CBS reservation

Ocera User's Guide 220/225 Performance

OCERA User's Guide 221/225 February 2005

14.3) General performance

Table 5-3. General performances

type of measure done result commentary
Filesystem size
File size

Realtime Ethernet
bandwidth

CAN BUS bandwidth

Ocera User's Guide 221/225 Performance

OCERA User's Guide 222/225 February 2005

14.4) Footprint

Table 5-4. footprint

type of measure done result commentary

Stand alone RTLinux 100k byte This is achieved by using the
Stand Alone RTLinux with
all components

standard Embedded system 4M byte

complete system footprint ???very large??? If you put every services of
Linux here like SQL
databases, web servers,
security and auditing tools,
you can have a quite big
system.

Ocera User's Guide 222/225 Performance

OCERA User's Guide 223/225 February 2005

15) Applications

By
Cristina Sandoval — Visual Tools (VTWV application)

15.1) VTWV. iPAQ Application

15.1.1) Application Overview

VTWYV stands for Visual Tools Wireless Viewer. It is a video player for handhelds that
receives wirelessly and presents video streams transmitted by one (or several)
Visual Tools DVRTs (Digital Video Recorders and Transmitters). It is able to find out
which DVRTs are present in the LAN and request them to stream video from any
of its cameras.

VTWYV will also connect to Visual Tools PeCo servers. The PeCo servers are people
counters that use state-of-the-art computer vision algorithms to count people in a video
sequence taken with a zenital camera.

It is developed in the Ewe programming environment, a Java VM based on Waba that is
small, fast, works in Windows, Linux for x86, Pocket PC and Linux for Arm.

Ocera User's Guide 223/225 Applications

OCERA User's Guide 224/225 February 2005

15.1.2) Application Requirements

This is the basic list of requirements the VTWV must fulfill:
Hardware Platforms
This application will be developed for Compag/hp iPAQs that come with an Intel
Arm CPU.
This will be the basic target platform. However we will also develop the
application so it works on x86 platforms. The iPAQ must have built-in WiFi or will
be equipped with a Compact Flash 802.11b Wireless LAN Card. "
Integration with Visual Tools DVRT products
As stated before, this video viewer will be integrated with Visual Tools DVRTs.
It will be able to find DVRTs in the LAN, request and receive video from them.
The basic topology will be a managed (also called BSS) wireless LAN were
several DVRTs are contected (wired) to an Access Point and the iPAQ
wirelessly connected to the Access Point

15.1.3) How to compile the application and download it
to the iPAQ.

First of all, you will need to download and install the Ewe Virtual Machine and
Development Environment version for your platforms that you can get from
http://www.ewesoft.com/Downloads/Downloads.html and follow installation steps.

In the OCERA CVS multimedia/vtwv directory you will find the Java sources as
well as the Ewe extension to decode MPEG streams using the ffmpeg library.
Some of the other files you will find here are:
vtwv.desktop : File to add an entry in the Opie desktop of the Linux iPAQ
vtwv.jnf : Jewel file needed to build the .ewe file (kind of .jar file)
vtwv.ewe : Kind of .jar file that contains all Java classes, images,
libraries,... needed by VTWV
To compile the VTWYV application for your PDA you should run the Jewel.ewe
application:
ewe SJEWEL_PATH/Jewel.ewe vtwv.jnf

Ocera User's Guide 224/225 Applications

OCERA User's Guide 225/225 February 2005

This will create in the ./classes directory a vtwv.ewe portable file that you will be
able to run in your PDA typing a command line like the following:
ewe viwv.ewe -a DVRT1 -A DVRT2 -c MPEG -W 300 -H 150

where:
DVRT1: IP address of one of the DVRT that is transmitting a video stream
DVRT2: IP address of the DVRT that is giving people counting information
(not needed).
This will open the vtwv application where the video stream from the selected
server and camera will be displayed.

Wireless UlieswerT
“ISLULUAL e TOOL s

PlaystopExit| 192,67 79.201 |W|cam| ¥ 0

= ax =T

Ocera User's Guide 225/225 Applications

