
 WP10 -D10.8 WP10 -D10.8
Programmer'sProgrammer's

GuideGuide

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo

Address:Camino Vera, 14, 46022 Valencia,
Spain

Phone:+34 963877576
Fax:+34 963877576

Email:alfons@disca.upv.es

Participant List

Role Id. Participant Name Acronym Country

CO 1
Universidad Politecnica de
Valencia

UPVLC E

CR 2 Scuola Superiore Santa Anna SSSA I

CR 3
Czech Technical University in
Prague

CTU CZ

CR 4 CEA/DRT/LIST/DTSI CEA FR
CR 5 Unicontrols UC CZ
CR 6 MNIS MNIS FR
CR 7 Visual Tools S.A. VT E

Document version

Release Date Reason of change
1_0 15/02/2004 First release
1_1 15/11/2004 Extend the configuration part
1_2 15/02/2005 Rewrite installation part, configuration part,

add components, applications

Forword
that must disapear asap

This document is still in a draft version, the following actions are to be done to
get the document in a final version:

1) verify the names of the chapter's authors

2) Index for tables and figures

3) Glossary

4) a standard figure caption style all along the documentation

5) chapters missing: Onetd: network interface programing by Pierre Morel

6) chapter missing: Driver's framework

7) Re-reading and corrections by Ocera members

Table of Contents

Document Presentation..2

Introduction...6

Overview...6
What will you find in the Programmer's Guide..7
What will you NOT find in the Programmer's Guide.....................................8

Overview...9

OCERA architecture... ...9
How RTLinux and Linux work together...13
Supported target...18
Development tools..18

RTLinux API...21

Dynamic memory allocator.. 21
POSIX Signals...24
POSIX Timers...27
POSIX message queues...30
Posix Barriers..31
Application-Defined Scheduler..37
Ada Support..48
POSIX tracing..52

Quality Of Services..70

OCERA Real-Time Ethernet..73

struct ORTEIFProp..76
struct ORTEMulticastProp... ..77
struct ORTECDRStream...79
struct ORTETypeRegister...80

struct ORTEDomainBaseProp..81
struct ORTEPubInfo..88
struct ORTETasksProp...95
struct ORTEDomainProp.. ..96

Fault-Tolerance components...................................140

Degraded Mode Management........................... ...140
Redundancy Management..158

CAN... ..169

Installation...169
API / Compatibility...171

PART IPART I
Programming environment

Introduction

By Pierre Morel - MNIS

This is the OCERA Programmer's Guide. We will try through this document to
help you programming with OCERA.
In this first chapter we will explain the goal of this guide, we assume that you
already read the User's Guide, so that you are familiar with the concepts used all
along the guide.

Overview

Intended Audience

This guide is intended for
- software engineers who are building a real time embedded application

for commercial or educational use with OCERA.
- teachers who want to rapidly build a real-time plate-form for training of

students. In this case the teachers will also have interest in the OCERA
document named TRAINING DOCUMENTATION AND CASE STUDIES, where
they will find ready to use training examples.

Pre-requisite:

To use OCERA kernel and components and understand how they work together
you will need a basic knowledge on how an Operating System is working,
both for real-time OS and time sharing OS, and for some of the components, a
basic knowledge of TCP/IP network architectures.

To develop applications using OCERA you will need some skills in a
development language, C is the standard language for OCERA, while C++ is
used in ORTE and Ada is supported for application's programming.
Depending on the developments you intend to do and which components you
intend to use and certainly a knowledge of POSIX thread programming would
help a lot.

What will you find in the
Programmer's Guide

The Programmer's guide will present you
• The OCERA environment where your application will execute:

Linux and RTLinux, the OCERA Architecture. How they work
together.

• Programming in for Hard Real-Time: the real-time Application
Programming Interface, the tools you will need to compile your
application and to let it run with the system.

• Programming in for Soft Real-Time: the soft real-time
Application Programming Interface, the tools you will need to
compile your application and to let it run with the system.

• A driver's framework, and how to write drivers in Linux taking
care of the real-time necessities.

• RTLinux/Linux Interfaces: Interfaces between the real-time
system and the time sharing system.

• Qconf programming: The way to add new components to the
OCERA tree

• The components and the programming interface to the different
components of OCERA like Fault Tolerance, CAN CAN/Open
Interface and ORTE: OCERA Real Time Ethernet

What will you NOT find in the
Programmer's Guide

The Programmer's guide will not present you a general aspect of OCERA nor will
it present to you how to setup the development environment or to setup a cross
compiler environment.
All these features are presented in the OCERA User's Guide.

Overview

By Pierre Morel – MNIS

OCERA architecture

RTLinux-GPL

Original RTLinux-GPL architecture can be divided in two levels:
• A basic real-time operating system, handling interrupts and

providing a minimal development interface for real-time threads. We will
sometime refer to this level by simply RTLinux-GPL. It is a Hard real-
time level with interrupt latency and thread switch latency in the order
of a few tens of micro seconds (on a PIII-1GHZ).

• A time sharing operating system, the Linux level, having the full
functionalities of the original Linux operating system, and running as the
idle thread of the basic real-time system.

Both operating systems co-operate in many ways:
• interrupts: the original Linux Operating system is modified so that it

does not do any direct hardware access for interrupts handling, letting
the work to be done by RTLinux-GPL. If a Linux ISR is associated with
the Interrupt, RTLinux-GPL, mark the Interrupt as to be served and
calls the Linux handlers as soon as nothing more is to be done at real-
time level.

• Realtime-FIFO: if a real-time thread and a Linux task want to exchange
data, they can do it through real-time fifo, this is a good way to ensure a
proper switch between the real-time OS and the shared time OS. The
real-time fifo use soft IRQ to synchronize the Linux task and the real-
time thread.

• Shared Memory: is another way to exchange data between Linux and
RTLinux-GPL. The synchronization must be done by the application by
atomic_test_and_set() calls for exemple.

• BSD Socket: an implementation of the BSD Socket interface for UDP
protocol allow a real-time thread and a Linux process to communicate.
The synhronization, as with the real-time FIFOs is done by Soft-IRQs.

We also found of great interest to have the possibility to add a soft real-time level
to Linux, using and enhancing the LOW LATENCY and the PREEMPTION
patches, this are the first bricks to provide Soft real-time and Quality Of Service
at the Linux (shared time OS) level, and then to applications running on Linux,
like Video Streaming.
You can see a much deeper description of the architecture in the document
“OCERA ARCHITECTURE” D02-1.pdf and we advise you to do so if you want to
have a good understanding of the internals of OCERA.

The components

We define a component as:
„A piece of software that brings some new functionality or feature at different

levels in some of the fields: Scheduling, Quality Of Service, Fault Tolerance
or Communications.“

Remember that our goal is to enhance an existing Operating system, RTLinux-
GPL, to achieve an industry ready operating system and that to achieve this
want to give RTLinux:

• A real POSIX 1.1 development interface and new scheduling algorithm
and new synchronization mechanisms for RTLinux.

• Quality Of Service, to allow bandwidth reservation
• Fault Tolerance and reconfiguration
• Communication with industry standard control/command devices

All the component interact with some of the other components:

Communication

CANBUS

CANBUS drivers works under Linux and/or RTLinux and provides a virtual
interface for testing and development purpose under Linux.

We will explain deeper the CANBUS drivers and the usage of the drivers in the
chapter XX: CANBUS.

Socket Interface

A BSD like socket interface provides access to the network for the RealTime
threads by using the Linux socket implementation.
We will explain deeper the socket interface and its usage in the chapter XX:
Onetd.

ORTE

ORTE stands for OCERA Real Time Ethernet and implements the Real Time
Publisher Subscriber protocol.
The RTSP protocol allow publishers to reserve some of the ethernet bandwidth
and manage this reservation so that the bandwidth allocated for each participant
allow the data transfert time over ethernet to be predictable.
ORTE is able to work under Linux or under RTLinux with the Onetd socket
interface, the choice is made at compile time.
We will see ORTE in deep in the chapter XX: ORTE.

Fault Tolerance

Fault tolerance can collaborate with the Quality Of Service component to handle
budget reservation exceptions.
In the case of a distributed network, Fault Tolerance must use a real-time aware
communication protocol like the RTSP protocol implemented by the
communication component ORTE.
We will investigate the way to use Fault Tolerance in deep in the chapter XX:
Faul Tolerance

Quality Of Service

Quality Of Service in OCERA allows a Linux Process to do a CPU Bandwidth
reservation.
This means that, the process having done this reservation is given access to the
CPU at regular times without the influence of any other processes.
This has the following implications:

• First, the Linux Scheduler must be made preemptive. To do this we
have to use the preemptive patch for Linux. We also reduced the Linux
latency by using the low latency patch.

• Second the Linux scheduler algorithm must be modified to allow a CBS
Constant Bandwidth Scheduler, algorithm.

• Third, in the case of Linux working over RTLinux-GPL, RTLinux-GPL
scheduling algorithm must be changed to also allow a CBS algorithm.

• Fourth: both Linux and RTLinux scheduler must be aware of the
bandwidth reservation

This Quality Of Service is, for example, very useful in the case we have real time
constraint at both Linux and RTLinux levels.
A good exemple for this is the real time video streaming application made by
Visual Tools and presented at the end of this guide.
We will go deeper in the way to use the Quality Of service in the chapter XXX:
Quality Of Service.

RTLinux components

RTLinux-GPL had to be enhanced to achieve our goals. As we saw earlier, we
have to provide a POSIX 1.1 development interface, and modify the scheduling
algorithm.
By the way OCERA integrated new components: a socket interface used by the
RTLinux-GPL implementation of ORTE and Ada runtime.
We will see all POSIX components in the Programmer's Guide, and we will take
a look at the possibilities offered by the Onetd Socket interface in the chapter
XXX and at the Ada runtime in the chapter XX.

Illustration 1 Overview of OCERA implementation

How RTLinux and Linux work
together

To understand this chapter, internal knowledge of Linux kernel and knowledge
of the way Linux modules works is a good think.
However an engineer with good knowledge of operating systems will understand
the way RTLinux takes control of Linux without deep Linux kernel knowledge.

Taking control

RTLinux takes control over the Linux kernel as the rtlinux.o module is loaded.
The __init routine of the rtlinux.o module calls the "self explained" function
arch_take_over.

A light version of this function is shown here under. In particular we do not detail
SMP architecture initialization or #define preprocessing here to simplify the
presentation. Of course, you can browse the source to see the details of the
routine.

arch_takeover
 rtl_hard_cli
 rtl_global.flags = g_initialized
 rtl_local.flags = l_ienable | l_idle
 rtl_reschedule_handlers = default_reschedule_handler
 patch_kernel
 rtl_hard_sti
 rtl_soft_sti

As one can see, after clearing interrupts and doing some initialization, the routine
initialize the reschedule_handler and then calls the once again "self explained"
function patch kernel routine.

patch_kernel
 xdo_IRQ = pfunc[pf_do_IRQ].address (pfunc is a table of functions)
 local_ret_from_intr = pfunc[pf_ret_from_intr].address
 p=find_patch(pfunc[pf_do_IRQ].address

 save_jump(p,pf_do_IRQ)
 patch_jump(p,rtl_intercept)
 pfunc[pf_rtl_emulate_iret] = rtl_soft_sti
 IF LOCAL_APIC
 save_jump(LOCALS_PATCHS)
 zap_ack_apic
 init_local_code
 pre_patch_control=irq_control
 irq_control.do_save_flags = rtl_soft_save_flags
 irq_control.do_restore_flags = rtl_soft_restore_flags
 ...etc replace cli/sti local_irq_save,restore,disable and enable
 ...
 for i < NB_IRQS
 save_linux_irq_desc = h.handler
 h.handler = rtl_generic_type

This functions setup the interrupt routine local_ret_from_intr to the address of
rtl_intercept it then patches the APIC subroutines if a APIC exists by calling
zap_ack_apic and init_local_code and initialize the irq_control which contains the
address of the routines that will replace the standard Linux routines:

• do_save_flags
• do_restore_flags
• cli
• sti
• local_irq_save
• local_irq_restore
• local_irq_enable
• local_irq_disable

Interrupt handling

The interrupts are processed in four levels. The first three levels are called
whenever an interrupt is called they are:

• rtl_intercept the real interrupt routine called when the interrupt arrives and
responsible for the APIC handling and interrupt acknowledge.

• dispatch_rtl_handler dispatch the interrupts to the Real Time handlers.

• dispatch_linux_irq dispatch the interrupts to the Linux interrupt handlers.

The main interrupt routine is detailed here under:

rtl_intercept
 rtl_spin_lock(rtl_global.har_irq_controller_lock)
 if rtl_irq_controller_get_irq
 rtl_irq_controller_ack

 if G_TEST_RTH (test if IRQ is for RTLinux)
 rtl_spin_unlock
 dispatch_rtl_handler
 rtl_spin_lock
 else
 G_PEND (set IRQ as pending)
 G_SET(g_pend_since_sti) (set flags IRQ pending)
 if RUN_LINUX_HANDLER (irq enabled and RT not busy)
 G_UNPENd
 rtl_soft_cli
 G_DISABLE
 rtl_spin_unlock
 rtl_hard_sti
 dispatch_linux_irq
 RETURN_FROM_INTERRUPT_LINUX (simple return)
 rtl_spin_unlock
 RETURN_FROM_INTERRUPT (pop all and IRET)

The fourth level is the soft_irq level for linux. This is called whenever the RTLinux
scheduler has finished to dispatch the real time tasks. See the details on the real
time scheduling in the next section.

global flags:
 g_rtl_started
 g_pend_since_sti
 g_initializing
 g_initialized

Local flags:
 l_busy 1 if RTLinux is scheduling a RT task
 l_ienable 1 if soft sti emulation (cli/sti)
 l_pend_since_sti 1 if irq pending since last sti
 l_psc_active old flag for memory protection PSC module.

Macro:
 G_PEND,G_UNPEND,G_ISPEND: 1 if global irq pending
 G_ENABLE,G_DISABLE,G_ISENABLE: 1 if irq is globally soft enabled
 G_SET_RTH,G_CLEAR_RTH,G_TEST_RTH: 1 if RT Handler set for irq
 G_SET,G_CLEAR,G_TEST: 1 if global flag set

 L_PEND,L_UNPEND,L_ISPEND: local version
 L_SET,L_CLEAR,_L_TEST: local version
 L_SET_RTH,L_CLEAR_RTH,L_TEST_RTH: local version

Structures for the transition

rtl_global_handlers[irq] : table for RT Handlers
 set: rtl_request_global_irq
 clear: rtl_free_global_irq

 used: rtl_intercept
 activate: G_PEND(irq) and G_SET(g_pend_since_sti)

irqaction *
 set: rtl_get_soft_irq (handler)
 -> request_irq
 -> setup_irq
 activate: rtl_global_pend_irq: G_PEND and G_SET(g_pend_since_sti)

LINUX:

do_IRQ
 -> handle_IRQ_event
 -> action->handler()
 -> desc->handler->end()
 -> do_softirq()

Scheduling

Every time a call is done to irq_control.do_sti (which replace the sti call), the
function do_soft_sti is called this function calls rtl_process_pending before to call
the rtl_soft_sti_no_emulation function to setup the local ienable.

rtl_process_pending
 rtl_soft_cli
 do
 while get_lpended_irq
 soft_dispatch_local
 while get_gpending_irq
 soft_dispatch_global
 while G_TEST(g_pend_since_sti | l_pend_since_sti
 if softirq_active(cpu_id)
 do_softirq /*kernel/softirq*/G

Supported target

Basicaly, OCERA is able to support all targets supported by RTLinux-GPL and
Linux. The most restrictive being RTLinux-GPL.
OCERA support architectures based on

• Intel ix86,
• powerPC 603e / Mototola 8240
• ARM and Strong ARM,

 while the Board Support Package (BSP) include:
• Standard PC
• PC104
• PPC6000
• iPAQ

The OCERA system can be loaded on the target on IDE and SCSI disks, Flash
memory, SD-Memory, ROM or even use the network to be downloaded using
TFTP or BootP and a PXE boot loader in ROM..
We provide more information on the different architectures and on cross
compilation in the OCERA User's Guide.

Development tools

The tools used to develop applications with OCERA are of very common use:
The GNU Utilities: the GNU C compiler, assembler, linker,

The CML2 Utilities: CML2 is the definition language used by the standard Linux
kernel, above 2.5.2, to define the kernel configuration
To this minimal set of utilities, you will eventually need the OCERA tracing tools
or the GNU Debugger: GDB.
If you develop with Ada language you will need a special Ada compiler. But this
will be explained in a separate chapter dedicated to Ada in this document.

PART II PART II
Realtime programming

Scheduling

timers

Inter thread communication
fifo
shared memory
semaphore, mutex, signals, spinlock

RTLinux API

By:
Patricia Balbastre
Alfons Crespo
Ismael Ripoll

Dynamic memory allocator

Description

This component provides standard dynamic memory allocation, malloc and free
functions, with real-time performance.

Usage

The component is designed to work in three different targets:

1) as a Linux user level library,
2) in the Linux kernel, and
3) in RTLinux.

The target dependent code is surrounded by conditional directives that
automatically compiles the final object file to the correct target depending on the
set of defined macros: __RTL__, __KERNEL__, etc.

When the bigphysarea patch is available in the kernel, the allocator will use this
facility by default. Therefore the maximum memory pool will be limited by the
memory initially (at boot time with the kernel parameter "mem") allocated by
bigphysarea.

When the allocator is compiled as a kernel module (to by used from the Linux
kernel or by RTLinux applications), the name of the module is rtl_malloc.o; it can
be loaded using the rtlinux script:

rtlinux start
Scheme: (-) not loaded, (+) loaded
 (+) mbuff
 (+) rtl
 (+) rtl_fifo
 (+) rtl_malloc
 (+) rtl_posixio
 (+) rtl_sched
 (+) rtl_time

The module accepts the parameter "max_size" which is the size of the initial
memory pool in Kbytes. If the parameter is not passed to the module then the
default initial memory pool size is 1Mbyte. In order to use more than 1Mb you
have to manually load the module.

Programming interface (API)

In order to avoid naming conflicts, the API provided by DIDMA is non POSIX, it
looks like the API given by the ANSI "C" standard adding a rt_ prefix.

void *rt_malloc(size_t *size);
void rt_free(void *ptr);
void *rt_calloc(size_t nsize, size_t elem_size);
void *rt_realloc(void *p, size_t new_len);
And it also provides several macros which are equal than ANSI-C functions interface for
dynamic memory allocation:
void *malloc(size_t *size);
void free(void *ptr);
void *calloc(size_t nsize, size_t elem_size);
void *realloc(void *p, size_t new_len);

Example

#include \<rtl_malloc.h\>
#include \<rtl.h\>
#include \<pthread.h\>

pthread_t thread;

void * start_routine(void *arg){
 char *string;
 char hello_world [] = "Hello world";

 rtl_printf("Calling malloc... ");
 // DIDMA malloc
 string = (char *) malloc (sizeof (char) * (strlen (hello_world) + 1));

 if (string == NULL) {
 rtl_printf("WRONG\n");
 return (void *) 0;
 }
 rtl_printf("Malloc OK\n");
 strcpy (string, hello_world);
 rtl_printf ("HELLO_WORLD: %s\n", hello_world);
 rtl_printf ("HELLO_WORLD copy: %s\n", string);
 rtl_printf("Calling free... ");

 // DIDMA free
 free (string);

 rtl_printf("DONE\n");
 return (void *)0;
}

int init_module(void){
 return pthread_create (&thread, NULL, start_routine, 0);
}

void cleanup_module(void){
 pthread_delete_np (thread);
}

POSIX Signals

Description

This component extends the signalling subsystem of RTLinux to provide user-
defined signals and the user signal handlers.

Signals are an integral part of multitasking in the UNIX/POSIX environment.
Signals are used for many purposes, including exception handling (bad pointer
accesses, divide by zero, etc.), process notification of asynchronous event
occurrence (timer expiration, I/O completion, etc.), emulation of multitasking and
interprocess communication.

A POSIX signal is the software equivalent of an interrupt or exception
occurrence. When a task receives a signal, it means that something has
happened which requires the task s attention. Because a thread can send a
signal to another thread, signals can be used for interprocess communication.
Signals are not always the best interprocess communication mechanism; they
are limited and can asynchronously interrupt a thread in ways that require clumsy
coding to deal with. Signals are mostly used for other purposes, like the timer
expiration and asynchronous I/O completion. There are legitimate reasons for
using signals to communicate between processes. First, signals are frequently
used in UNIX systems. Another reason is that signals offer an advantage that
other communication mechanisms do no support: signals are asynchronous.
That is, a signal can be delivered to a thread while the thread is doing something
else. The advantages of asynchrony is the immediacy of the notification and the
concurrence.

This facility provides only regular UNIX(r) signalling infrastructure. Although real-
time POSIX extensions defines an advanced and powerful signal system, its
complexity make the implementation more complex and less predictable (since
the standard requires that signals can not lost and also delivered in the same
order it were generated, then signals can not be internally implemented as
bitmaps but lit must be handled as message queues) .

Usage

This facility is optional and has to be selected in the configuration tool. This
component is integrated into the RTLinux scheduler module. The functionality is
available once the rtl_sched.o module is loaded.

Programming interface (API)

struct rtl_sigaction {
 union {
 void (*_sa_handler)(int);
 void (*_sa_sigaction)(int, struct rtl_siginfo *, void *);
 } _u;
 int sa_flags;
 unsigned long sa_focus;
 rtl_sigset_t sa_mask;
};
/* Macros to manupulate POSIX signal sets.*/
rtl_sigaddset(sigset_t *set, sig);
rtl_sigdelset(sigset_t *set, sig);
rtl_sigismember(sigset_t *set, sig);
rtl_sigemptyset(sigset_t *set);
rtl_sigfillset(sigset_t *set);
/* Programing actions for signals ocurrences*/
int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);
/* Set the process s signal blockage mask */
int sigprocmask(int how, const rtl_sigset_t *set, rtl_sigset_t *oset);
int pthread_sigmask(int how, const rtl_sigset_t *set, rtl_sigset_t *oset);
/* Wait for a signal to arrive, setting the given mask */
int sigsuspend(const rtl_sigset_t *sigmask); int sigpending(rtl_sigset_t *set);
/* Send a signall to a thread */
int pthread_kill(pthread_t thread, int sig);

This is the standard POSIX API and it is used as the standard defines.
Documentation about how signals are programmed can be found in any book
about UNIX programming.

Example

/*
 * POSIX.1 Signals test program
 *
 */

#include <rtl.h>
#include <rtl_sched.h>

#define MAX_TASKS 2
#define MY_SIGNAL RTL_SIGUSR2
static pthread_t thread[MAX_TASKS];

static void signal_handler(int sig){
 rtl_printf(">--------------------------------------->\n");
 rtl_printf("Hello world! Signal handler called for signal:%d\n",sig);
}

static void * start_routine(void *arg) {
 int i=0,err=0,signal;
 struct sched_param p;
 struct sigaction sa;
 rtl_sigset_t set;

 p.sched_priority = 1;
 pthread_setschedparam (pthread_self(), SCHED_FIFO, &p);

 signal=MY_SIGNAL+(unsigned) arg;
 rtl_sigfillset(&set);
 rtl_sigdelset(&set,signal);
 pthread_sigmask(SIG_SETMASK,&set,NULL);

 sa.sa_handler=signal_handler;
 sa.sa_mask=0;
 sa.sa_flags=0;
 sa.sa_focus=0;

 if ((err=sigaction(signal,&sa,NULL))<0)
 rtl_printf("sigaction(%d,&sa,NULL) FAILING, err:%d, errno:%d.\n",
 signal,err,errno);

 pthread_make_periodic_np (pthread_self(), gethrtime(),
 250000000LL+250000000LL * (unsigned) arg);

 rtl_printf("I'm here; my arg is %x iter:%d\n",(unsigned) arg,i++);
 rtl_printf("When i mod 5 -> pthread_kill(pthread_self(),%d)\n",signal);

 while (i<=10) {
 pthread_wait_np ();
 if (!(i%5)) pthread_kill(pthread_self(),signal);
 rtl_printf("I'm here; my arg is %x iter:%d\n",(unsigned) arg,i++);
 }

 rtl_printf("\n\n\n THREAD %d about to end\n\n\n",(unsigned) arg);
 return 0;
}

int init_module(void) {
 int i,err=0;
 for (i=0;i<MAX_TASKS;i++)
 err=pthread_create (&thread[i], NULL, start_routine,(void *) i);
 return err;
}

void cleanup_module(void) {

 int i;
 for (i=0;i<MAX_TASKS;i++)
 pthread_delete_np (thread[i]);
}

POSIX Timers

Description

POSIX timers provides mechanisms to notify a thread when the time (measured
by a particular clock) has reached a specified value, or when a specified amount
of time has passed.

This component provides the functionality to work with several timers per thread.
Timer expiration is notified to the thread by mean of a POSIX signal.

Usage

Since a timer expiration causes a signal to be delivered, this facility depends on
signal support. To use POSIX timers first you have to select POSIX signals and
then select POSIX signals: OCERA Components Configuration -> Scheduling.

This facility is included into the standard scheduler module (rtl_sched.o).
Therefore, once the scheduler compiled with timers support is generated and the
module is loaded, the user can use the new functions.

Programming interface (API)

Data structure used to specify which action will be performed upon timer
expiration:

struct sigevent {
 int sigev_notify; /* notification mechanism */
 int sigev_signo; /* signal number */
 union sigval sigev_value; /* signal data value */
}

Currently, only two values are defined for sigev_notify: SIGEV_SIGNAL means
to send the signal described by the remainder of the struct sigevent; and
SIVEV_NONE which means to send no notification at all upon timer expiration.

Next are the system calls to create and delete timers and for arming and
consulting the state of an armed timer.

/* Creating a timer. Timer created is returned in timer_id location */
int timer_create(clockid_t clockid,
 struct sigevent *restrict evp,
 timer_t *restrict timer_id);
/* Removing timer referenced by timer_id */
int timer_delete(timer_t *timer_id);
/* Setting timer referenced by location timer_id */
int timer_settime(timer_t timer_id, int flags,
 const struct itimerspec *new_setting,
 struct itimerspec *old_setting);
/* Getting time remainning until next expiration*/
int timer_gettime(timer_t timer_id, struct itimerspec *expires);
int timer_getoverrun(timer_t timer_id);

The API is fully compliant with POSIX standard. Supported clocks are
CLOCK_MONOTONIC and CLOCK_REALTIME. A complete description of
POSIX timers and usage examples can be found in chapter five of the Bill O.
Gallmeister book: "POSIX.4 Programming fro the Real World".

Example

#include <rtl.h>
#include <pthread.h>
#include <time.h>
#include <signal.h>
#define MY_SIGNAL RTL_SIGUSR1
pthread_t thread;
timer_t timer;

#define ONESEC 1000000000LL
#define MILISECS_PER_SEC 1000
hrtime_t start_time;

void timer_intr(int sig){
 rtl_printf("Timer handler called for signal:%d\n",sig);
 pthread_wakeup_np(pthread_self());

}

void *start_routine(void *arg){
 struct sched_param p;
 struct itimerspec new_setting,old_setting,current_timer_specs;
 struct sigaction sa;
 long long period= 120LL*ONESEC;
 hrtime_t now;
 int signal=MY_SIGNAL;

 sa.sa_handler=timer_intr;
 sa.sa_mask=0;
 sa.sa_flags=0;
 new_setting.it_interval.tv_sec= 1;
 new_setting.it_interval.tv_nsec= 0;

 new_setting.it_value.tv_sec=1;
 new_setting.it_value.tv_nsec=start_time;

 /* Install the signal handler */
 sigaction(signal, &sa, NULL))

 /* Arming the timer */
 timer_settime(timer[param],0,&new_setting,&old_setting);

 /* The period of this thread is 2 minutes!!! */
 /* But till will be awaked by the TIMER every second */
 pthread_make_periodic_np (pthread_self(), gethrtime(), period);

 now=gethrtime();
 while (1) {
 last_expiration=now;
 now=gethrtime();
 timer_gettime(timer[param],¤t_timer_specs);
 rtl_printf("time passed since last expiration:%d (in milis)\n",
 (int)(now-last_expiration)/MILISECS_PER_SEC);
 pthread_wait_np();
 }
}

int init_module(void) {
 sigevent_t signal;

 /* Create the TIMER */
 signal.sigev_notify=SIGEV_SIGNAL;
 signal.sigev_signo=MY_SIGNAL;
 timer_create(CLOCK_REALTIME,&signal,&(timer[i]));

 start_time=ONEMILISEC;

 // Threads creation.
 pthread_create (&thread), NULL, start_routine, (void *) 0);
 return 0;
}

void cleanup_module(void) {

 pthread_delete_np (thread);
 timer_delete(timer);
}

POSIX message queues

Description

This component implements POSIX message queues facility which can be used
to send messages between RTLinux threads.

UNIX systems offers several possibilities for interprocess communication:
signals, pipes and FIFO queues, shared memory, sockets, etc. In RTLinux, the
most flexible one is shared memory, but the programmer has to use alternative
synchronisation mechanism to build a safe communication mechanism between
process or threads. On the other hand, signals and pipes lack certain flexibility to
establish communication channels between process. In order to cover some of
these weaknesses, POSIX standard proposes a message passing facility that
offers:

Protected and synchronised access to the message queue. Access to data
stored in the message queue is properly protected against concurrent
operations.

Prioritised messages. Processes can build several flows over the same queue,
and it is ensured that the receiver will pick up the oldest message from the most
urgent flow.

Asynchronous and temporised operation. Threads have not to wait for operation
to be finish, i.e., they can send a message without having to wait for someone to
read that message. They also can wait an specified amount of time or nothing at
all, if the message queue is full or empty.

Asynchronous notification of message arrivals. A receiver thread can configure
the message queue to be notified on message arrivals. That thread can be
working on something else until the expected message arrives.

Usage

This component is compiled as a separate kernel module. In order to use this
facility you have to select it at the main configuration screen and the compile the
RTLinux sources. This facility depends on POSIX signals so you need to select
POSIX signals in order to enable the message queues selection box.

Programming interface (API)

This components follows the POSIX API specification for message passing
facility defined in IEEE Std 1003.1-2001. This API also belongs to the Open
Group Base Specifications Issue 6. The following synopsis presents the list of
supported message queue functions:

/* Create and destroy message queues */
mqd_t mq_open (const char *, int, ...);
int mq_unlink (const char *)
int mq_close (mqd_t); int mq_getattr (mqd_t, struct mq_attr *);
int mq_notify (mqd_t, const struct sigevent *);
int mq_setattr (mqd_t, const struct mq_attr *, struct mq_attr *);
ssize_t mq_receive (mqd_t, char *, size_t, unsigned *);
int mq_send (mqd_t, const char *, size_t, unsigned);
ssize_t mq_timedreceive (mqd_t, char *, size_t, unsigned *, const struct timespec *);
int mq_timedsend (mqd_t, const char *, size_t, unsigned, const struct timespec *);

Posix Barriers

Description

Barriers, are defined in the advanced real-time POSIX (IEEE Std 1003.1-2001),
as part of the advanced real-time threads extensions. A barrier is a simple and
efficient synchronisation utility.

These are the steps to create and to use a barrier

• The barrier attributes are initialized .
This is accomplished trough the function pthread_barrierattr_init

• The barrier is initialized, only once,
by calling the function pthread_barrier_init.

This function set the attributes of the barrier (specified in the previous step, or
it takes a default attribute object) and the parameter count, which specifies the
number of threads that are going to synchronise at the barrier.

Although standard posix recommends that the value specified by count must
be greater than zero, if count is 1, the barrier will not take effect, since no
blocking would be produced. Therefore, in this implementation, a value of
count less or equal than 1 is not valid. Otherwise, EINVAL is returned.

• When a thread wants to synchronise at the barrier, it calls the function
pthread_barrier_wait .

At this point, the thread will wait until all the rest of the threads have reached
the same function call. Threads will continue its execution when the last
thread reaches the pthread_barrier_wait function.

• Finally, both the barrier and the attributes have to be destroyed
(pthreadd_barrierattr_destroy and pthread_barrier_destroy).

If there are threads waiting on the barrier, the function pthread_barrier_destroy
does not destroy the barrier, but exits with error EBUSY.

Usage

To activate the component just mark the option "Posix Barriers in RT-Linux"
inside of "Ocera Components Configuration -> Scheduling" in the configuration
tool.

This component has no dependencies with other Ocera components or RTLinux
facilities. Posix Barriers are a high level RTLinux component, since it does not
modify the RTLinux source code, but adds new features. Barriers are not
implemented as a module, it is only necessary to insert the scheduler module
(rtl_schedule.o). Barrier functionalities are implemented in two files:
rtlinux/schedulers/rtl_barrier.c and rtlinux/include/rtl_barrier.h.

Programming interface (API)

The API is defined by the POSIX standard. Here is a list of the functions that
have been implemented.

int pthread_barrierattr_destroy(pthread_barrierattr_t * attr);

The pthread_barrierattr_destroy() function shall destroy a barrier attributes
object. A destroyed attr attributes object can be reinitialized using
pthread_barrierattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined. An implementation may cause
pthread_barrierattr_destroy() to set the object referenced by attr to an invalid
value.

int pthread_barrierattr_init(pthread_barrierattr_t * attr);

The pthread_barrierattr_init() function shall initialize a barrier attributes object attr
with the default value for all of the attributes defined by the implementation.
Results are undefined if pthread_barrierattr_init() is called specifying an already
initialized attr attributes object.

int pthread_barrier_init(pthread_barrier_t * barrier, const
pthread_barrierattr_t *attr, unsigned int count);

The pthread_barrier_init() function shall allocate any resources required to use
the barrier referenced by barrier and shall initialize the barrier with attributes
referenced by attr. If attr is NULL, the default barrier attributes shall be used; the
effect is the same as passing the address of a default barrier attributes object.
The results are undefined if pthread_barrier_init() is called when any thread is
blocked on the barrier (that is, has not returned from the pthread_barrier_wait()
call). The results are undefined if a barrier is used without first being initialized.
The results are undefined if pthread_barrier_init() is called specifying an already
initialized barrier.

int pthread_barrier_destroy(pthread_barrier_t * barrier);

The pthread_barrier_destroy() function shall destroy the barrier referenced by
barrier and release any resources used by the barrier. The effect of subsequent
use of the barrier is undefined until the barrier is reinitialized by another call to
pthread_barrier_init(). An implementation may use this function to set barrier to
an invalid value. The results are undefined if pthread_barrier_destroy() is called
when any thread is blocked on the barrier, or if this function is called with an
uninitialized barrier.

int pthread_barrier_wait(pthread_barrier_t * barrier);

The pthread_barrier_wait() function shall synchronize participating threads at the
barrier referenced by barrier. The calling thread shall block until the required
number of threads have called pthread_barrier_wait() specifying the barrier.

When the required number of threads have called pthread_barrier_wait()
specifying the barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD
shall be returned to one unspecified thread and zero shall be returned to each of
the remaining threads. At this point, the barrier shall be reset to the state it had
as a result of the most recent pthread_barrier_init() function that referenced it.

int pthread_barrierattr_getpshared(const
pthread_barrierattr_t * attr int * pshared);

The pthread_barrierattr_getpshared() function shall obtain the value of the
process-shared attribute from the attributes object referenced by attr. The
pthread_barrierattr_setpshared() function shall set the process-shared attribute
in an initialized attributes object referenced by attr. The process-shared attribute
is set to PTHREAD_PROCESS_SHARED to permit a barrier to be operated
upon by any thread that has access to the memory where the barrier is allocated.
If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the
barrier shall only be operated upon by threads created within the same process
as the thread that initialized the barrier; if threads of different processes attempt
to operate on such a barrier, the behavior is undefined.

int pthread_barrier_wait(pthread_barrier_t * barrier);

The pthread_barrier_wait() function shall synchronize participating threads at the
barrier referenced by barrier. The calling thread shall block until the required
number of threads have called pthread_barrier_wait() specifying the barrier.
When the required number of threads have called pthread_barrier_wait()
specifying the barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD
shall be returned to one unspecified thread and zero shall be returned to each of
the remaining threads. At this point, the barrier shall be reset to the state it had
as a result of the most recent pthread_barrier_init() function that referenced it.

Example

A barrier can be used to force periodic threads to execute its first activation at
the first time. This example, in this case, will consist of one barrier. Three
threads block on the barrier before becoming periodic. When the last thread
arrives to the barrier, then all threads are allowed to continue execution (see
Figure next page).

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <rtl_sched.h>
#include <rtl_barrier.h>
#include <rtl.h>
#include <rtl_time.h>

#define NTASKS 3

pthread_t tasks[NTASKS];
hrtime_t now;

pthread_attr_t attrib;
struct {
 int id;
 int compute;
 int period;
} sched_attrib[NTASKS];

pthread_barrierattr_t barrier_attr;
pthread_barrier_t my_barrier;

void * fun(void *arg) {

 int id = (int)arg;

 pthread_barrier_wait(&my_barrier);

 pthread_make_periodic_np(pthread_self(), now, sched_attrib[id].period);

 while (1){
 rtl_delay(sched_attrib[id].compute);
 pthread_wait_np();
 fin--;
 }

 pthread_exit(0);
 return (void *)0;
}

int init_module(void)
{
 int x;

 sched_attrib[0].compute=1000;
 sched_attrib[0].period=100000;
 sched_attrib[1].compute=1900;
 sched_attrib[1].period=170000;
 sched_attrib[2].compute=25000;
 sched_attrib[2].period=200000;

 now = gethrtime();

 //Initialize the barrier
 pthread_barrierattr_init(&barrier_attr);

 pthread_barrier_init(&my_barrier, &barrier_attr, NTASKS);

 //pthread_barrierattr_destroy(&barrier_attr);

 for (x=0; x<NTASKS; x++) {
 pthread_attr_init(&attrib);
 pthread_create(&(tasks[x]), &attrib , fun, (void *)x);
 }

 return 0;
}

void cleanup_module(void)
{
 int x;
 for (int x=0; x<NTASKS; x++){
 pthread_cancel(tasks[x]);
 pthread_join(tasks[x],NULL);
 }
 pthread_barrier_destroy(&my_barrier);
}

Application-Defined Scheduler

Description

POSIX-Compatible Application-defined scheduling (ADS) is an application
program interface (API) that enables applications to use application-defined
scheduling algorithms in a way compatible with the scheduling model defined in
POSIX. Several application-defined schedulers, implemented as special user
threads, can coexist in the system in a predictable way. This way, users can
implement their own scheduling algorithms that can be ported inmediately to
other POSIX compliant RTOS.

Usage

This facility depends on POSIX signals and POSIX Timers, so you need to select
them in order to enable the ADS selection box (Figure 6).

Once the sources have been compiled you can create the sources of your
scheduling algorithm. This sources will be compiled as a separate kernel
module.

Programming interface (API)

The application defined scheduler facility API is a little more complex than
"normal" operating systems services like file management since the ADS has to
provide two different API's. One API for the application scheduler thread and
another API for the application scheduled thread. ADS API has been designed to
be included in the POSIX standard. Following is the list of functions that can be
used by scheduler threads:

Program scheduling actions (suspending or activating
threads)

• int posix_appsched_actions_addactivate (posix_appsched_actions_t *
sched_actions, pthread_t thread)

• int posix_appsched_actions_addsuspend (posix_appsched_actions_t *
sched_actions, pthread_t thread)

• int posix_appsched_actions_addlock (posix_appsched_actions_t *
sched_actions, pthread_t thread,const pthread_mutex_t *mutex)

Execute Scheduling Actions

• int posix_appsched_execute_actions (const posix_appsched_actions_t *
sched_actions, const sigset_t * set, const struct timespec * timeout, struct
timespec * current_time, struct posix_appsched_event * event)

Getting and setting application scheduled thread's data

• int pthread_remote_setspecific (pthread_key_t key, pthread_t th, void
* value)

• void * pthread_remote_getspecific (pthread_key_t key, pthread_t th)

Set and get mutex-specific data

• int posix_appsched_mutex_setspecific(pthread_mutex_t * mutex, void
* value)

• int posix_appsched_mutex_getspecific (const pthread_mutex_t *
mutex, void ** data)

• Scheduling events sets manipulation
• int posix_appsched_emptyset (posix_appsched_eventset_t * set, int

posix_appsched_fillset posix_appsched_eventset_t * set)
• int posix_appsched_addset(posix_appsched_eventset_t * set, int

appsched_event)
• int posix_appsched_delset(posix_appsched_eventset_t * set ,int

appsched_event)
• int posix_appsched_ismember(const posix_appsched_eventset_t * set,

int appsched_event)
• int posix_appsched_seteventmask (const posix_appsched_eventset_t *

set, int posix_appsched_geteventmask, posix_appsched_eventset_t * set)

While in the application scheduled thread's side the API is:

Explicit scheduler invocation

• int posix_appsched_invoke_scheduler(void * msg, size_t msg_size)
• Manipulate application scheduled threads attributes
• int pthread_attr_setthread_type (pthread_attr_t * attr, int type, int

pthread_attr_setappscheduler, pthread_attr_t * attr, pthread_t sched)
• int pthread_attr_setappsched_param(pthread_attr_t * attr, void * param, int

size)
• int pthread_attr_getappscheduler (pthread_attr_t * attr, pthread_t sched)
• int pthread_getappsched_param (pthread_attr_t * attr, pthread_t * sched,

void * param, int * size)

Application-defined Mutex Protocol

• int pthread_mutexattr_setappscheduler (pthread_mutexattr_t * attr, struct
rtl_thread_struct * appscheduler)

• int pthread_mutexattr_getappscheduler (const pthread_mutexattr_t * attr,
struct rtl_thread_struct * appscheduler)

• int pthread_mutexattr_setappschedparam (pthread_mutexattr_t * attr,
const struct pthread_mutex_schedparam * sched_param)

• int pthread_mutexattr_getappschedparam (const pthread_mutexattr_t *
attr, struct pthread_mutex_schedparam * sched_param)

• int pthread_mutex_setappschedparam (pthread_mutex_t * mutex, const
struct pthread_mutex_schedparam * sched_param)

• int pthread_mutex_getappschedparam (const pthread_mutex_t * mutex,
struct pthread_mutex_schedparam * sched_param)

Example

This example creates a scheduler thread and two scheduled threads. The
scheduler thread controls the execution of its scheduled threads following a
Earliest Deadline First priority assignation. That is, in this example it is
implemented the EDF scheduling algorithm. The scheduled threads are periodic
with deadline equal to period. For each scheduled thread a periodic timer is
programmed which spires each time the release time is reached. Threads are
created in the file edf_threads.c. This is the source that will be compiled and
inserted as a module. The algorithm is implemented in the files edf_sched.c and
edf_sched.h.

/* edf_sched.h*/

#include "../misc/compat.h"
#include <rtl_debug.h>
#include <time.h>

struct edf_sched_param {
 struct timespec period;
};

#define ERROR(s) {perror (s); rtl_printf("\n"); exit (-1);}
//#define ERROR(s) {perror (s); set_break_point_here; exit (-1);}

void *edf_scheduler (void *arg);
#define MAX_TASKS 10
extern timer_t timer_ids[MAX_TASKS];
extern pthread_t tasks[MAX_TASKS];

extern long loops_per_second ;

/*
 * eat

 *
 * Executes during the interval of time 'For_Seconds'
 */
extern inline void eat (float for_seconds)
{
 long num_loop = (long)(loops_per_second * (float)for_seconds);
 long j = 1;
 long i;

 for (i=1; i<=num_loop; i++) {
 j++;
 if (j<i) {
 j = i-j;
 } else {
 j = j-1;
 }
 }
}

extern inline long subtract (struct timespec *a, struct timespec *b)
{
 long result, nanos;

 result = (a->tv_sec - b->tv_sec)*1000000;
 nanos = (a->tv_nsec - b->tv_nsec)/1000;
 return (result+nanos);
}

/*
 * adjust
 *
 * Measures the CPU speed (to be called before any call to 'eat')
 */
extern inline void adjust (void)
{
 struct timespec initial_time, final_time;
 long interval;
 int number_of_tries =0;
 long adjust_time = 1000000;
 int max_tries = 6;

 do {
 clock_gettime (CLOCK_REALTIME, &initial_time);
 eat(((float)adjust_time)/1000000.0);
 clock_gettime (CLOCK_REALTIME, &final_time);
 interval = subtract(&final_time,&initial_time);
 loops_per_second = (long)(
 (float)loops_per_second*(float)adjust_time/(float)interval);
 number_of_tries++;
 } while (number_of_tries<=max_tries &&
 labs(interval-adjust_time)>=adjust_time/50);
}

/*edf_sched.c*/

#include "edf_sched.h"
#include "../misc/timespec_operations.h"
#include "../misc/generic_lists.h"
#include "../misc/generic_lists_order.h"

typedef enum {ACTIVE, BLOCKED, TIMED} th_state_t;

/* Thread-specific data */
typedef struct thread_data {
 struct thread_data * next;
 th_state_t th_state;
 struct timespec period;
 struct timespec next_deadline; /* absolute time */
 int id;
 timer_t timer_id;
 pthread_t thread_id;
} thread_data_t;

thread_data_t th_data[MAX_TASKS];
#define free(ptr) do {} while(0)
/* Scheduling algorithm data */
list_t RQ = NULL;
int threads_count = 0; // to assign a different id to each thread
thread_data_t *current_thread = NULL; // thread currently chosen to execute
pthread_key_t edf_key=0;

/*
 * more_urgent_than
 */
int more_urgent_than (void *left, void *right)
{
 return smaller_timespec (&((thread_data_t *)left)->next_deadline,
 &((thread_data_t *)right)->next_deadline);
}

/*
 * schedule_next
 */
void schedule_next (posix_appsched_actions_t *actions)
{
 thread_data_t *most_urgent_thread = head (RQ);

 if (most_urgent_thread != current_thread) {

 if (most_urgent_thread != NULL) {
 // Activate next thread
 printf (" Activate:%d ptr:%d\n", most_urgent_thread->id,most_urgent_thread->thread_id);
 if (posix_appsched_actions_addactivate (actions,
 most_urgent_thread->thread_id))
 ERROR ("posix_appsched_actions_addactivate");
 }

 if (current_thread != NULL && current_thread->th_state != BLOCKED) {
 // Suspend "old" current thread
 printf (" Suspend:%d ptr:%d\n", current_thread->id,current_thread->thread_id);

 if (posix_appsched_actions_addsuspend (actions,
 current_thread->thread_id))
 perror ("posix_appsched_actions_addsuspend");
 }

 current_thread = most_urgent_thread;
 }
}

/*
 * add_to_list_of_threads
 */
void add_to_list_of_threads (pthread_t thread_id,
 const struct timespec *now)
{
 struct edf_sched_param param;
 thread_data_t *t_data;
 struct itimerspec timer_prog;

 if (pthread_getappschedparam (thread_id,(void *)¶m,NULL))
 ERROR ("pthread_getschedparam");
 t_data = &th_data[threads_count];
 t_data->period = param.period;
 t_data->th_state = ACTIVE;
 t_data->id = threads_count++;
 add_timespec (&t_data->next_deadline, now, &t_data->period);
 t_data->thread_id = thread_id;
 t_data->timer_id =timer_ids[t_data->id];

 // Add to ready queue
 enqueue_in_order (t_data, &RQ, more_urgent_than);

 // Assign thread-specific data
 if (pthread_remote_setspecific (edf_key, thread_id, t_data))
 ERROR ("pthread_remote_setspecific");

 // Program periodic timer (period = t_data->period)
 timer_prog.it_value = t_data->next_deadline;
 timer_prog.it_interval = t_data->period;
 if (timer_settime (t_data->timer_id, TIMER_ABSTIME, &timer_prog, NULL))
 ERROR ("timer_settime");

 printf (" Add new thread:%d, period:%ds%dns\n", t_data->id,
 t_data->period.tv_sec, t_data->period.tv_nsec);
}

/*
 * eliminate_from_list_of_threads
 */
void eliminate_from_list_of_threads (pthread_t thread_id)
{
 thread_data_t *t_data;
 struct itimerspec null_ts={{0, 0},{0, 0}};
 // get thread-specific data
 if (!(t_data = pthread_remote_getspecific (edf_key, thread_id)))
 ERROR ("pthread_remote_getspecific");
 // disarm timer.

 timer_settime(t_data->timer_id,0,&null_ts,NULL);

 // Remove from scheduling algorithm lists
 if (t_data->th_state == ACTIVE)
 dequeue (t_data, &RQ);
 // Free used memory
 free (t_data);
}

/*
 * make_ready
 */
void make_ready (pthread_t thread_id, const struct timespec *now)
{
 thread_data_t *t_data;
 struct itimerspec timer_prog;
 // get thread-specific data
 if (!(t_data = pthread_remote_getspecific (edf_key, thread_id)))
 ERROR ("pthread_remote_getspecific");

 t_data->th_state = ACTIVE;

 add_timespec (&t_data->next_deadline, now, &t_data->period);

 // Program periodic timer
 timer_prog.it_value = t_data->next_deadline;
 timer_prog.it_interval = t_data->period;
 timer_settime (t_data->timer_id, TIMER_ABSTIME, &timer_prog, NULL);
}

/*
 * make_blocked
 */
void make_blocked (pthread_t thread_id)
{
 thread_data_t *t_data;
 struct itimerspec null_timer_prog = {{0, 0},{0, 0}};
 // get thread-specific data
 if (!(t_data = pthread_remote_getspecific (edf_key, thread_id)))
 ERROR ("pthread_remote_getspecific");

 t_data->th_state = BLOCKED;
 timer_settime (t_data->timer_id, 0, &null_timer_prog, NULL);
}

/*
 * reached_activation_time
 */
void reached_activation_time (thread_data_t *t_data)
{
 switch (t_data->th_state) {
 case TIMED:
 t_data->th_state = ACTIVE;
 enqueue_in_order (t_data, &RQ, more_urgent_than);
 incr_timespec (&t_data->next_deadline, &t_data->period);
 break;
 case BLOCKED:

 break;
 case ACTIVE:
 // Deadline missed
 printf (" Deadline missed in thread:%d !!\n", t_data->id);
 incr_timespec (&t_data->next_deadline, &t_data->period);
 break;
 default:
 printf (" Invalid state:%d in thread:%d !!\n", t_data->th_state, t_data->id);
 }

 // This is only, for debbuging purposes in RTLinux.
 rt_print_edf_request(events,t_data,FIFO);
}

/*
 * make_timed
 */
void make_timed (pthread_t thread_id)
{
 thread_data_t *t_data;
 // get thread-specific data
 if (!(t_data = pthread_remote_getspecific (edf_key, thread_id)))
 ERROR ("pthread_remote_getspecific");

 t_data->th_state = TIMED;

 // remove the thread from the ready queue
 dequeue (t_data, &RQ);
}

/*
 * EDF scheduler thread
 */
void *edf_scheduler (void *arg)
{
 posix_appsched_actions_t actions;
 struct posix_appsched_event event;
 sigset_t waited_signal_set;
 struct timespec now;
 int i;

 // Initialize the 'waited_signal_set'
 sigemptyset (&waited_signal_set);
 for (i=0;i<MAX_TASKS;i++)
 sigaddset (&waited_signal_set, (SIGUSR1+i));

 // Create a thread-specific data key
 if (pthread_key_create (&edf_key, NULL))
 ERROR ("pthread_create_key");

 // Initialize actions object
 if (posix_appsched_actions_init (&actions))
 ERROR ("posix_appsched_actions_init");

 while (1) {
 /* Actions of activation and suspension of threads */
 schedule_next (&actions);

 /* Execute scheduling actions */
 if (posix_appsched_execute_actions (&actions,&waited_signal_set,
 NULL, &now, &event))
 ERROR ("posix_appsched_execute_actions");

 /* Initialize actions object */
 if (posix_appsched_actions_destroy (&actions))
 ERROR ("posix_appsched_actions_destroy");
 if (posix_appsched_actions_init (&actions))
 ERROR ("posix_appsched_actions_init");

 /* Process scheduling events */
 printf ("\nEvent: %d\n", event.event_code);
 switch (event.event_code) {

 case POSIX_APPSCHED_NEW:
 add_to_list_of_threads (event.thread, &now);
 break;

 case POSIX_APPSCHED_TERMINATE:
 eliminate_from_list_of_threads (event.thread);
 break;

 case POSIX_APPSCHED_READY:
 make_ready (event.thread, &now);
 break;

 case POSIX_APPSCHED_BLOCK:
 make_blocked (event.thread);
 break;

 case POSIX_APPSCHED_EXPLICIT_CALL:
 rtl_printf("EXPLICIT_CALL: %d ptr:%d\n",event.thread->user[0]-2,event.thread);
 // The thread has done all its work for the present activation
 make_timed (event.thread);
 break;

 case POSIX_APPSCHED_SIGNAL:
 rtl_printf("SIGNAL %d\n",event.event_info.siginfo.si_signo-SIGUSR1);
 // This is a trick, since in RTLinux we don't have REAL TIME SIGNALS, yet.
 reached_activation_time(&th_data[event.event_info.siginfo.si_signo-SIGUSR1]);
 }
 }

 return NULL;
}

/*edf_threads.c*/

#include "edf_sched.h"
#include <pthread.h>

#define NTASKS 2
timer_t timer_ids[MAX_TASKS];

pthread_t sched, tasks[MAX_TASKS];
#define MAIN_PRIO MAX_TASKS

long loops_per_second = 30000;

/* Scheduled thread */
void * periodic (void * arg)
{
 float amount_of_work = *(float *) arg;
 int count=0;

 posix_appsched_invoke_scheduler (NULL, 0);
 while (count++<10000) {
 /* do useful work */
 rtl_printf("I am here id:%d, iter:%d\n",pthread_self()->user[0]-2,count);
 eat (amount_of_work);

 rtl_printf("th :%d about to invoke_scheduler\n",pthread_self()->user[0]-2,count);
 posix_appsched_invoke_scheduler (NULL, 0);
 }
}

int init_module(void)
{
 pthread_attr_t attr;
 struct edf_sched_param user_param;
 struct sched_param param;
 float load1, load2;
 struct sigevent evp;
 int ret=0;

 adjust ();

 /* Creation of the scheduler thread */
 pthread_attr_init (&attr);
 param.sched_priority = MAIN_PRIO - 1;
 if ((ret=pthread_attr_setappschedulerstate(&attr,PTHREAD_APPSCHEDULER))<0)
 printk("error while pthread_attr_setappschedulerstate(&attr,PTHREAD_APPSCHEDULER)
\n");
 if (pthread_attr_setschedparam (&attr, ¶m))
 ERROR ("pthread_attr_setschedparam scheduler");
 if (pthread_create (&sched, &attr, edf_scheduler, NULL))
 ERROR ("pthread_create scheduler");

 /* Set main task base priority */
 param.sched_priority = MAIN_PRIO;
 if (pthread_setschedparam (sched, SCHED_FIFO, ¶m))
 perror ("pthread_setschedparam");

 pthread_attr_destroy(&attr);

 /* Creation of one scheduled thread */
 pthread_attr_init (&attr);
 attr.initial_state=0;

 pthread_attr_setfp_np(&attr, 1);
 param.sched_priority = MAIN_PRIO - 3;
 user_param.period.tv_sec = 0;
 user_param.period.tv_nsec = 20*1000*1000; // period = 20 ms
 load1 = 0.001; // load = 1 ms

 /*
 param.posix_appscheduler = sched;
 param.posix_appsched_param = (void *) &user_param;
 param.posix_appsched_paramsize = sizeof (struct edf_sched_param);
 */
 evp.sigev_notify = SIGEV_SIGNAL;
 evp.sigev_signo = SIGUSR1;
 if (timer_create (CLOCK_REALTIME, &evp,&timer_ids[evp.sigev_signo-SIGUSR1]))
 ERROR ("timer_create");

 if ((ret=pthread_attr_setappschedulerstate(&attr,PTHREAD_REGULAR))<0)
 printk("error while pthread_attr_setappschedulerstate\n");

 if ((ret=pthread_attr_setappschedparam(&attr,(void *) &user_param,sizeof(user_param))<0))
 printk("error while pthread_attr_setappschedparam\n");

 if (pthread_attr_setappscheduler (&attr, sched))
 ERROR ("pthread_attr_setappscheduler 1");

 if (pthread_attr_setschedparam (&attr, ¶m))
 ERROR ("pthread_attr_setschedparam 1");

 if (pthread_create (&tasks[0], &attr, periodic, &load1))
 ERROR ("pthread_create 1");

 /* Creation of other scheduled thread */
 pthread_attr_init (&attr);
 attr.initial_state=0;
 pthread_attr_setfp_np(&attr, 1);
 param.sched_priority = MAIN_PRIO - 1;
 user_param.period.tv_sec = 0;
 user_param.period.tv_nsec = 50*1000*1000;// period = 50 ms
 load2 = 0.005; // load = 5 ms
 /*
 param.posix_appsched_param = (void *) &user_param;
 param.posix_appsched_paramsize = sizeof (struct edf_sched_param);
 */
 evp.sigev_notify = SIGEV_SIGNAL;
 evp.sigev_signo = SIGUSR1+1;
 if (timer_create (CLOCK_REALTIME, &evp,&timer_ids[evp.sigev_signo-SIGUSR1]))
 ERROR ("timer_create");
 if ((ret=pthread_attr_setappschedulerstate(&attr,PTHREAD_REGULAR))<0)
 printk("error while pthread_attr_setappschedulerstate\n");

 if ((ret=pthread_attr_setappschedparam(&attr,(void *) &user_param,sizeof(user_param))<0))
 ERROR ("pthread_attr_setappschedparam 2");

 if (pthread_attr_setappscheduler (&attr, sched))
 ERROR ("pthread_attr_setappscheduler 2");

 if (pthread_attr_setschedparam (&attr, ¶m))
 ERROR ("pthread_attr_setschedparam 2");

 if (pthread_create (&tasks[1], &attr, periodic, &load2))
 ERROR ("pthread_create 2");

 return 0;
}

void cleanup_module(void){
 int i;
 // Remove scheduled threads.
 for (i=0;i<NTASKS;i++){
 timer_delete(timer_ids[i]);
 pthread_delete_np(tasks[i]);
 }
 // Remove Application scheduler thread.
 pthread_delete_np(sched);

}

Ada Support

Description

This component is a porting of the Gnat compiler run time support to the
RTLinux executive. With this porting it is possible to use the ADA language to
program hard real-time applications in RTLinux.
Ada is a standard programming language that was designed with a special
emphasis on real-time and embedded systems programming, also covering
other parts of modern programming such as distributed systems, systems
programming, object oriented programming or information systems.

Usage

The Gnat porting is a complex component that modifies the some scripts of the
installed Gnat compiler code. The ported Gnat run time support runs on top of
the RTLinux, and use the RTLinux API as a "normal" RTLinux application. That
is, it neither modifies the OCERA-RTLinux code nor add any new file. For this
reason it has not been integrated into the OCERA framework but has to be
installed separately.
Although not necessary, it is convenient to have experience using Gnat the
compiler before installing RTLGnat.

Next are the installation steps to install RTLGnat (Version 1.0) in the Gnat
system (assuming that the running Linux kernel and RTLinux executive are the
one of the OCERA framework):

1.Please, be sure that you have the original GNAT compiler distributed by ACT
(ftp://cs.nyu.edu/pub/gnat/), and REMOVE any other gnat included in your Linux
distribution. Otherwise, broken executables and libraries can be generated.

2.Select, at least, the following options in the main OCERA config tool:
1.RTLinux Configuration -> Priority inheritance (POSIX Priority Protection)
2.RTLinux Configuration -> Floating point support
3.OCERA Component Conf. -> Scheduling -> Dynamic memory
manager...
4.OCERA Component Conf. -> Scheduling -> POSIX Signals ...
5.OCERA Component Conf. -> Scheduling -> POSIX Trace
(recommended)

3.Edit the (RTLGnat)/Makefile and modify the path variables to point to the right
directories. Among others, the GNAT_PATH variable is the location of the gnat
compiler and libraries, which usually is /usr/gnat

4.Make sure that the proper version of gnat is at the beginning of the PATH
variable, for example: export PATH=/usr/gnat/bin:$PATH

5.You may need root privileges (write access to the GNAT directory) to compile
RTLGnat because it will add some files to the standard GNAT distribution.

6.Compile RTLGnat by running "make" from the (RTLGnat) directory.

7.Now RTLGnat has been installed and compiled jointly with the standard Gnat
distribution. You can find the RTLGnat examples in $GNAT_PATH/rtl_examples
(usually at /usr/gnat/rtl_examples). To compile the examples, just run "make"
from the mentioned directory.

RTLGnat will be installed in the directory where GNAT is already installed. The
modifications to the GNAT installation will include a directory called rts-rtlinux,
where the needed libraries will be located, and the executables rtlgnatmake,
rtload and rtunload.
The "rtlgnatmake" script is the equivalent to "gnatmake" in GNAT for Linux.
Simply run:

rtlgnatmake my_app.adb

to obtain the application module "my_app"
Once you have created your application object module, RTLinux needs to be
loaded in order to run your application:

rtlinux start

Now you should start up your application by doing:

rtload my_app

To terminate and remove your running application just run:

rtunload my_app

Example

Following example makes use of the POSIX trace component to with
Ada.Real_Time;

use Ada.Real_Time;
with RTL_Pt1;
use RTL_Pt1;

procedure Tasks is

 task type Std_Task (Id : Integer) is
 pragma Priority(Id);
 entry Call;
 end Std_Task;

 task body Std_Task is
 Next_Time : Time;
 Period : Time_Span := Microseconds (100);
 Next_While : Time;
 Period_While : Time_Span := Microseconds (10);
 begin

 accept Call;
 Next_Time := Clock + Period;
 loop
 -- Put ("I am "); Put (Id); New_Line;
 Next_While := Clock + Period_While;
 while Next_While > Clock loop
 null;
 end loop;
 delay until Next_Time;
 Next_Time := Clock + Period;
 end loop;
 end Std_Task;

 Std_Task1 : Std_Task(1);
 Std_Task2 : Std_Task(2);
 dev : Integer;
begin
-- Std_Task1.Call;
 dev := Integer(rtl_ktrace_start);
 Std_Task1.Call;
 Std_Task2.Call;
 delay 0.005;
 dev := Integer(rtl_ktrace_stop);
-- Std_Task2.Call;
end Tasks;

POSIX tracing

Description

As realtime applications become bigger and more complex, the availability of
event tracing mechanisms becomes more important in order to perform
debugging and runtime monitoring. Recently, IEEE has incorporated tracing to
the facilities defined by the POSIX® standard. The result is called the POSIX
Trace standard. Tracing can be defined as the combination of two activities: the
generation of tracing information by a running process, and the collection of this
information in order to be analysed. The tracing facility plays an important role in
the OCERA architecture. Besides its primary use as a debugging and tuning tool,
the tracing component jointly with the application-defined scheduler component
constitute the key tools for building fault-tolerance mechanisms.
The POSIX trace standard was firstly approved as the amendment 1003.1q of
the POSIX 1003.1-1996 standard, and then integrated in the most recent version
of POSIX, called 1003.1-2001. Considering that the Trace standard is quite
recent, the reader may not be familiar with its concepts and terminology. The
following sections provide an introduction to the concepts and the structure of
the tracing system.

Main concepts

The POSIX Trace standard is founded on two main data types (trace event and
trace stream) and is also based on three different roles which are played during
the tracing activity: the trace controller process (the process who sets the tracing
system up), the traced or target process (the process which is actually being
traced), and the trace analyser process (the process who retrieves the tracing
information in order to analyse it). All these concepts are detailed in the following
sections.

Data types

Trace Event

When a program needs to be traced, it has to generate some information each
time it reaches "a significant step" (certain instruction in the program s source
code). In the POSIX Trace standard terminology, this step is called a trace point,
and the tracing information which is generated at that point is called a trace
event. A program containing one or more of this trace points is named
instrumented application.

A trace event can be thus defined as a data object representing an action which
is executed by either a running process or by the operating system. In this
sense, there are two classes of trace events: user trace events, which are
explicitly generated by an instrumented application, and system trace events,
which are generated by the operating system1.

Any trace event, being either system or user, belongs to a certain trace event
type (an internal identifier, of type trace_event_id_t) and it is associated with a
trace event name (a human-readable string). For system events, the definition of
event types and the mapping between these types and their corresponding
names is hard-coded in the implementation of the trace system. Therefore, this
event types are common for all the instrumented applications and never change
(they are always traced). The trace standard predefines some event types, which
are related to the trace system itself, and permits the operating system designer
to add some others which may be interesting to that system. The definition of
user event types is very different. When an instrumented application wants to
generate trace event of a particular type, it has first to create this type. This is
done by invoking a particular function (posix_trace_open()) that, given a new
trace event name, returns a new trace event type; then, events of this type can
be generated from that moment on. If the event name was already registered for
that application, then the previously associated identifier is returned. The
mapping between user event types and their names is private to each
instrumented program and lasts while the program is running.

The generation of a trace event is done internally by the trace system for a
system event and explicitly (by the application when invoking posix_trace_event
()) for a user trace event. In both cases, the standard defines that the trace
system has to store some information for each trace event being generated,
including, at least, the following:

a. the trace event type identifier,

b. a timestamp,

c. the process identifier of the traced process (if the event is process-
dependent),

d. the thread identifier (of the thread related to the event), if the event is
process-dependent and the O.S. supports threads,

e. the program address at which the event was generated,

f. any extra data that the system or the instrumented application wants to
associate with the event, along with the data size2.

Trace Stream

When the system or an application trace an event, all the information related to it
has to be stored somewhere before it can be retrieved, in order to be analyzed.
This place is a trace stream. Formally speaking, a trace stream is defined as a
non-persistent, internal (opaque) data object containing a sequence of trace
events plus some internal information to interpret those trace events. The
standard does not define a stream as a persisten object and thus it is assumed
to be volatile, that is, to reside in main memory.

The standard establishes that, before any event can be stored for a process, a
trace stream has to be explicitly created to trace that particular process (the
process pid is one of the arguments of the stream creation function). In the most
general case, the relationship between streams and processes is many to many.
On the one hand, many processes can be traced in a single stream; in particular,
this happens if the target process forks after a stream has been created for the
(parent) process. On the other hand, the standard permits that many streams are
created to trace the same process; if so, each event generated by the process
(or by the operating system) is registered in all these streams.

Streams also support filtering. The application can define and apply a filter to a
trace stream. Basically, the filter establishes which event types the stream is
accepting (and hence storing) and which are not. Therefore, trace events
corresponding to types which are filtered out from a certain stream will not be
stored in the stream. Each stream in the system(even if associated with the
same process) can potentially be applied a different filter. This filter can be
applied, removed or changed at any time.

The standard defines two classes of trace streams: active and pre-recorded,
which are described below.

a. Active trace stream. This is a stream that has been created for tracing
events and has not yet been shut down. This means that it is now
accepting events to store. An active trace stream can be of two different
types, depending on whether it has been created with or without a log. In
a trace stream with log, the stream is created along with a log.

 A log is a persistent object (that is, a file) in which the events stored in the
stream are saved each time the stream is flushed by the trace system.
The trace controller process can create such a stream by calling the
function posix_trace_create_withlog(). Thus, events traced from the target
process are stored in the stream until it is flushed, either automatically by
the trace system or when the trace controller process invokes the
posix_trace_flush() function. In either case, the flushing then frees the
resources previously occupied by the events just written to the log, making
these resources available for new events to be stored. This is shown in
Figure 2-(a). In streams with a log, events are never directly retrieved from
the stream but from the log (see Pre-recorded trace stream below), once
the stream has been shut down. That is, the log is not available for
retrieving the events until the tracing of events is over. In a trace stream
without log (created by calling posix_trace_create()), trace events are
never written to any persistent media, but instead they remain in the
stream (in memory) until they are explicitly retrieved. Thus, the stream is
accessed concurrently for storing (target process) and retrieving (trace
analyser process) events. These accesses can be done only while the
stream is active (that is, before it is shut down) since, after that, all the
stream resources are freed. Therefore, an active trace stream without a
log is used for on-line analysis of events, as shown in Figure 1.

The standard establishes that the trace analyzer process retrieves the
events one by one, with the trace system always reporting the oldest
stored event first. When this oldest event has been reported, the
resources that it was using in the stream have to be freed and then
become available for new events to be traced.

If the rate at which events are being traced is higher than the rate at which
the trace analyser process is retrieving them from the stream, then the
stream may become full. If an active stream without log becomes full, it
may either stop accepting events or loop; this depends on the so called
stream full policy, which is one of its attributes. In the former case, the
stream will start accepting events again when a certain amount of events
in the stream have been retrieved, hence freeing resources for the new
ones to be stored. In the latter (loop) case, when the stream is full, the
oldest recorded events in the stream are lost as new events are stored
(that is, the oldest events are overwritten).

b. Pre-recorded trace stream. A stream of this class is used for retrieving
trace events which were previously stored in a log. In particular, the log file
is opened into a (pre-recorded) stream from which events are then
retrieved. Thus, off-line analysis of events is performed in two steps: first,
events are traced into an active stream with log; second, after this stream
is shut down, the log can be opened into a pre-recorded stream from
which the events are retrieved. This process is shown in Figure 2.

Processes Involved in the Tracing Activity

The standard defines that up to three different roles can be played in each
tracing activity: trace controller process, traced (or target) process and trace
analyzer process. In the most general case, each of these roles is executed by a
separate process. However, nothing in the standard prevents from having two (or
even the three) of these roles executed by the same process. In a small, multi-
threaded application, we can have, for example, the three roles played by
different threads inside the same process. These roles are now explained in
detail.

Trace Controller Process

The trace controller process is the process that sets the tracing system up in
order to trace a (target) process, which can be the same process or a different
one. In particular, this process is in charge of, at least, the following actions:

a. Creating a trace stream with its particular attributes (e.g, if the stream is
with or without a log, the stream full policy, etc.). This is further detailed
below.

b. Starting and stopping tracing when necessary. This is done by calling
posix_trace_start() and posix_trace_stop(), respectively. Each active
stream can be in two different states: running or suspended. These two
states determine whether or not the stream is accepting events to be
stored. The trace controller process can start and stop the stream as
many times as it wants. If the stream full policy is to trace until full
(POSIX_TRACE_UNTIL_FULL), the trace system will automatically stop
the stream when full and start it again when some (or all) of its stored
events have been retrieved.

c. Filtering the types of events to be traced. Each stream is initially created
with an empty filter (that is, without filtering any event type). If this is not
the required behaviour, the trace controller process can build a set of
event types (trace_event_set_t), include the appropriate event types in it,
and apply it as a filter to the stream (by invoking posix_trace_set_filter()).
After that, the stream will reject any event whose type is in the filter set.

d. Shutting the stream down, when the tracing is over
(posix_trace_shutdown()). The standard requires that shutting a stream
down must free all the stream resources. That is, the stream is destroyed
and no more operations can be done on it.

Among all these basic actions, the creation of the stream is the most complex
one. This action is done in two steps:

1. Create a stream attribute object (trace_attr_t) and set each of its attributes
appropriately. Since this type is also opaque to the user (that is, internal to the
trace system), the standard provides a function to initialize an attribute object
and then pairs of functions to get and set each of the individual attributes
included in the object. Some of these attributes are: the stream name, the
stream minimum size, the event data maximum size, the stream full policy,
etc. This setting up is performed before invoking the call to create the stream.

2. Create the stream (trace_id_t). There are two different functions to create an
active stream, depending on whether it has to be with or without a log.
Respectively, these functions are posix_trace_create_withlog() and
posix_trace_create(). In either case, the arguments of the creation function
are the stream attribute object, previously initialised and set (see above), and
the target process pid (process identifier). The main implication of this is that
the target process has to exist before the trace controller process can create a
stream to trace it. Besides, it has to have enough privileges over the target to
do it. The exact definition of this latter requirement depends on the
implementation of the trace system. The stream identifier returned in this
function can only be used by the process that has created the stream. Only
this process can thus directly access the stream in any way. This establishes
some limitations that will be commented below.

Optionally, the trace controller process can also perform other actions on the
stream, once the stream has been created:

Clearing the stream (posix_trace_clear()). This clears all the events that are now
in the stream, but leaves its behaviour (attributes) intact. Clearing the stream
makes it exactly in the same state that it was just after being created.

Flushing the stream (posix_trace_flush()). If the stream is created with a log, this
action produces an automatic flushing of all the events which are now in the
stream to the log. Otherwise, an error is returned.

Querying the stream attributes (posix_trace_get_attr()) and the stream current
status (posix_trace_get_status()). The stream status includes whether the
stream is currently running or suspended, whether or not an overrun has
occurred, etc.

Retrieving the list of event types defined for the stream. The list is retrieved in
order, since the function posix_trace_eventtypelist_getnext_id() returns the first
event type when it is invoked for the first time, and the next event type in
subsequent calls. At any time, the retrieval of event types can be initialised by
calling posix_trace_eventtypelist rewind(). Actually, the standard establishes that
the event types are not actually associated with a particular stream, but to a
particular target process. In other words, the list of event types is the same for all
the streams which are tracing the same target.

Mapping event names to event types (posix_trace_trid_eventid_open()). This is
normally performed by the target process in order to create its own user event
types. However, the trace controller process can use the mapping function in the
opposite way: given a well-known user trace event name, the mapping function
will return the event type identifier; then, the trace controller process can use that
identifier to set up a stream filter, for example.

The Traced or Target Process

The traced or target process is the process that is being traced, that is, is the
process for which a trace stream has been created and set up. According to the
standard, only two functions can actually be called from a target process:

a. A function to register a new user event type for this process
(posix_trace_eventid_open()). The input argument of this function is the
(new) event type name. If this name has already being registered for that
target, then the previously mapped event type identifier is returned. If not,
then a new identifier is internally associated with this name and returned.
If an implementation defined maximum amount of user event types had
already been registered for that target process, then a predefined event
type called POSIX TRACE_UNNAMED_USEREVENT is returned. If
successful, this registration is valid for all the streams that have been
created, or will be created, to trace the target process (even if no stream
has still been created for that target). From the user viewpoint, therefore,
the identification of user event types is done in a per-name basis (instead
of using integer values, for example). This allows for a name space wide
enough to avoid collisions when independent pieces of instrumented code
are linked together into a single application. This include, for example, the
case of linking an instrumented third-party library to our code, even when
we do not have the library s source code.

b. A function to trace an event (posix_trace_event()). This function has three
input arguments: the event type, which must have been previously
registered (see above), a pointer to any extra data that has to be stored
along with the event, and the size of this data3. The event is stored in all
the streams created for that particular target which are currently running
and which do not have the event s type being filtered out.

It is important to point out that neither of these functions accepts a stream
identifier as a parameter. That is, according to the standard philosophy, the
target is programmed to invoke these functions without being aware (and
independently) of actually being traced or not. The result is that calling the
posix_trace_event() function has no effect if no stream has been created for the
target. In other words, an instrumented running program does not actually
become a target process until at least one stream has been created for it. The
case of the posix_trace_eventid_open() function is different since, as explained
above, the trace system will register any new event type for the program even
when no stream has been created for tracing the process.

This philosophy completely decouples the target from the trace controller
process, with many interesting advantages. For example, imagine an application
that runs for long periods of time without stop (a real-time application or a
database, for instance). It may be interesting to know, every once in a while, how
this application is performing. Therefore, this (instrumented) application can be
the target of an inspector (trace controller) program that, periodically, creates
one or more streams to trace it, gets the resulting events, and then destroys the
stream(s). Depending on the application characteristics, this occasional tracing
may be good enough to check how the application is behaving, and does not
overload the system with a continuous tracing.

Trace Analyser Process

This process is in charge of retrieving the stored events in order to analyse them.
The standard defines three alternative retrieval functions to be used by the trace
analyser process:

a. posix_trace_getnext_event(). This function retrieves one event from the
stream whose identifier is provided as a parameter. If no event is
immediately available, the function blocks the invoking process (or thread)
until an event is available.

b. posix_trace_timedgetnext_event(). This function works in a similar fashion
than the previous one, but, when no event is immediately available, it
blocks the process until either an event is available or an absolute timeout
is reached (whatever of both happens first). If the timeout is produced
first, the invoking process gets the corresponding error code.

c. posix_trace_trygetnext_event(). This function never blocks the invoking
process: it either return a retrieved event or an error code, if no event is
available at the moment.

If successful, any of these functions retrieve the oldest event stored in the
stream which has not still been reported. The age of each event is calculated
according to the automatic timestamp performed by the trace system when the
event is recorded.

As explained above, the events can be only be retrieved from two different
places: (1) from an active stream without log; (2) from the log of a (previously
destroyed) stream with log, once this log has been opened into a (pre-recorded)
trace stream. This defines the two kinds of analysis that the standard supports:

a. a)On-line analysis. In this kind of analysis, the trace analyzer process
retrieves the events from an active trace stream (without log). As stated
above, the retrieval function (any of them) needs to provide the stream s
identifier; however, according to the standard, this identifier can only be
used within the process that created the stream. This forces that, in an on-
line analysis, the trace analyzer process and the trace controller process
have to be the same one.

b. Off-line analysis. As explained in Trace Controller Process subsection,
this analysis is done in two steps: in the first step, events are recorded into
an active trace stream with log that, automatically or under request of the
trace controller process, flushes these events to the log (file). Once this
step is over, the trace analyser process opens the log into a private, pre-
recorded stream (posix_trace_open()), from which it can start retrieving
the events. Only the first of the three retrieval functions mentioned above
can actually be used in a pre-recorded stream. Obviously, in this case,
this function will never make the trace analyser process to block, since all
the events are already stored in the stream. From a pre-recorded stream,
events are always reported in order (according to the recording
timestamp) but they are not erased from the stream after being retrieved.
If necessary, the trace analyser process can start retrieving the events
again from the oldest one by rewinding the stream (posix_trace_rewind()),
without having to re-open the log.

In addition, the trace analyser process can also retrieve other information of the
stream (either active or pre-recorded), including the list of registered event types
and its names, the stream attribute object (and then each of its individual
attributes), the stream current status (for an active stream), etc. All this
information is intended to make the trace analyser process able to correctly
interpret the trace events which it is retrieving.

Additional information

Since this part of the POSIX standard was published recently, there is still a lack
of documentation in the printed form (as fas as the authors know there is not a
book that covers this issues of the PSOXI standard), also the implementation
done in OCERA was one of the first implementations of the standard. For more
information the reader is referred to the online rationale and man pages available
at the OpenGroup site: http://www.opengroup.org/onlinepubs/007904975/.

Example

The following example creates three new user event types and a trace stream,
and then starts five RTLinux threads. Among them, three periodically execute
and just consume CPU, another one periodically wakes up and trace these
events, and the last one waits until a new event is available and then retrieves it
and writes its contents to the console.

#include <rtl.h>
#include <time.h>
#include <pthread.h>
#include <rtl_sched.h>
#include <trace.h>
#include <rtl_ktrace.h>

static trace_id_t trid;
static trace_event_id_t ev_char, ev_int, ev_string;
static pthread_t thr1, thr2, thr3, thr4, thr5;

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

/***/
void *writer(void *dummy) {
 int i, j, k;
 char s[164] ="hello world!hello world!hello world!hello world!hello world!hello world!hello
world!hello world!hello world!hello world!hello world!hello world!hello world!\0";
 char c;
 void *data;

 // Create a new event type:
 posix_trace_eventid_open ("user event string", &ev_string);
 c = 'A';
 k = 0;

 pthread_wait_np();

 for (i=0; i<10; i++) {
 for (j=0; j<700000; j++);

 pthread_mutex_lock(&mutex);

 data = (void *) & c;
 posix_trace_event(ev_char, data, sizeof(char));
 data = (void *) & k;
 posix_trace_event(ev_int, data, sizeof(int));

 for (j=0; j<70000; j++);

 posix_trace_event(ev_string, s, sizeof(s));

 // Values for next loop:
 c += 1;
 k += 1;

 pthread_mutex_unlock(&mutex);
 pthread_wait_np();
 }
 return (void *) 0;
}

/***/
void *just_execute(void *loops) {
 int i, j, nloops = (int) loops;

 for (i=0; i<100; i++) {
 for (j=0; j<nloops/4; j++);
 pthread_mutex_lock(&mutex);
 for (j=0; j<nloops/2; j++);
 pthread_mutex_unlock(&mutex);
 for (j=0; j<nloops/4; j++);

 pthread_wait_np();
 }

 return (void *) 0;
}

/***/
void *reader(void *loops) {
 int error;
 trace_attr_t trace_attr;
 char str[TRACE_NAME_MAX];
 struct posix_trace_event_info event;
 char data[64];
 size_t datalen;
 int unavailable;
 int *ent;
 char *car;
 trace_event_id_t evid;

 error = posix_trace_get_attr(trid, &trace_attr);
 rtl_printf("get attr (%d)\n", error);

 error = posix_trace_attr_getgenversion(&trace_attr, str);
 rtl_printf("get genversion (%d): %s\n", error, str);

 posix_trace_eventtypelist_rewind(trid);
 posix_trace_eventtypelist_getnext_id (trid, &evid, &unavailable);
 while (! unavailable) {
 posix_trace_eventid_get_name (trid, evid, str);
 rtl_printf("Event %d name %s\n", evid, str);
 posix_trace_eventtypelist_getnext_id (trid, &evid, &unavailable);
 }

 error = 0; unavailable = 0;

 while (! error && ! unavailable) {

 event.posix_event_id = 1024;
 error = posix_trace_getnext_event(trid,

 &event,
 &data,
 sizeof(data),
 &datalen,
 &unavailable);

 if(error) {
 rtl_printf("No more events (%d). Exiting\n", error);

 } else if (unavailable) {
 rtl_printf(" Event unavailable\n");

 } else {
 posix_trace_eventid_get_name (trid, event.posix_event_id, str);

 // Now switch depending on the event type (name):
 if (!strcmp(str,"user event char")) {
 car = (char *) data;
 rtl_printf(" Time =%ld.%ld. Event %d (%s) with data=%c (size = %d)\n",
 event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
 event.posix_event_id, str, *car, datalen);
 }
 else if (!strcmp(str,"user event int")) {
 ent = (int *) data;
 rtl_printf(" Time =%ld.%ld. Event %d (%s) with data=%d (size = %d)\n",
 event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
 event.posix_event_id, str, *ent, datalen);
 }
 else if (!strcmp(str,"user event string")) {
 rtl_printf(" Time =%ld.%ld. Event %d (%s) with data=%s (size = %d)\n",
 event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
 event.posix_event_id, str, (char *) data, datalen);
 }
 else {
 rtl_printf(" Time =%ld.%ld. Event %d (%s) with data unknown\n",
 event.posix_timestamp.tv_sec, event.posix_timestamp.tv_nsec,
 event.posix_event_id, str);
 }
 }
 }
 rtl_printf("Error = %d Unavailble = %d \n", error, unavailable);

 return (void *) 0;
}

/***/
int init_module(void) {

 trace_attr_t attr;
 pthread_attr_t thattr;
 trace_event_set_t set;
 int error;

 // Start the automatic tracing of kernel events:
 rtl_ktrace_start();

 // Create and set the trace attribute:

 error = posix_trace_attr_init(&attr);

 error = posix_trace_attr_setstreamfullpolicy (&attr, POSIX_TRACE_UNTIL_FULL);
 error = posix_trace_attr_setname(&attr, TRACE_STREAM1_NAME);
 error = posix_trace_attr_setmaxdatasize(&attr, 64);
 error = posix_trace_attr_setstreamsize(&attr, 4096);

 // Create the stream:
 error = posix_trace_create(0, &attr, &trid);
 if (error) return -1;

 // Create new event types associated with this stream:
 error = posix_trace_trid_eventid_open (trid,"user event char", &ev_char);
 error = posix_trace_trid_eventid_open (trid,"user event int", &ev_int);

 // Set the stream filter to only record user events:
 posix_trace_eventset_fill(&set, POSIX_TRACE_SYSTEM_EVENTS);

 error = posix_trace_set_filter(trid, (const trace_event_set_t *) &set,
 POSIX_TRACE_SET_EVENTSET);

 // Start tracing:
 error = posix_trace_start(trid);
 if (error) return -1;

 // Create the 'writer' task (the one which traces user events):
 pthread_attr_init (&thattr);
 pthread_create (&thr1, &thattr, writer, 0);
 pthread_make_periodic_np(thr1, 0, (hrtime_t) 400000000);

 // Create other tasks which just consume cpu
 // This one awakes each 20 msec:
 pthread_create (&thr2, &thattr, just_execute, (void *) 100000);
 pthread_make_periodic_np(thr2, 0, (hrtime_t) 20000000);

 // This one awakes each 25 msec:
 pthread_create (&thr3, &thattr, just_execute, (void *) 300000);
 pthread_make_periodic_np(thr3, 0, (hrtime_t) 25000000);

 // This one awakes each 50 msec:
 pthread_create (&thr4, &thattr, just_execute, (void *) 200000);
 pthread_make_periodic_np(thr4, 0, (hrtime_t) 50000000);

 // Create the 'reader' task (awakes only once):
 pthread_create (&thr5, &thattr, reader, (void *) 200000);

 return 0;
}

/***/
void cleanup_module(void) {

 rtl_printf("rtl_tasks: CLEANUP!!!\n");

 // Stop and shutdown the stream:
 posix_trace_shutdown(trid);

 // Delete the tasks:
 pthread_delete_np(thr1);
 pthread_delete_np(thr2);
 pthread_delete_np(thr3);
 pthread_delete_np(thr4);
 pthread_delete_np(thr5);

 // Stop the tracing of kernel events:
 rtl_ktrace_stop();
}

PART IIIPART III
RTLinux/Linux interface

printf
fifo
shared memory
onetd
modules
/proc

Debuging and tracing
POSIX Traces

Driver
Driver

PART IVPART IV
Driver framework

Interrupt
System interface
low level routines rtl_a-set

Driver

PART VPART V
OCERA Components

Network

Fault Tolerance

Quality of Services

ORTE

CAN

Quality Of Services

By
Luca Marzario - SSSA

in attachment there are two file that are a skeleton for program that
want to use reservation and feedback scheduling
Before run that program, naturally, user have to insert the relative
module (cbs_sched.o and qmgr_sched.o) into the kernel with insmod
command. No other steps are needed (you are right: the patch is already
integrated).

/*
 * Copyright (C) 2003 Luca Marzario
 * This is Free Software; see GPL.txt for details
 */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <sched.h>
#define __QMGR__
#include "qmgr.h"
#define CBS_PERIOD 10000 /* period of reservation */
#define QMGR_MAX_BUDGET 5000 /* max budget that can be asssigned to CBS server */
#define QMGR_PERIOD 80000 /* period of feedback function */
#define QMGR_MIN_EXEC 5000 /* minimum exstimated execution time */
#define QMGR_MAX_EXEC 60000 /* maximum exstimated execution time */
#define QMGR_LOW_ERR 0 /* desired lower bound of scheduling error */
#define QMGR_HIGH_ERR 5000 /* desired upper bound of scheduling error */
#define QMGR_MIN_ERR 0 /* absolute minimum scheduling error */
#define QMGR_MAX_ERR 10000 /* absolute maximum scheduling error */

#define qmgr_end_cycle()

int main(int argc, char *argv[])
{
 struct sched_param sp;
 struct qmgr_param cs;
 int res, cond = 0;

 sp.sched_size = sizeof(struct qmgr_param);

 sp.sched_p = &cs;
 cs.cbs_period = CBS_PERIOD;
 cs.qmgr_max_b = QMGR_MAX_BUDGET;
 cs.qmgr_period = QMGR_PERIOD;
 cs.qmgr_signature = QMGR_SIGNATURE;

 /* parameters for feedback function */
 cs.h = QMGR_MIN_EXEC;
 cs.H = QMGR_MAX_EXEC;
 cs.ei = QMGR_LOW_ERR;
 cs.Ei = QMGR_HIGH_ERR;
 cs.e = QMGR_MIN_ERR;
 cs.E = QMGR_MAX_ERR;

 /* if you donn't need particular scheduling error target,
 you can use default values: substitute assignment of
 parameters fo feedback function with the following call:

 qmgr_init_default(&cs);
 */

 res = sched_setscheduler(getpid(), SCHED_CBS, &sp);
 if (res < 0) {
 perror("Error in setscheduler!");
 exit(-1);
 }

 do {

 /* my code */

 qmgr_end_cycle();

 } while (cond); /* exit condition */

 return 0;
}

Programs 2

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <sched.h>
#include "cbs.h"

extern char **environ;

#define MAX_BUDEGET_US 10000 /* max budget per period in us */
#define RESERV_PERIOD_US 100000 /* period of reservation in us*/

int main(int argc, char *argv[])
{
 struct sched_param sp; /* used to pass parameters to qres module throug setsched */
 struct cbs_param cs; /* " */
 int res;

 sp.sched_size = sizeof(struct cbs_param);
 sp.sched_p = &cs;
 cs.signature = CBS_SIGNATURE;
 cs.type = CBS_TYPE_DEFAULT;
 cs.max_budget = MAX_BUDEGET_US;
 cs.period = RESERV_PERIOD_US;

 res = sched_setscheduler(getpid(), SCHED_CBS, &sp);
 if (res < 0) {
 perror("Error in setscheduler!");
 exit(-1);
 }

 /* my code */

 return 0;
}

Driver

OCERA Real-Time
Ethernet

By
Jan Krakora CTU
Pavel Pisa CTU
Frantisek Vacek CTU
Zdenek Sebek CTU
Petr Smolik CTU
Zdenek Hanzalek CTU

The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS
communication protocol. RTPS is new application layer protocol targeted to real-
time communication area, which is build on the top of standard UDP stack. Since
there are many TCP/IP stack implementations under many operating systems
and RTPS protocol does not have any other special HW/SW requirements, it
should be easily ported to many HW/SW target platforms. Because it uses only
UDP protocol, it retains control of timing and reliability.

ORTE API

Data types

Table of Contents
enum SubscriptionMode -- mode of subscription
enum SubscriptionType -- type of subcsription
enum ORTERecvStatus -- status of a subscription
enum ORTESendStatus -- status of a publication
struct ORTEIFProp -- interface flags
struct ORTEMulticastProp -- properties for ORTE multicast (not supported yet)
struct ORTECDRStream -- used for serialization
struct ORTETypeRegister -- registered data type
struct ORTEDomainBaseProp -- base properties of a domain
struct ORTEDomainWireProp -- wire properties of a message
struct ORTEPublProp -- properties of a publication

struct ORTESubsProp -- properties of a subscription
struct ORTEAppInfo --
struct ORTEPubInfo -- information about publication
struct ORTESubInfo -- information about subscription
struct ORTEPublStatus -- status of a publication
struct ORTESubsStatus -- status of a subscription
struct ORTERecvInfo -- description of received data
struct ORTESendInfo -- description of sending data
struct ORTEDomainAppEvents -- Domain event handlers of an application
struct ORTETasksProp -- ORTE task properties, not supported
struct ORTEDomainProp -- domain properties

enum SubscriptionMode

Name

enum SubscriptionMode -- mode of subscription

Synopsis
 enum SubscriptionMode {
 PULLED,
 IMMEDIATE
 };

Constants

PULLED

polled

IMMEDIATE

using callback function

Description

Specifies whether user application will poll for data or whether a callback function
will be called by ORTE middleware when new data will be available.

enum SubscriptionType

Name

enum SubscriptionType -- type of subcsription

Synopsis
 enum SubscriptionType {
 BEST_EFFORTS,
 STRICT_RELIABLE
 };

Constants

BEST_EFFORTS

best effort subscription

STRICT_RELIABLE

strict reliable subscription.

Description

Specifies which mode will be used for this subscription.

enum ORTERecvStatus

Name

enum ORTERecvStatus -- status of a subscription

Synopsis
 enum ORTERecvStatus {
 NEW_DATA,
 DEADLINE
 };

Constants

NEW_DATA

new data has arrived

DEADLINE

deadline has occurred

Description

Specifies which event has occured in the subscription object.

enum ORTESendStatus

Name

enum ORTESendStatus -- status of a publication

Synopsis
 enum ORTESendStatus {
 NEED_DATA,
 CQL
 };

Constants

NEED_DATA

need new data (set when callback function specified for publciation is
beeing called)

CQL

transmit queue has been filled up to critical level.

Description

Specifies which event has occured in the publication object. Critical level of
transmit queue is specified as one of publication properties
(ORTEPublProp.criticalQueueLevel).

struct ORTEIFProp

Name

struct ORTEIFProp -- interface flags

Synopsis

 struct ORTEIFProp {
 int32_t ifFlags;
 IPAddress ipAddress;
 };

Members

ifFlags

flags

ipAddress

IP address

Description

Flags for network interface.

struct ORTEMulticastProp

Name

struct ORTEMulticastProp -- properties for ORTE multicast (not supported yet)

Synopsis

 struct ORTEMulticastProp {
 Boolean enabled;
 unsigned char ttl;
 Boolean loopBackEnabled;
 IPAddress ipAddress;
 };

Members

enabled

ORTE_TRUE if multicast enabled otherwise ORTE_FALSE

ttl

time-to-live (TTL) for sent datagrams

loopBackEnabled

ORTE_TRUE if data should be received by sender itself otherwise
ORTE_FALSE

ipAddress

desired multicast IP address

Description

Properties for ORTE multicast subsystem which is not fully supported yet.
Multicast IP address is assigned by the ORTE middleware itself.

struct ORTECDRStream

Name

struct ORTECDRStream -- used for serialization

Synopsis

 struct ORTECDRStream {
 char * buffer;
 char * bufferPtr;
 Boolean needByteSwap;
 int length;
 };

Members

buffer

buffer for data

bufferPtr

current position within buffer

needByteSwap

ORTE_TRUE if it is necessary to swap byte ordering otherwise
ORTE_FALSE

length

buffer length

Description

Struct ORTECDRStream is used by serialization and deserialization functions.

struct ORTETypeRegister

Name

struct ORTETypeRegister -- registered data type

Synopsis

 struct ORTETypeRegister {
 const char * typeName;
 ORTETypeSerialize serialize;
 ORTETypeDeserialize deserialize;
 unsigned int getMaxSize;
 };

Members

typeName

name of data type

serialize

pointer to serialization function

deserialize

pointer to deserialization function

getMaxSize

max data type length in bytes

Description

Contains description of registered data type. See ORTETypeRegisterAdd
function for details.

struct ORTEDomainBaseProp

Name

struct ORTEDomainBaseProp -- base properties of a domain

Synopsis

 struct ORTEDomainBaseProp {
 NtpTime expirationTime;
 NtpTime refreshPeriod;
 NtpTime purgeTime;
 NtpTime repeatAnnounceTime;
 NtpTime repeatActiveQueryTime;
 NtpTime delayResponceTimeACKMin;
 NtpTime delayResponceTimeACKMax;
 unsigned int HBMaxRetries;
 unsigned int ACKMaxRetries;
 NtpTime maxBlockTime;
 };

Members

expirationTime

specifies how long is this application taken as alive in other
applications/managers (default 180s)

refreshPeriod

how often an application refresh itself to its manager or manager to other
managers (default 60s)

purgeTime

how often the local database should be cleaned from invalid (expired)
objects (default 60s)

repeatAnnounceTime

This is the period with which the CSTWriter will announce its existence
and/or the availability of new CSChanges to the CSTReader. This period
determines how quickly the protocol recovers when an announcement of
data is lost.

repeatActiveQueryTime

???

delayResponceTimeACKMin

minimum time the CSTWriter waits before responding to an incoming
message.

delayResponceTimeACKMax

maximum time the CSTWriter waits before responding to an incoming
message.

HBMaxRetries

how many times a HB message is retransmitted if no response has been
received until timeout

ACKMaxRetries

how many times an ACK message is retransmitted if no response has been
received until timeout

maxBlockTime

timeout for send functions if sending queue is full (default 30s)

struct ORTEDomainWireProp

Name

struct ORTEDomainWireProp -- wire properties of a message

Synopsis
 struct ORTEDomainWireProp {
 unsigned int metaBytesPerPacket;
 unsigned int metaBytesPerFastPacket;
 unsigned int metabitsPerACKBitmap;
 unsigned int userMaxSerDeserSize;
 };

Members

metaBytesPerPacket

maximum number of bytes in single frame (default 1500B)

metaBytesPerFastPacket

maximum number of bytes in single frame if transmitting queue has
reached criticalQueueLevel level (see ORTEPublProp struct)

metabitsPerACKBitmap

not supported yet

userMaxSerDeserSize

maximum number of user data in frame (default 1500B)

struct ORTEPublProp

Name

struct ORTEPublProp -- properties of a publication

Synopsis
 struct ORTEPublProp {
 PathName topic;
 TypeName typeName;
 TypeChecksum typeChecksum;
 Boolean expectsAck;
 NtpTime persistence;
 u_int32_t reliabilityOffered;
 u_int32_t sendQueueSize;
 int32_t strength;
 u_int32_t criticalQueueLevel;
 NtpTime HBNornalRate;
 NtpTime HBCQLRate;
 unsigned int HBMaxRetries;
 NtpTime maxBlockTime;
 };

Members

topic

the name of the information in the Network that is published or subscribed
to

typeName

the name of the type of this data

typeChecksum

a checksum that identifies the CDR-representation of the data

expectsAck

indicates wherther publication expects to receive ACKs to its messages

persistence

indicates how long the issue is valid

reliabilityOffered

reliability policy as offered by the publication

sendQueueSize

size of transmitting queue

strength

precedence of the issue sent by the publication

criticalQueueLevel

treshold for transmitting queue content length indicating the queue can
became full immediately

HBNornalRate

how often send HBs to subscription objects

HBCQLRate

how often send HBs to subscription objects if transmittiong queue has
reached criticalQueueLevel

HBMaxRetries

how many times retransmit HBs if no replay from target object has not been
received

maxBlockTime

unsupported

struct ORTESubsProp

Name

struct ORTESubsProp -- properties of a subscription

Synopsis
 struct ORTESubsProp {
 PathName topic;
 TypeName typeName;
 TypeChecksum typeChecksum;
 NtpTime minimumSeparation;
 u_int32_t recvQueueSize;
 u_int32_t reliabilityRequested;
 //additional parametersNtpTime deadline;
 u_int32_t mode;
 };

Members

topic

the name of the information in the Network that is published or subscribed
to

typeName

the name of the type of this data

typeChecksum

a checksum that identifies the CDR-representation of the data

minimumSeparation

minimum time between two consecutive issues received by the subscription

recvQueueSize

size of receiving queue

reliabilityRequested

reliability policy requested by the subscription

deadline

deadline for subscription, a callback function (see
ORTESubscriptionCreate) will be called if no data were received within
this period of time

mode

mode of subscription (strict reliable/best effort), see SubscriptionType
enum for values

struct ORTEAppInfo

Name

struct ORTEAppInfo --

Synopsis
 struct ORTEAppInfo {
 HostId hostId;
 AppId appId;
 IPAddress * unicastIPAddressList;
 unsigned char unicastIPAddressCount;
 IPAddress * metatrafficMulticastIPAddressList;
 unsigned char metatrafficMulticastIPAddressCount;

 Port metatrafficUnicastPort;
 Port userdataUnicastPort;
 VendorId vendorId;
 ProtocolVersion protocolVersion;
 };

Members

hostId

hostId of application

appId

appId of application

unicastIPAddressList

unicast IP addresses of the host on which the application runs (there can
be multiple addresses on a multi-NIC host)

unicastIPAddressCount

number of IPaddresses in unicastIPAddressList

metatrafficMulticastIPAddressList

for the purposes of meta-traffic, an application can also accept Messages
on this set of multicast addresses

metatrafficMulticastIPAddressCount

number of IPaddresses in metatrafficMulticastIPAddressList

metatrafficUnicastPort

UDP port used for metatraffic communication

userdataUnicastPort

UDP port used for metatraffic communication

vendorId

identifies the vendor of the middleware implementing the RTPS protocol
and allows this vendor to add specific extensions to the protocol

protocolVersion

describes the protocol version

struct ORTEPubInfo

Name

struct ORTEPubInfo -- information about publication

Synopsis

 struct ORTEPubInfo {
 const char * topic;
 const char * type;
 ObjectId objectId;
 };

Members

topic

the name of the information in the Network that is published or subscribed
to

type

the name of the type of this data

objectId

object providing this publication

struct ORTESubInfo

Name

struct ORTESubInfo -- information about subscription

Synopsis
 struct ORTESubInfo {
 const char * topic;
 const char * type;
 ObjectId objectId;
 };

Members

topic

the name of the information in the Network that is published or subscribed
to

type

the name of the type of this data

objectId

object with this subscription

struct ORTEPublStatus

Name

struct ORTEPublStatus -- status of a publication

Synopsis
 struct ORTEPublStatus {
 unsigned int strict;
 unsigned int bestEffort;
 unsigned int issues;
 };

Members

strict

count of unreliable subscription (strict) connected on responsible
subscription

bestEffort

count of reliable subscription (best effort) connected on responsible
subscription

issues

number of messages in transmitting queue

struct ORTESubsStatus

Name

struct ORTESubsStatus -- status of a subscription

Synopsis
 struct ORTESubsStatus {
 unsigned int strict;
 unsigned int bestEffort;
 unsigned int issues;
 };

Members

strict

count of unreliable publications (strict) connected to responsible
subscription

bestEffort

count of reliable publications (best effort) connected to responsible
subscription

issues

number of messages in receiving queue

struct ORTERecvInfo

Name

struct ORTERecvInfo -- description of received data

Synopsis

 struct ORTERecvInfo {
 ORTERecvStatus status;
 const char * topic;
 const char * type;
 GUID_RTPS senderGUID;
 NtpTime localTimeReceived;
 NtpTime remoteTimePublished;
 SequenceNumber sn;
 };

Members

status

status of this event

topic

the name of the information

type

the name of the type of this data

senderGUID

GUID of object who sent this information

localTimeReceived

local timestamp when data were received

remoteTimePublished

remote timestam when data were published

sn

sequencial number of data

struct ORTESendInfo

Name

struct ORTESendInfo -- description of sending data

Synopsis

 struct ORTESendInfo {

 ORTESendStatus status;
 const char * topic;
 const char * type;
 GUID_RTPS senderGUID;
 SequenceNumber sn;
 };

Members

status

status of this event

topic

the name of the information

type

the name of the type of this information

senderGUID

GUID of object who sent this information

sn

sequencial number of information

struct ORTEDomainAppEvents

Name

struct ORTEDomainAppEvents -- Domain event handlers of an application

Synopsis

 struct ORTEDomainAppEvents {
 ORTEOnMgrNew onMgrNew;
 void * onMgrNewParam;
 ORTEOnMgrDelete onMgrDelete;
 void * onMgrDeleteParam;
 ORTEOnAppRemoteNew onAppRemoteNew;
 void * onAppRemoteNewParam;
 ORTEOnAppDelete onAppDelete;
 void * onAppDeleteParam;
 ORTEOnPubRemote onPubRemoteNew;
 void * onPubRemoteNewParam;
 ORTEOnPubRemote onPubRemoteChanged;
 void * onPubRemoteChangedParam;
 ORTEOnPubDelete onPubDelete;
 void * onPubDeleteParam;
 ORTEOnSubRemote onSubRemoteNew;

 void * onSubRemoteNewParam;
 ORTEOnSubRemote onSubRemoteChanged;
 void * onSubRemoteChangedParam;
 ORTEOnSubDelete onSubDelete;
 void * onSubDeleteParam;
 };

Members

onMgrNew

new manager has been created

onMgrNewParam

user parameters for onMgrNew handler

onMgrDelete

manager has been deleted

onMgrDeleteParam

user parameters for onMgrDelete handler

onAppRemoteNew

new remote application has been registered

onAppRemoteNewParam

user parameters for onAppRemoteNew handler

onAppDelete

an application has been removed

onAppDeleteParam

user parameters for onAppDelete handler

onPubRemoteNew

new remote publication has been registered

onPubRemoteNewParam

user parameters for onPubRemoteNew handler

onPubRemoteChanged

a remote publication's parameters has been changed

onPubRemoteChangedParam

user parameters for onPubRemoteChanged handler

onPubDelete

a publication has been deleted

onPubDeleteParam

user parameters for onPubDelete handler

onSubRemoteNew

a new remote subscription has been registered

onSubRemoteNewParam

user parameters for onSubRemoteNew handler

onSubRemoteChanged

a remote subscription's parameters has been changed

onSubRemoteChangedParam

user parameters for onSubRemoteChanged handler

onSubDelete

a publication has been deleted

onSubDeleteParam

user parameters for onSubDelete handler

Description

Prototypes of events handler fucntions can be found in file typedefs_api.h.

struct ORTETasksProp

Name

struct ORTETasksProp -- ORTE task properties, not supported

Synopsis

 struct ORTETasksProp {
 Boolean realTimeEnabled;
 int smtStackSize;
 int smtPriority;
 int rmtStackSize;
 int rmtPriority;
 };

Members

realTimeEnabled

not supported

smtStackSize

not supported

smtPriority

not supported

rmtStackSize

not supported

rmtPriority

not supported

struct ORTEDomainProp

Name

struct ORTEDomainProp -- domain properties

Synopsis

 struct ORTEDomainProp {
 ORTETasksProp tasksProp;
 ORTEIFProp * IFProp;
 //interface propertiesunsigned char IFCount;
 //count of interfacesORTEDomainBaseProp baseProp;
 ORTEDomainWireProp wireProp;
 ORTEMulticastProp multicast;
 //multicast properiesORTEPublProp publPropDefault;
 //default properties for a Publ/SubORTESubsProp
subsPropDefault;
 char * mgrs;
 //managerschar * keys;
 //keysIPAddress appLocalManager;
 //applicationschar * version;
 //string product versionint recvBuffSize;
 int sendBuffSize;
 };

Members

tasksProp

task properties

IFProp

properties of network interfaces

IFCount

number of network interfaces

baseProp

base properties (see ORTEDomainBaseProp for details)

wireProp

wire properties (see ORTEDomainWireProp for details)

multicast

multicast properties (see ORTEMulticastProp for details)

publPropDefault

default properties of publiciations (see ORTEPublProp for details)

subsPropDefault

default properties of subscriptions (see ORTESubsProp for details)

mgrs

list of known managers

keys

access keys for managers

appLocalManager

IP address of local manager (default localhost)

version

string product version

recvBuffSize

receiving queue length

sendBuffSize

transmitting queue length

Functions

Table of Contents
IPAddressToString -- converts IP address IPAddress to its string representation
StringToIPAddress -- converts IP address from string into IPAddress
NtpTimeToStringMs -- converts NtpTime to its text representation in miliseconds
NtpTimeToStringUs -- converts NtpTime to its text representation in
microseconds
ORTEDomainStart -- start specific threads
ORTEDomainPropDefaultGet -- returns default properties of a domain
ORTEDomainInitEvents -- initializes list of events
ORTEDomainAppCreate -- creates an application object within given domain
ORTEDomainAppDestroy -- destroy Application object
ORTEDomainAppSubscriptionPatternAdd -- create pattern-based subscription
ORTEDomainAppSubscriptionPatternRemove -- remove subscription pattern
ORTEDomainAppSubscriptionPatternDestroy -- destroys all subscription
patterns
ORTEDomainMgrCreate -- create manager object in given domain
ORTEDomainMgrDestroy -- destroy manager object
ORTEPublicationCreate -- creates new publication
ORTEPublicationDestroy -- removes a publication
ORTEPublicationPropertiesGet -- read properties of a publication
ORTEPublicationPropertiesSet -- set properties of a publication
ORTEPublicationGetStatus -- removes a publication
ORTEPublicationSend -- force publication object to issue new data
ORTESubscriptionCreate -- adds a new subscription
ORTESubscriptionDestroy -- removes a subscription
ORTESubscriptionPropertiesGet -- get properties of a subscription
ORTESubscriptionPropertiesSet -- set properties of a subscription
ORTESubscriptionWaitForPublications -- waits for given number of publications
ORTESubscriptionGetStatus -- get status of a subscription
ORTESubscriptionPull -- read data from receiving buffer
ORTETypeRegisterAdd -- register new data type
ORTETypeRegisterDestroyAll -- destroy all registered data types
ORTEVerbositySetOptions -- set verbosity options
ORTEVerbositySetLogFile -- set log file
ORTEInit -- initialization of ORTE layer (musi se zavolat)
ORTEAppSendThread -- resume sending thread in context of calling function.

ORTESleepMs -- suspends calling thread for given time

IPAddressToString

Name

IPAddressToString -- converts IP address IPAddress to its string representation

Synopsis
char* IPAddressToString (IPAddress ipAddress, char * buff);

Arguments
ipAddress

source IP address

buff

output buffer

StringToIPAddress

Name

StringToIPAddress -- converts IP address from string into IPAddress

Synopsis
IPAddress StringToIPAddress (const char * string);

Arguments
string

source string

NtpTimeToStringMs

Name

NtpTimeToStringMs -- converts NtpTime to its text representation in miliseconds

Synopsis

char * NtpTimeToStringMs (NtpTime time, char * buff);

Arguments

time

time given in NtpTime structure

buff

output buffer

NtpTimeToStringUs

Name

NtpTimeToStringUs -- converts NtpTime to its text representation in
microseconds

Synopsis

char * NtpTimeToStringUs (NtpTime time, char * buff);

Arguments

time

time given in NtpTime structure

buff

output buffer

ORTEDomainStart

Name

ORTEDomainStart -- start specific threads

Synopsis

void ORTEDomainStart (ORTEDomain * d, Boolean
recvMetatrafficThread, Boolean recvUserDataThread, Boolean
sendThread);

Arguments

d

domain object handle

recvMetatrafficThread

specifies whether recvMetatrafficThread should be started (ORTE_TRUE)
or remain suspended (ORTE_FALSE).

recvUserDataThread

specifies whether recvUserDataThread should be started (ORTE_TRUE) or
remain suspended (ORTE_FALSE).

sendThread

specifies whether sendThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

Description

Functions ORTEDomainAppCreate and ORTEDomainMgrCreate provide
facility to create an object with its threads suspended. Use function
ORTEDomainStart to resume those suspended threads.

ORTEDomainPropDefaultGet

Name

ORTEDomainPropDefaultGet -- returns default properties of a domain

Synopsis

Boolean ORTEDomainPropDefaultGet (ORTEDomainProp * prop);

Arguments

prop

pointer to struct ORTEDomainProp

Description

Structure ORTEDomainProp referenced by prop will be filled by its default
values. Returns ORTE_TRUE if successful or ORTE_FALSE in case of any
error.

ORTEDomainInitEvents

Name

ORTEDomainInitEvents -- initializes list of events

Synopsis

Boolean ORTEDomainInitEvents (ORTEDomainAppEvents * events);

Arguments

events

pointer to struct ORTEDomainAppEvents

Description

Initializes structure pointed by events. Every member is set to NULL. Returns
ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainAppCreate

Name

ORTEDomainAppCreate -- creates an application object within given domain

Synopsis

ORTEDomain * ORTEDomainAppCreate (int domain,
ORTEDomainProp * prop, ORTEDomainAppEvents * events,
Boolean suspended);

Arguments

domain

given domain

prop

properties of application

events

events associated with application or NULL

suspended

specifies whether threads of this application should be started as well
(ORTE_FALSE) or stay suspended (ORTE_TRUE). See
ORTEDomainStart for details how to resume suspended threads

Description

Creates new Application object and sets its properties and events. Return handle
to created object or NULL in case of any error.

ORTEDomainAppDestroy

Name

ORTEDomainAppDestroy -- destroy Application object

Synopsis

Boolean ORTEDomainAppDestroy (ORTEDomain * d);

Arguments

d

domain

Description

Destroys all application objects in specified domain. Returns ORTE_TRUE or
ORTE_FALSE in case of any error.

ORTEDomainAppSubscriptionPatternAdd

Name

ORTEDomainAppSubscriptionPatternAdd -- create pattern-based subscription

Synopsis

Boolean ORTEDomainAppSubscriptionPatternAdd (ORTEDomain *
d, const char * topic, const char * type,
ORTESubscriptionPatternCallBack subscriptionCallBack, void
* param);

Arguments

d

domain object

topic

pattern for topic

type

pattern for type

subscriptionCallBack

pointer to callback function which will be called whenever any data are
received through this subscription

param

user params for callback function

Description

This function is intended to be used in application interesded in more published
data from possibly more remote applications, which should be received through
single subscription. These different publications are specified by pattern given to
topic and type parameters.

For example suppose there are publications of topics like
temperatureEngine1, temperatureEngine2,
temperatureEngine1Backup and temperatureEngine2Backup
somewhere on our network. We can subscribe to each of Engine1 temperations
by creating single subscription with pattern for topic set to
"temperatureEngine1*". Or, if we are interested only in values from backup
measurements, we can use pattern "*Backup".

Syntax for patterns is the same as syntax for fnmatch function, which is
employed for pattern recognition.

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainAppSubscriptionPatternRemove

Name

ORTEDomainAppSubscriptionPatternRemove -- remove subscription pattern

Synopsis

Boolean ORTEDomainAppSubscriptionPatternRemove (ORTEDomain
* d, const char * topic, const char * type);

Arguments

d

domain handle

topic

pattern to be removed

type

pattern to be removed

Description

Removes subscritions created by
ORTEDomainAppSubscriptionPatternAdd. Patterns for type and topic
must be exactly the same strings as when
ORTEDomainAppSubscriptionPatternAdd function was called.

Returns ORTE_TRUE if successful or ORTE_FALSE if none matching record
was found

ORTEDomainAppSubscriptionPatternDestroy

Name

ORTEDomainAppSubscriptionPatternDestroy -- destroys all subscription
patterns

Synopsis

Boolean ORTEDomainAppSubscriptionPatternDestroy (ORTEDomain
* d);

Arguments

d

domain handle

Description

Destroys all subscription patterns which were specified previously by
ORTEDomainAppSubscriptionPatternAdd function.

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainMgrCreate

Name

ORTEDomainMgrCreate -- create manager object in given domain

Synopsis

ORTEDomain * ORTEDomainMgrCreate (int domain,
ORTEDomainProp * prop, ORTEDomainAppEvents * events,
Boolean suspended);

Arguments

domain

-- undescribed --

prop

desired manager's properties

events

manager's event handlers or NULL

suspended

specifies whether threads of this manager should be started as well
(ORTE_FALSE) or stay suspended (ORTE_TRUE). See
ORTEDomainStart for details how to resume suspended threads

Description

Creates new manager object and sets its properties and events. Return handle
to created object or NULL in case of any error.

ORTEDomainMgrDestroy

Name

ORTEDomainMgrDestroy -- destroy manager object

Synopsis

Boolean ORTEDomainMgrDestroy (ORTEDomain * d);

Arguments

d

manager object to be destroyed

Description

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEPublicationCreate

Name

ORTEPublicationCreate -- creates new publication

Synopsis

ORTEPublication * ORTEPublicationCreate (ORTEDomain * d,
const char * topic, const char * typeName, void * instance,
NtpTime * persistence, int strength, ORTESendCallBack
sendCallBack, void * sendCallBackParam, NtpTime *
sendCallBackDelay);

Arguments

d

pointer to application object

topic

name of topic

typeName

data type description

instance

output buffer where application stores data for publication

persistence

persistence of publication

strength

strength of publication

sendCallBack

pointer to callback function

sendCallBackParam

user parameters for callback function

sendCallBackDelay

periode for timer which issues callback function

Description

Creates new publication object with specified parameters. The sendCallBack
function is called periodically with sendCallBackDelay periode. In strict
reliable mode the sendCallBack function will be called only if there is enough
room in transmitting queue in order to prevent any data loss. The
sendCallBack function should prepare data to be published by this publication
and place them into instance buffer.

Returns handle to publication object.

ORTEPublicationDestroy

Name

ORTEPublicationDestroy -- removes a publication

Synopsis

int ORTEPublicationDestroy (ORTEPublication * cstWriter);

Arguments

cstWriter

handle to publication to be removed

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstWriter is not
valid cstWriter handle.

ORTEPublicationPropertiesGet

Name

ORTEPublicationPropertiesGet -- read properties of a publication

Synopsis

ORTEPublicationPropertiesGet (ORTEPublication * cstWriter,
ORTEPublProp * pp);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

pp

pointer to ORTEPublProp structure where values of publication's properties
will be stored

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstWriter is not
valid cstWriter handle.

ORTEPublicationPropertiesSet

Name

ORTEPublicationPropertiesSet -- set properties of a publication

Synopsis

int ORTEPublicationPropertiesSet (ORTEPublication *
cstWriter, ORTEPublProp * pp);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

pp

pointer to ORTEPublProp structure containing values of publication's
properties

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstWriter is not
valid publication handle.

ORTEPublicationGetStatus

Name

ORTEPublicationGetStatus -- removes a publication

Synopsis

int ORTEPublicationGetStatus (ORTEPublication * cstWriter,
ORTEPublStatus * status);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

status

pointer to ORTEPublStatus structure

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid
publication handle.

ORTEPublicationSend

Name

ORTEPublicationSend -- force publication object to issue new data

Synopsis

int ORTEPublicationSend (ORTEPublication * cstWriter);

Arguments

cstWriter

publication object

Description

Returns ORTE_OK if successful.

ORTESubscriptionCreate

Name

ORTESubscriptionCreate -- adds a new subscription

Synopsis

ORTESubscription * ORTESubscriptionCreate (ORTEDomain * d,
SubscriptionMode mode, SubscriptionType sType, const char *
topic, const char * typeName, void * instance, NtpTime *
deadline, NtpTime * minimumSeparation, ORTERecvCallBack
recvCallBack, void * recvCallBackParam);

Arguments

d

pointer to ORTEDomain object where this subscription will be created

mode

see enum SubscriptionMode

sType

see enum SubscriptionType

topic

name of topic

typeName

name of data type

instance

pointer to output buffer

deadline

deadline

minimumSeparation

minimum time interval between two publications sent by Publisher as
requested by Subscriber (strict - minumSep musi byt 0)

recvCallBack

callback function called when new Subscription has been received or if any
change of subscription's status occures

recvCallBackParam

user parameters for recvCallBack

Description

Returns handle to Subscription object.

ORTESubscriptionDestroy

Name

ORTESubscriptionDestroy -- removes a subscription

Synopsis

int ORTESubscriptionDestroy (ORTESubscription * cstReader);

Arguments

cstReader

handle to subscriotion to be removed

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not
valid subscription handle.

ORTESubscriptionPropertiesGet

Name

ORTESubscriptionPropertiesGet -- get properties of a subscription

Synopsis

int ORTESubscriptionPropertiesGet (ORTESubscription *
cstReader, ORTESubsProp * sp);

Arguments

cstReader

handle to publication

sp

pointer to ORTESubsProp structure where properties of subscrition will be
stored

ORTESubscriptionPropertiesSet

Name

ORTESubscriptionPropertiesSet -- set properties of a subscription

Synopsis

int ORTESubscriptionPropertiesSet (ORTESubscription *
cstReader, ORTESubsProp * sp);

Arguments

cstReader

handle to publication

sp

pointer to ORTESubsProp structure containing desired properties of the
subscription

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not
valid subscription handle.

ORTESubscriptionWaitForPublications

Name

ORTESubscriptionWaitForPublications -- waits for given number of publications

Synopsis

int ORTESubscriptionWaitForPublications (ORTESubscription *
cstReader, NtpTime wait, unsigned int retries, unsigned int
noPublications);

Arguments

cstReader

handle to subscription

wait

time how long to wait

retries

number of retries if specified number of publications was not reached

noPublications

desired number of publications

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not
valid subscription handle or ORTE_TIMEOUT if number of retries has been
exhausted..

ORTESubscriptionGetStatus

Name

ORTESubscriptionGetStatus -- get status of a subscription

Synopsis

int ORTESubscriptionGetStatus (ORTESubscription *
cstReader, ORTESubsStatus * status);

Arguments

cstReader

handle to subscription

status

pointer to ORTESubsStatus structure

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not
valid subscription handle.

ORTESubscriptionPull

Name

ORTESubscriptionPull -- read data from receiving buffer

Synopsis

int ORTESubscriptionPull (ORTESubscription * cstReader);

Arguments

cstReader

handle to subscription

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not
valid subscription handle.

ORTETypeRegisterAdd

Name

ORTETypeRegisterAdd -- register new data type

Synopsis

int ORTETypeRegisterAdd (ORTEDomain * d, const char *
typeName, ORTETypeSerialize ts, ORTETypeDeserialize ds,
unsigned int gms);

Arguments

d

domain object handle

typeName

name of data type

ts

pointer to serialization function. If NULL data will be copied without any
processing.

ds

deserialization function. If NULL data will be copied without any processing.

gms

maximum length of data (in bytes)

Description

Each data type has to be registered. Main purpose of this process is to define
serialization and deserialization functions for given data type. The same data
type can be registered several times, previous registrations of the same type will
be overwritten.

Examples of serialization and deserialization functions can be found if
contrib/shape/ortedemo_types.c file.

Returns ORTE_OK if new data type has been succesfully registered.

ORTETypeRegisterDestroyAll

Name

ORTETypeRegisterDestroyAll -- destroy all registered data types

Synopsis

int ORTETypeRegisterDestroyAll (ORTEDomain * d);

Arguments

d

domain object handle

Description

Destroys all data types which were previously registered by function
ORTETypeRegisterAdd.

Return ORTE_OK if all data types has been succesfully destroyed.

ORTEVerbositySetOptions

Name

ORTEVerbositySetOptions -- set verbosity options

Synopsis

void ORTEVerbositySetOptions (const char * options);

Arguments

options

verbosity options

Description

There are 10 levels of verbosity ranging from 1 (lowest) to 10 (highest). It is
possible to specify certain level of verbosity for each module of ORTE library.
List of all supported modules can be found in linorte/usedSections.txt file. Every
module has been aasigned with a number as can be seen in usedSections.txt
file.

For instance

options = "ALL,7" Verbosity will be set to level 7 for all modules.

options = "51,7:32,5" Modules 51 (RTPSCSTWrite.c) will use verbosity level 7
and module 32 (ORTEPublicationTimer.c) will use verbosity level 5.

Maximum number of modules and verbosity levels can be changed in order to
save some memory space if small memory footprint is neccessary. These values
are defined as macros MAX_DEBUG_SECTIONS and MAX_DEBUG_LEVEL in
file include/defines.h.

Return ORTE_OK if desired verbosity levels were successfuly set.

ORTEVerbositySetLogFile

Name

ORTEVerbositySetLogFile -- set log file

Synopsis

void ORTEVerbositySetLogFile (const char * logfile);

Arguments

logfile

log file name

Description

Sets output file where debug messages will be writen to. By default these
messages are written to stdout.

ORTEInit

Name

ORTEInit -- initialization of ORTE layer (musi se zavolat)

Synopsis

void ORTEInit (void);

Arguments

void

no arguments

ORTEAppSendThread

Name

ORTEAppSendThread -- resume sending thread in context of calling function.

Synopsis

void ORTEAppSendThread (ORTEDomain * d);

Arguments

d

domain object handle

Description

Sending thread will be resumed. This function never returns.

ORTESleepMs

Name

ORTESleepMs -- suspends calling thread for given time

Synopsis

void ORTESleepMs (unsigned int ms);

Arguments

ms

miliseconds to sleep

Macros

Table of Contents
SeqNumberCmp -- comparison of two sequence numbers
SeqNumberInc -- incrementation of a sequence number
SeqNumberAdd -- addition of two sequential numbers
SeqNumberDec -- decrementation of a sequence number
SeqNumberSub -- substraction of two sequential numbers
NtpTimeCmp -- comparation of two NtpTimes
NtpTimeAdd -- addition of two NtpTimes
NtpTimeSub -- substraction of two NtpTimes
NtpTimeAssembFromMs -- converts seconds and miliseconds to NtpTime
NtpTimeDisAssembToMs -- converts NtpTime to seconds and miliseconds
NtpTimeAssembFromUs -- converts seconds and useconds to NtpTime
NtpTimeDisAssembToUs -- converts NtpTime to seconds and useconds
Domain2Port -- converts Domain value to IP Port value
Domain2PortMulticastUserdata -- converts Domain value to userdata IP Port
value
Domain2PortMulticastMetatraffic -- converts Domain value to metatraffic IP Port
value

SeqNumberCmp

Name

SeqNumberCmp -- comparison of two sequence numbers

Synopsis

SeqNumberCmp (sn1, sn2);

Arguments

sn1

source sequential number 1

sn2

source sequential number 2

Return

1 if sn1 > sn2 -1 if sn1 < sn2 0 if sn1 = sn2

SeqNumberInc

Name

SeqNumberInc -- incrementation of a sequence number

Synopsis

SeqNumberInc (res, sn);

Arguments

res

result

sn

sequential number to be incremented

Description

res = sn + 1

SeqNumberAdd

Name

SeqNumberAdd -- addition of two sequential numbers

Synopsis

SeqNumberAdd (res, sn1, sn2);

Arguments

res

result

sn1

source sequential number 1

sn2

source sequential number 2

Description

res = sn1 + sn2

SeqNumberDec

Name

SeqNumberDec -- decrementation of a sequence number

Synopsis

SeqNumberDec (res, sn);

Arguments

res

result

sn

sequential number to be decremented

Description

res = sn - 1

SeqNumberSub

Name

SeqNumberSub -- substraction of two sequential numbers

Synopsis

SeqNumberSub (res, sn1, sn2);

Arguments

res

result

sn1

source sequential number 1

sn2

source sequential number 2

Description

res = sn1 - sn2

NtpTimeCmp

Name

NtpTimeCmp -- comparation of two NtpTimes

Synopsis

NtpTimeCmp (time1, time2);

Arguments

time1

source time 1

time2

source time 2

Return value

1 if time 1 > time 2 -1 if time 1 < time 2 0 if time 1 = time 2

NtpTimeAdd

Name

NtpTimeAdd -- addition of two NtpTimes

Synopsis

NtpTimeAdd (res, time1, time2);

Arguments

res

result

time1

source time 1

time2

source time 2

Description

res = time1 + time2

NtpTimeSub

Name

NtpTimeSub -- substraction of two NtpTimes

Synopsis

NtpTimeSub (res, time1, time2);

Arguments

res

result

time1

source time 1

time2

source time 2

Description

res = time1 - time2

NtpTimeAssembFromMs

Name

NtpTimeAssembFromMs -- converts seconds and miliseconds to NtpTime

Synopsis

NtpTimeAssembFromMs (time, s, msec);

Arguments

time

time given in NtpTime structure

s

seconds portion of given time

msec

miliseconds portion of given time

NtpTimeDisAssembToMs

Name

NtpTimeDisAssembToMs -- converts NtpTime to seconds and miliseconds

Synopsis

NtpTimeDisAssembToMs (s, msec, time);

Arguments

s

seconds portion of given time

msec

miliseconds portion of given time

time

time given in NtpTime structure

NtpTimeAssembFromUs

Name

NtpTimeAssembFromUs -- converts seconds and useconds to NtpTime

Synopsis

NtpTimeAssembFromUs (time, s, usec);

Arguments

time

time given in NtpTime structure

s

seconds portion of given time

usec

microseconds portion of given time

NtpTimeDisAssembToUs

Name

NtpTimeDisAssembToUs -- converts NtpTime to seconds and useconds

Synopsis

NtpTimeDisAssembToUs (s, usec, time);

Arguments

s

seconds portion of given time

usec

microseconds portion of given time

time

time given in NtpTime structure

Domain2Port

Name

Domain2Port -- converts Domain value to IP Port value

Synopsis

Domain2Port (d, p);

Arguments

d

domain

p

port

Domain2PortMulticastUserdata

Name

Domain2PortMulticastUserdata -- converts Domain value to userdata IP Port
value

Synopsis

Domain2PortMulticastUserdata (d, p);

Arguments

d

domain

p

port

Domain2PortMulticastMetatraffic

Name

Domain2PortMulticastMetatraffic -- converts Domain value to metatraffic IP Port
value

Synopsis

Domain2PortMulticastMetatraffic (d, p);

Arguments

d

domain

p

port

ORTE Implementation Issues

ORTE is network middleware for distributed, real-time application development
that uses the real-time, publish-subscribe model. The middleware is available for
a variety of platforms including RTAI, RTLinux, Windows, and a several versions
of Unix. The compilation system is mainly based on autoconf.

ORTE is middleware composed of a database, and tasks. On the top of ORTE
architecture is application interface (API). By using API users should write self
application. The tasks perform all of the message addressing
serialization/deserialization, and transporting. The ORTE components are shown
in Figure 1-5

Figure 1-5. ORTE Architecture

The RTPS protocol defines two kinds of Applications:

• Manager: The manager is a special Application that helps applications
automatically discover each other on the Network.

• ManagedApplication: A ManagedApplication is an Application that is
managed by one or more Managers. Every ManagedApplication is
managed by at least one Manager.

The manager is mostly designed like separate application. In RTPS architecture
is able to create application which contains manager and managedapplication,
but for easy managing is better split both. The ORTE contains a separate
instance of manager located in directory orte/manager.

The manager is composed from five kinds of objects:

• WriterApplicationSelf: through which the Manager provides information
about its own parameters to Managers on other nodes.

• ReaderManagers: CSTReader through which the Manager obtains
information on the state of all other Managers on the Network.

• ReaderApplications: CSTReader which is used for the registration of
local and remote managedApplications.

• WriterManagers: CSTWriter through which the Manager will send the
state of all Managers in the Network to all its managees.

• WriterApplications: CSTWriter through which the Manager will send
information about its managees to other Managers in the Network.

A Manager that discovers a new ManagedApplication through its
readerApplications must decide whether it must manage this
ManagedApplication or not. For this purpose, the attribute managerKeyList of the
Application is used. If one of the ManagedApplication's keys (in the attribute
managerKeyList) is equal to one of the Manager's keys, the Manager accepts
the Application as a managee. If none of the keys are equal, the managed
application is ignored. At the end of this process all Managers have discovered
their managees and the ManagedApplications know all Managers in the
Network.

The managedApplication is composed from seven kinds of objects:

• WriterApplicationSelf: a CSTWriter through which the
ManagedApplication registers itself with the local Manager.

• ReaderApplications: a CSTReader through which the
ManagedApplication receives information about another
ManagedApplications in the network.

• ReaderManagers: a CSTReader through which the ManagedApplication
receives information about Managers.

• WriterPublications: CSTWriter through which the Manager will send the
state of all Managers in the Network to all its managees.

• ReaderPublications: a Reader through which the Publication receives
information about Subscriptions.

• WriterSubscriptions: a Writer that provides information about
Subscription to Publications.

• ReaderSubscriptions: a Reader that receives issues from one or more
instances of Publication, using the publish-subscribe service.

The ManagedApplication has a special CSTWriter writerApplicationSelf. The
Composite State (CS) of the ManagedApplication's writerApplicationSelf object
contains only one NetworkObject - the application itself. The
writerApplicationSelf of the ManagedApplication must be configured to announce
its presence repeatedly and does not request nor expect acknowledgments.

The ManagedApplications now use the CST Protocol between the
writerApplications of the Managers and the readerApplications of the
ManagedApplications in order to discover other ManagedApplications in the
Network. Every ManagedApplication has two special CSTWriters,
writerPublications and writerSubscriptions, and two special CSTReaders,
readerPublications and readerSubscriptions.

Once ManagedApplications have discovered each other, they use the standard
CST protocol through these special CSTReaders and CSTWriter to transfer the
attributes of all Publications and Subscriptions in the Network.

The ORTE stores all data in local database per application. There isn't central
store where are data saved. If an application comes into communication, than
will be created local mirror of all applications parameters. Parts of internal
structures are shown in Figure 1-6.

Figure 1-6. ORTE Internal Attributes

Following example shows communication between two nodes (N1, N2). There
are applications running on each node - MA1.2 on node N1 and MA2.1, MA2.2
on node N2. Each node has it own manager (M1, M2). The example shows,
what's happen when a new application comes into communication (MA1.1).

1. MA1.1 introduces itself to local manager M1

2. M1 sends back list of remote managers Mx and other local applications MA1.x

3. MA1.1 is introduced to all Mx by M1

4. All remote MAs are reported now to M1.1

5. MA1.1 is queried for self services (publishers and subscriberes) from others
MAx.

6. MA1.1 asks for services to others MAx.

7. All MAs know information about others.

The corresponding publishers and subscribers with matching Topic and Type are
connected and starts their data communication.

Figure 1-7. RTPS Communication among Network Objects

ORTE Examples

This chapter expect that you are familiar with RTPS communication architecture
described in the Section called ORTE Description .

Publications can offer multiple reliability policies ranging from best-efforts to strict
(blocking) reliability. Subscription can request multiple policies of desired
reliability and specify the relative precedence of each policy. Publications will
automatically select among the highest precedence requested policy that is
offered by the publication.

• BestEffort: This reliability policy is suitable for data that are sending with
a period. There are no message resending when a message is lost. On
other hand, this policy offer maximal predictable behaviour. For instance,
consider a publication which send data from a sensor (pressure,
temperature, ...).

Figure 1-8. Periodic Snapshots of a BestEffort Publisher

• StrictReliable: The ORTE supports the reliable delivery of issues. This
kind of communication is used where a publication want to be sure that all
data will be delivered to subscriptions. For instance, consider a publication
which send commands.

Command data flow requires that each instruction in the sequence is
delivered reliably once and only once. Commands are often not time
critical.

BestEffort Communication

Before creating a Publication or Subscription is necessary to create a domain by
using function ORTEDomainAppCreate. The code should looks like:

int main(int argc, char *argv[])
{
 ORTEDomain *d = NULL;
 ORTEBoolean suspended= ORTE_FALSE;

 ORTEInit();

 d = ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN, NULL, NULL, suspended);
 if (!d)
 {
 printf("ORTEDomainAppCreate failed\n");
 return -1;
 }
}

The ORTEDomainAppCreate allocates and initializes resources that are needed
for communication. The parameter suspended says if ORTEDomain takes
suspend communicating threads. In positive case you have to start threads
manually by using ORTEDomainStart.

Next step in creation of a application is registration serialization and
deserialization routines for the specific type. You can't specify this functions, but
the incoming data will be only copied to output buffer.

ORTETypeRegisterAdd(d, "HelloMsg", NULL, NULL, 64);

To create a publication in specific domain use the function
ORTEPublicationCreate.

char instance2send[64];
NtpTime persistence, delay;

NTPTIME_BUILD(persistence, 3); /* this issue is valid for 3 seconds */
NTPTIME_DELAY(delay, 1); /* a callback function will be called
every 1 second */
p = ORTEPublicationCreate(d,
 "Example HelloMsg",
 "HelloMsg",
 &instance2Send,
 &persistence,
 1,
 sendCallBack,
 NULL,
 &delay);

The callback function will be then called when a new issue from publisher has to
be sent. It's the case when you specify callback routine in
ORTEPublicationCreate. When there isn't a routine you have to send data
manually by call function ORTEPublicationSend. This option is useful for
sending periodic data.

void sendCallBack(const ORTESendInfo *info, void *vinstance, void
*sendCallBackParam)
{
 char *instance = (char *) vinstance;
 switch (info->status)
 {
 case NEED_DATA:
 printf("Sending publication, count %d\n", counter);
 sprintf(instance, "Hello world (%d)", counter++);
 break;

 case CQL: //criticalQueueLevel has been reached
 break;
 }
}

Subscribing application needs to create a subscription with publication's Topic
and TypeName. A callback function will be then called when a new issue from
publisher will be received.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD(deadline, 20);
NTPTIME_BUILD(minimumSeparation, 0);
p = ORTESubscriptionCreate(d,
 IMMEDIATE,
 BEST_EFFORTS,
 "Example HelloMsg",
 "HelloMsg",
 &instance2Recv,
 &deadline,
 &minimumSeparation,
 recvCallBack,
 NULL);

The callback function is shown in the following example:

void recvCallBack(const ORTERecvInfo *info, void *vinstance, void
*recvCallBackParam)
{
 char *instance = (char *) vinstance;
 switch (info->status)
 {
 case NEW_DATA:
 printf("%s\n", instance);
 break;

 case DEADLINE: //deadline occurred
 break;
 }
}

Similarly examples are located in ORTE subdirectory orte/examples/hello.
There are demonstrating programs how to create an application which will
publish some data and another application, which will subscribe to this
publication.

Reliable communication

The reliable communication is used especially in situations where we need
guarantee data delivery. The ORTE supports the inorder delivery of issues with
built-in retry mechanism

The creation of reliable communication starts like besteffort communication.
Difference is in creation a subscription. Third parameter is just only changed to
STRICT_RELIABLE.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD(deadline, 20);
NTPTIME_BUILD(minimumSeparation, 0);
p = ORTESubscriptionCreate(d,
 IMMEDIATE,
 STRICT_RELIABLE,
 "Example HelloMsg",
 "HelloMsg",
 &instance2Recv,
 &deadline,
 &minimumSeparation,
 recvCallBack,
 NULL);

Note:

Strict reliable subscription must set minimumSeparation to zero! The middleware
can't guarantee that the data will be delivered on first attempt (retry mechanism).

Sending of a data is blocking operation. It's strongly recommended to setup
sending queue to higher value. Default value is 1.

ORTEPublProp *pp;

ORTEPublicationPropertiesGet(publisher,pp);
pp->sendQueueSize=10;
pp->criticalQueueLevel=8;
ORTEPublicationPropertiesSet(publisher,pp);

An example of reliable communication is in ORTE subdirectory
orte/examples/reliable. There are located a strictreliable subscription and
publication.

Serialization/Deserialization

Actually the ORTE doesn't support any automatic creation of
serialization/deserializaction routines. This routines have to be designed
manually by the user. In next is shown, how should looks both for the structure
BoxType.

typedef struct BoxType {
 int32_t color;
 int32_t shape;
} BoxType;

void
BoxTypeSerialize(ORTECDRStream *cdr_stream, void *instance) {
 BoxType *boxType=(BoxType*)instance;

 (int32_t)cdr_stream->bufferPtr=boxType->color;
 cdr_stream->bufferPtr+=sizeof(int32_t);
 (int32_t)cdr_stream->bufferPtr=boxType->shape;
 cdr_stream->bufferPtr+=sizeof(int32_t);

}

void
BoxTypeDeserialize(ORTECDRStream *cdr_stream, void *instance) {
 BoxType *boxType=(BoxType*)instance;

 boxType->color=*(int32_t*)cdr_stream->bufferPtr;
 cdr_stream->bufferPtr+=sizeof(int32_t);
 boxType->shape=*(int32_t*)cdr_stream->bufferPtr;
 cdr_stream->bufferPtr+=sizeof(int32_t);
}

When we have written a serialization/deserialization routine we need to register
this routines to midleware by function ORTETypeRegisterAdd

 ORTETypeRegisterAdd(
 domain,
 "BoxType",
 BoxTypeSerialize,
 BoxTypeDeserialize,
 sizeof(BoxType));

The registration must be called before creation a publication or subscription.
Normally is ORTETypeRegisterAdd called immediately after creation of a
domain (ORTEDomainCreate).

All of codes are part of the Shapedemo located in subdirectory
orte/contrib/shape.

ORTE Tests

There were not any serious tests performed yet. Current version has been
intensively tested against reference implementation of the protocol. Results of
these test indicate that ORTE is fully interoperable with implementation provided
by another vendor.

ORTE Usage Information

Installation and Setup

In this chapter is described basic steps how to makes installation and setup
process of the ORTE. The process includes next steps:

1. Downloading the ORTE distribution

2. Compilation

3. Installing the ORTE library and utilities

4. Testing the installation

Note:

On windows systems we are recommend to use Mingw or Cygwin systems. The
ORTE support also MSVC compilation, but this kind of installation is not
described here.

Downloading

The ORTE component can be obtained from OCERA SourceForge web page
(http://www.sf.net/projects/ocera/). Here is the component located also in self
distribution branch as well as in OCERA distribution. Before developing any
application check if there is a new file release.

The CVS version of ORTE repository can be checked out be anonymous
(pserver) CVS with the following commands.

cvs -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera login
cvs -z3 -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera
co ocera/components/comm/eth/orte/

Attention, there is developing version and can't be stable!

Compilation

Before the compilation process is necessary to prepare the source. Create a new
directory for ORTE distribution. We will assume name of this directory /orte for
Linux case. Copy or move downloaded ORTE sources to /orte (assume the
name of sources orte-0.2.3.tar.gz). Untar and unzip this files by using next
commands:

gunzip orte-0.2.3.tar.gz
tar xvf orte-0.2.3.tar

Now is the source prepared for compilation. Infrastructure of the ORTE is
designed to support GNU make (needs version 3.81) as well as autoconf
compilation. In next we will continue with description of autoconf compilation,
which is more general. The compilation can follows with commands:

mkdir build
cd build
../configure
make

This is the case of outside autoconf compilation. In directory build are all
changes made over ORTE project. The source can be easy move to original
state be removing of directory build.

Installing

The result of compilation process are binary programs and ORTE library. For the
next developing is necessary to install this result. It can be easy done be typing:

make install

All developing support is transferred into directories with direct access of design
tools.

name target path
ortemanager, orteping,
ortespy

/usr/local/bin

library /usr/local/lib
include /usr/local/include
The installation prefix /usr/local/ can be changed during configuration. Use
command ../configure --help for check more autoconf options.

Testing the Installation

To check of correct installation of ORTE open three shells.

1. In first shell type

ortemanager

2. In second shell type

orteping -s

This command will invoked creation of a subscription. You should see:

deadline occurred
deadline occurred
...

3. In third shell type

orteping -p

This command will invoked creation of a publication. You should see:

sent issue 1
sent issue 2
sent issue 3
sent issue 4
...

If the ORTE installation is properly, you will see incoming messages in second
shell (orteping -s).

received fresh issue 1
received fresh issue 2
received fresh issue 3
received fresh issue 4
...

It's sign, that communication is working correctly.

The ORTE Manager

A manager is special application that helps applications automatically discover
each other on the Network. Each time an object is created or destroyed, the
manager propagate new information to the objects that are internally registered.

Every application precipitate in communication is managed by least one
manager. The manager should be designed like separated application as well as
part of designed application.

Figure 1-9. Position of Managers in RTPS communication

The ORTE provides one instance of a manager. Name of this utility is
ortemanager and is located in directory orte/ortemanager. Normally is
necessary to start ortemanager manually or use a script on UNIX systems. For
Mandrake and Red-hat distribution is this script created in subdirectory rc.
Windows users can install ortemanager like service by using option /
install_service.

Note:

Don't forget to run a manager (ortemanager) on each RTPS participate node.
During live of applications is necessary to be running this manager.

Example of Usage ortemanager

Table of Contents
ortemanager -- the utility for discovery others applications and managers on the
network

Each manager has to know where are other managers in the network. Their IP
addresses are therefore specified as IPAddressX parameters of ortemanager. All
managers participate in one kind of communication use the same domain
number. The domain number is transferred to port number by equation defined
in RTPS specification (normally domain 0 is transferred to 7400 port).

Let's want to distribute the RTPS communication of nodes with IP addresses
192.168.0.2 and 192.168.0.3. Private IP address is 192.168.0.1. The
ortemanager can be execute with parameters:

ortemanager -p 192.168.0.2:192.168.0.3

To communicate in different domain use (parameter -d):

ortemanager -d 1 -p 192.168.0.2:192.168.0.3

Very nice feature of ortemanager is use event system to inform of
creation/destruction objects (parameter -e).

ortemanager -e -p 192.168.0.2:192.168.0.3

Now, you can see messages:

[smolik@localhost smolik]$ortemanager -e -p 192.168.0.2:192.168.0.3
manager 0xc0a80001-0x123402 was accepted
application 0xc0a80002-0x800301 was accepted
application 0xc0a80002-0x800501 was accepted
application 0xc0a80002-0x800501 was deleted
manager 0xc0a80001-0x123402 was deleted

ortemanager

Name

ortemanager -- the utility for discovery others applications and managers on the
network

Synopsis

ortemanager [-d domain] [-p ip addresses] [-k ip addresses] [-R
refresh] [-P purge] [-D] [-E expiration] [-e] [-v verbosity] [-l
filename] [-V] [-h]

Description

Main purpose of the utility ortemanager is debug and test ORTE
communication.

OPTIONS

-d --domain

The number of working ORTE domain. Default is 0.

-p --peers

The IP addresses parsipiates in RTPS communication. See the Section
called The ORTE Manager in Chapter 1 for example of usage.

-R --refresh

The refresh time in manager. Default 60 seconds.

-P --purge

The searching time in local database for finding expired application. Default
60 seconds.

-E --expiration

Expiration time in other applications.

-m --minimumSeparation

The minimum time between two issues.

-v --verbosity

Set verbosity level.

-l --logfile

All debug messages can be redirect into specific file.

-V --version

Print the version of ortemanager.

-h --help

Print usage screen.

Simple Utilities

Table of Contents
orteping -- the utility for debugging and testing of ORTE communication
ortespy -- the utility for monitoring of ORTE issues

The simple utilities can be found in the orte/examples subdirectory of the
ORTE source subtree. These utilities are useful for testing and monitoring RTPS
communication.

The utilities provided directly by ORTE are:

orteping

the utility for easy creating of publications and subscriptions.

ortespy

monitors issues produced by other application in specific domain.

orteping

Name

orteping -- the utility for debugging and testing of ORTE communication

Synopsis

orteping [-d domain] [-p] [-S strength] [-D delay] [-s] [-R refresh]
[-P purge] [-E expiration] [-m minimumSeparation] [-v verbosity]
[-q] [-l filename] [-V] [-h]

Description

Main purpose of the utility orteping is debug and test ORTE communication.

OPTIONS

-d --domain

The number of working ORTE domain. Default is 0.

-p --publisher

Create a publisher with Topic - Ping and Type - PingData. The publisher
will publish a issue with period by parameter delay.

-s --strength

Setups relative weight against other publishers. Default is 1.

-D --delay

The time between two issues. Default 1 second.

-s --subscriber

Create a subscriber with Topic - Ping and Type - PingData.

-R --refresh

The refresh time in manager. Default 60 seconds.

-P --purge

The searching time in local database for finding expired application. Default
60 seconds.

-E --expiration

Expiration time in other applications.

-m --minimumSeparation

The minimum time between two issues.

-v --verbosity

Set verbosity level.

-q --quite

Nothing messages will be printed on screen. It can be useful for testing
maximal throughput.

-l --logfile

All debug messages can be redirect into specific file.

-V --version

Print the version of orteping.

-h --help

Print usage screen.

ortespy

Name

ortespy -- the utility for monitoring of ORTE issues

Synopsis

orteping [-d domain] [-v verbosity] [-R refresh] [-P purge] [-e
expiration] [-l filename] [-V] [-h]

Description

Main purpose of the utility ortespy is monitoring data traffic between publications
and subscriptions.

OPTIONS

-d --domain

The number of working ORTE domain. Default is 0.

-v --verbosity

Set verbosity level.

-R --refresh

The refresh time in manager. Default 60 seconds.

-P --purge

Create publisher

-e --expiration

Expiration time in other applications.

-l --logfile

All debug messages can be redirect into specific file.

-V --version

Print the version of orteping.

-h --help

Print usage screen.

Fault-Tolerance
components

by A. Lanusse and P. Vanuxeem

Degraded Mode Management

Description

The Degraded Mode Management Framework has been designed to offer
transparent management of dynamic reconfiguration of applications on detection
of faulty situations.

Continuity of service is maintained in case of partial failure through graceful
degradation management. The Degraded Mode Management Framework offers
an integrated set of tools and components.

Design/build tool. The Ftbuilder permits the specification of application real-
time constraints, different possible application modes along with related
transition conditions.

From this specification, code generation is achieved in order to instantiate
internal control data-bases of run-time components (ftappmon and ftcontroller)
and to provide application model files.

ftappmon . The ftappmon component is devoted to global application handling.
It is in charge of overall application setup and of reconfiguration decisions. It
contains information on different possible application modes and on transition
conditions. When an error is detected and notified by the ftcontroller, the
ftappmon analyzes the event and issues reconfiguration orders (stop, awake,
switch ft-task behavior) towards the ftcontroller.

ftcontroller . The ftcontroller is in charge of the direct control of application
threads. It provides error detection (kill or timing error) and notification (towards
ftappmon) and executes reconfiguration orders at task level.

API. A specific but reduced API has been defined for manipulating so called ft-tasks. Three
main functions: ft_task_init(), ft_task_create, ft_task_end(). These ft-tasks are actually
encapsulation of periodic RTLinux tasks. Other functions are used to init internal data-bases.
Besides these specific functions , application developers can use any RTLinux programming
feature.

The framework currently available relies on a simplified model of applications.
According to this model only simple applications with periodic tasks are handled
at the moment. Though these are indeed quite restrictive hypotheses, they
represent a large range of effective current real-time embedded applications.
Please refer to users's guide for the description of the main characteristics of
applications handled and restrictions to applicability.

Usage

Degraded Mode Management configuration process takes three steps:

1. OS Type Selection : Soft and Hard real-time must be chosen and some sub-
options must be checked (see below).

2. Components Selection : FT components + Hard Realtime + Degraded Mode
Management.

3. Core kernel Scheduling features selection : Priority or EDF scheduling.
Only EDF scheduling will offer support for deadline miss detection.

1. OS-Type Selection

FT Degraded Mode Management support requires the selection of Hard and Soft
real-time in the OS type section. This enables hard-realtime standard RTLinux
configuration options.

General dependencies of FT components are illustrated in the following figure.

Required options are : loadable module support, RT-Linux support including
POSIX Signals and POSIX Timers, Shared Memory support, POSIX Trace
Support in RTLinux., BigPhysarea support.

Note that POSIX Trace Support is mandatory for FT Degraded Mode
Management components.

Power Management support should not be selected.

Normally all these options are posted correctly in the standard OCERA
distribution, so just check.

2. FT Degraded Mode management components selection

FT components for degraded Mode Management have to be selected. If you
select the Framework, these are set automatically, just verify. Two components
are necessary, the FT Controller and the FT Application Monitor, they must be
selected together. At compilation time they will be merged into one single module
named ftappmonctrl.

Figure 1 : FT Degraded Mode Management Configuration step1

The FTController is selected.

The FT Application Monitor is selected.

Figure 2 : FT Degraded Mode Management Configuration step2

3. Core kernel Scheduling features selection

The last configuration step concerns the choice of scheduling policy. The
functioning of the Degraded Mode Management can follow several types of
scheduling, the facilities offered will depend on the choice done at configuration.

The error detection mechanism can handle two types of errors:

• Pthread_kill detection works with priority based or EDF scheduling policies;

• Timing errors (deadline miss) detection can only be detected if EDF
scheduling is selected and related option Dealline Miss Detection.

Remark: Once a scheduling policy has been chosen during the configuration all
the ft_tasks will be scheduled according to this policy.

Priority based scheduling

Standard prioity based scheduling can be configured by selecting the
Application defined scheduler option in the the Scheduling section of the
RTLinux Hard real-time part as indicated bellow. In this case the only type of
errors to be detected are Pthread-kill events.

The Application defined scheduler component provides support for several
types of scheduling policies defined above the RTLinux kernel itself. By default,
the scheduling policy is based on priorities, which is the configuration that we
must use in this case. For further details see section Scheduling.

EDF scheduling

Figure 3 : FT Degraded Mode Management Configuration step3 – Priority scheduler

This version of scheduling is implemented directly at RTLinux kernel level and
not above as it is the case with the Application Defined scheduler.

So if you want to detect both timing errors and pthread_kill events, you should
select EDF + Deadline-miss detection, as shown hereunder.

Remark: If you select only EDF, scheduling policy applied will be EDF but only
pthread_kill events will be detected, there will be no emission of Deadline-miss
event.

The configuration EDF scheduling with Deadline-miss detection (DLM) is still an
experimental functionality. For the moment, support for EDF+DLM+SRP is not
offered.

Programming Interface (API)

The ftappmon component offers to the application developer an application
programming interface, named FT-API, that is restricted to very few functions
ft_task_init(), ft_task_create(), ft_task_end().

It offers also some additional FT-API functions used to instantiate the FT
application model: ft_init_appli(), ft_set_appli_mode(), ft_set_appli_control().
Actually calls to these functions are automatically generated by the FT-Builder
tool into a specific file devoted to init application configuration data structures. So

Figure 4 : FT Degraded Mode Management Configuration step3 - EDF + DLM scheduler

these last functions may be considered as transparent to the application
developer.

The ftappmon component has also an internal API for interactions with the
ftcontroller component for the notification of failed thread.

The ftcontroller has an API for the ftappmon component for the notification of
the ft-task created and for the switch of ft-task behavior. The ftcontroller has an
API that could be used by the scheduler mainly to notify events to the
ftcontroller.

These different intefaces are illustrated in the following figure.

The detailed definition of prototypes necessary at the application level is
provided in files:

${OCERA_DIR/components/ft/ftappmon/include/

 ft_api_appmon_appli.h

 ft_api_common.h

// FT init appli
int ft_init_appli
 (
 int ft_appli_tasks_max_nb, // Number max of appli tasks
 int ft_appli_modes_max_nb, // Number max of appli modes
 FT_Appli_Mode ft_cur_appli_mode // Current appli mode
);

// FT set_appli_control
extern int ft_set_appli_control
 (
 char *ft_appli_mode_name,
 FT_Event_Task_Appli_Mode_Elt *ft_evt_task_app_modes_tab
);

// FT set appli mode
extern int ft_set_appli_mode
 (
 char *ft_appli_mode_name,
 FT_Task_Behavior_Elt *ft_task_behaviors_tab
);

// FT task init
extern int ft_task_init
 (
 char *ft_task_name,
 void (*ft_normal_routine)(void*),
 void (*ft_degraded_routine)(void*),
 int ft_normal_param,
 int ft_degraded_param,
 FT_sched_param ft_normal_sched_param,
 FT_sched_param ft_degraded_sched_param
#ifdef FT_PREALLOCATED_THREAD_STACK
 /* fxr: stack address and size */
 ,
 void *ft_normal_stackaddr,
 int ft_normal_stacksize,
 void *ft_degraded_stackaddr,
 int ft_degraded_stacksize
#endif
);

// FT task create
extern int ft_task_create
 (
 int ft_task_id,
 FT_task_behavior ft_task_behavior
);

// FT task end
extern int ft_task_end
 (
 int ft_task_id
);

/**/
/* */
/* FT API Controller : Other Functions */
/* */
/**/
extern int ft_appli_monitor_stop(void);
extern int ft_controller_stop(void);

Important types and structures

FT_task_behavior

// FT-Task behavior
typedef enum {
 FT_TASK_BEHAVIOR_NOT_DEFINED, // FT-task behavior is not defined
 FT_TASK_NOT_STARTED, // FT_task has a not started behavior :
 // normal and degraded thread are suspended
 FT_TASK_NORMAL, // FT_task has a normal behavior :
 // normal thread is started, degraded thread is suspended
 FT_TASK_DEGRADED, // FT_task has a degraded behavior :
 // normal thread is killed, degraded thread is waked up
 FT_TASK_TERMINATED // FT_task has a terminated behavior :
 // normal and degraded threads are killed
} FT_task_behavior;

FT_sched_param

// FT_sched_param
typedef struct {
 int prio; // priority
 hrtime_t start_time;// start time (relative)
 hrtime_t period; // period (relative)
 // period <= 0 : aperiodic task
 // period > 0 : periodic task
 hrtime_t deadline; // deadline (relative)
 hrtime_t duration; // estimated duration
 char algo[10]; // scheduling algorithm : either PRIO, EDF, EDF+SRP
 int hard_soft_deadline; // Hard (=0) or soft (=1) deadline
 int count_soft_deadline; // Count value for soft deadline
} FT_sched_param;

Example

The following example named ftnormal+kill is a simple example that illustratres the
functionning of dynamic reconfiguration on detection of Pthread_kill event.

The application consists of two tasks. The example can be found in :

${OCERA_DIR/
components/ft/ftcontroller/examples/ftnormal+kill

It is supposed that design has already been done using Ftbuilder and that generated
model files have been copied respectively include and src subdirectories. We remind you

that using degraded mode management facility implies the adoption of a specific design
process and is restricted to a particular task model described in the user's guide. So it is
greatly recommended to read the user'sguide FT section first.

Otherwise, the coding style is quite similar to standard RTLinux programming. All
ft_tasks are periodic tasks. You have to provide two routines for each one. A routine for
normal_behavior and a routine for degraded_behavior. The description of the global
application model is generated by the ft builder and results into two files that must be
included in your application.

Include application header

*/
/***/
/* */
/* Include */
/* */
/***/

// FT application include
#include "ft_normal_kill.h"

Init module

/***/
/* */
/* FT Application : init module */
/* */
/***/
int init_module(void) {

 // Indice
 int ap_i=0;
 // String
 char ap_i_str[4];
 // Return code
 int ap_cr=0;

 // Scheduling parameters of normal and degraded threads
 FT_sched_param ap_normal_sched_param, ap_degraded_sched_param;
 // Behavior of appli task
 FT_task_behavior ap_task_behavior;

 rtl_printf("\n****************\n");
 rtl_printf(" FT_Normal+Kill \n");
 rtl_printf("****************\n");

Include model issued by Ftbuilder

/*---*/
/* */
/* FT Application : Appli Modele Source Generated Code */
/* */
/*---*/

 // FT application modele source code (generated code by FT-Builder)

 #include "ft_appli_model.c"

Init and creation of ft_tasks

/*---*/
/* */
/* FT Application : Init and create FT-tasks */
/* */
/*---*/

Initialization of scheduling parameters

 // Set scheduling parameters of the normal thread
 ap_normal_sched_param.prio=APPLI_PRIORITY;
 ap_normal_sched_param.period=APPLI_PERIODE;
 ap_normal_sched_param.start_time=APPLI_START_TIME;
 ap_normal_sched_param.deadline=APPLI_DEADLINE;
 ap_normal_sched_param.duration=APPLI_DURATION;

 // Set scheduling parameters of the degraded thread
 ap_degraded_sched_param.prio=APPLI_PRIORITY;
 ap_degraded_sched_param.period=APPLI_PERIODE;
 ap_degraded_sched_param.start_time=APPLI_START_TIME;
 ap_degraded_sched_param.deadline=APPLI_DEADLINE;
 ap_degraded_sched_param.duration=APPLI_DURATION;

Loop of init for all ft_tasks

 // Loop of init of FT-tasks
 for (ap_i=1; ap_i < APPLI_TASKS_MAX_NB+1; ap_i++) {
 /*rtl_printf("\nApplication : ap_i=%d", ap_i);*/

 strcpy(&ap_task_name_tab[ap_i][0],"FT_TASK_");
 sprintf(ap_i_str, "%d", ap_i);
 strcat(&ap_task_name_tab[ap_i][0], ap_i_str);

 // Init a FT-task
 // A task has 2 threads with normal and degraded behavior
 /*rtl_printf("\nApplication : Function init_module : ft_task_init\n");*/
 if ((ap_cr=ft_task_init(&ap_task_name_tab[ap_i][0],

 (void *)ap_normal_behavior_routine,

 (void *)ap_degraded_behavior_routine,
 ap_i,
 ap_i,
 ap_normal_sched_param,
 ap_degraded_sched_param
#ifdef FT_PREALLOCATED_THREAD_STACK

/* fxr: stack address and size */
 ,
 NULL,
 0,
 NULL,
 0
#endif
)) < 0) {

 rtl_printf("\nApplication : ERROR");
 rtl_printf("\nApplication : Function init_module");
 rtl_printf("\nApplication : Not valid ft_task_init return value");
 rtl_printf("\nApplication : ap_i=%d ap_cr=%d\n", ap_i, ap_cr);
 // Be careful : Necessary output of init_module with error !!!
 // because it is not possible to start the application
 // if one of the tasks initialisation has failed
 return -1;
 }
 else {
 ap_task_id_tab[ap_i]=ap_cr;
 }
 }

 If init is OK, then the tasks are added to ap_task_id_tab and the actual creation
of ft_tasks can be started.

Loop of creation of ft_tasks.

Two tasks are created with default behavior FT_TASK_NORMAL.

Each ft_task creation results in the creation of two threads corresponding to the
normal and degraded beahavior of the ft_task. The ft_task is created with a
default behavior which is generally FT_TASK_NORMAL. The thread
corresponding to normal behavior is then made periodic and started while the
other one is suspended.

 // Loop of creation of FT-tasks (inverse order : why not)
 for (ap_i=APPLI_TASKS_MAX_NB; ap_i > 0; ap_i--) {
 /*rtl_printf("\nApplication : ap_task_id_tab[%d]=%d\n", ap_i, ap_task_id_tab[ap_i]);*/

 // Create a FT-task
 // Create and start the normal thread (awake each FT_APPLI_PERIODE)
 // Create, start and make wait the degraded thread
 if (ap_i == 1) {
 ap_task_behavior=FT_TASK_NORMAL;
 rtl_printf("\nApplication : ap_i=%d ap_task_behavior=%s\n",
 ap_i, ft_task_behavior_str[ap_task_behavior]);
 }
 else if (ap_i == 2) {
 ap_task_behavior=FT_TASK_NORMAL;
 rtl_printf("\nApplication : ap_i=%d ap_task_behavior=%s\n",
 ap_i, ft_task_behavior_str[ap_task_behavior]);
 }
 else {
 rtl_printf("\nApplication : ERROR");
 rtl_printf("\nApplication : Function init_module");
 rtl_printf("\nApplication : Not valid appli tasks number");
 rtl_printf("\nApplication : ap_i=%d\n", ap_i);
 return -1;
 }
 /*rtl_printf("\nApplication : ", ft_task_behavior_str[ap_task_behavior]);*/
 if ((ap_cr=ft_task_create(ap_task_id_tab[ap_i],

 ap_task_behavior)) < 0) {
 rtl_printf("\nApplication : ERROR");
 rtl_printf("\nApplication : Function init_module");

 rtl_printf("\nApplication : Not valid ft_task_create return value");
 rtl_printf("\nApplication : ap_task_id_tab[%d]=%d ap_cr=%d\n",

 ap_i, ap_task_id_tab[ap_i], ap_cr);
 // Be careful : Necessary output of init_module with error !!!
 // because it is not possible to start the application
 // if one of the tasks creation has failed
 return -1;
 }
 }
 /*rtl_printf("\nApplication : End of application !!!");*/
 return 0;
}

Cleanup module

/***/
/* */
/* FT Application : cleanup module */
/* */
/***/
void cleanup_module(void) {
 // Indice
 int ap_i=0;
 // Return code
 int ap_cr=0;
 rtl_printf("\nApplication : CLEANUP application threads !!!\n");
 // Delete all the application FT-tasks
 for (ap_i=1; ap_i < APPLI_TASKS_MAX_NB+1; ap_i++) {
 if ((ap_cr=ft_task_end(ap_task_id_tab[ap_i])) < 0) {
 rtl_printf("\nApplication : ERROR");
 rtl_printf("\nApplication : Function cleanup_module");
 rtl_printf("\nApplication : Not valid ft_task_end return value");
 rtl_printf("\nApplication : ap_task_id_tab[%d]=%d ap_cr=%d", ap_i, ap_task_id_tab[ap_i],
ap_cr);
 // Be careful : NOT necessary output of cleanup_module with error !!!
 // because it is recommended to stop all the tasks of the application
 // even if one of the tasks end has failed
 }
 }

 // Stop the FT controller
 /*ft_controller_stop();*/
 // Stop the FT appli monitor
 /*ft_appli_monitor_stop();*/
}
MODULE_LICENSE("GPL");

Normal behavior routine definition

In this example, the routine runs 20 cycles then kills itself so that it simulates an
error . The event will then be detected by the controller and the replacement
behavior will be activated.

/***/
/* */
/* FT Application task : normal behavior routine */
/* */
/***/

void *ap_normal_behavior_routine(void *arg) {

 int ap_no_cycle=0;
 int ap_j=0;
 int ap_nloops=0;
 int ap_task_id=0;
 /*int ap_cr=0;*/

 ap_task_id = (int) arg;

 rtl_printf("\nApplication : ft-task %d, thread %x started, normal behavior", ap_task_id,
pthread_self());
 rtl_printf("\nApplication : ft-task %d, thread %x switching to wait, normal behavior\n",
ap_task_id, pthread_self());

 // Infinite loop for appli
 while(1) {
 // Wait make periodic or next period of the normal behavior thread !!!
 pthread_wait_np();
 if (ap_no_cycle == 0)
 rtl_printf("\nApplication : ft-task %d, thread %x switching to running, normal behavior\n",
ap_task_id, pthread_self());
 ap_no_cycle++;
 /*rtl_printf("\n\nApplication : ap_task_id=%d ap_task_behavior=NORMAL ap_thread_kid=%x
ap_no_cycle=%d\n", ap_task_id, pthread_self(), ap_no_cycle);*/

 // Start simulation of cancelling the normal behavior thread
 if ((ap_no_cycle == 20) && (ap_task_id == 2)) {
 rtl_printf("\nApplication : ft-task %d, thread %x cancelling, normal behavior, no_cycle %d\n",
ap_task_id, pthread_self(), ap_no_cycle);
 pthread_cancel(pthread_self());
 break;
 }
 // End simulation of cancelling the normal behavior thread

 // For test
 if (ap_no_cycle == 10) {
 rtl_printf("\nApplication : ft-task %d, thread %x, no_cycle %d,
 normal behavior\n",
 ap_task_id, pthread_self(), ap_no_cycle);
 }
 // Timing loop
 ap_nloops=10000;
 for (ap_j=0; ap_j<ap_nloops; ap_j++);

 } // end of 'while'

 return (void *)0;
}

Degraded behavior routine

The degraded behavior routine has the same structure as the normal one.

/***/
/* */
/* FT Application task : degraded behavior routine */
/* */
/***/

void *ap_degraded_behavior_routine(void *arg) {

 int ap_no_cycle=0;
 int ap_j=0;
 int ap_nloops=0;
 int ap_task_id=0;
 /*int ap_cr=0;*/

 ap_task_id = (int) arg;

 /***
 rtl_printf("\nApplication : ft-task %d, thread %x started, degraded behavior",

 ap_task_id, pthread_self());
 rtl_printf("\nApplication : ft-task %d, thread %x switching to wait, degraded behavior\n",

 ap_task_id, pthread_self());
 ***/

 // Infinite loop for appli
 while(1) {

 // Wait make periodic or next period of the degraded behavior thread !!!
 pthread_wait_np();

 if (ap_no_cycle == 0)
 rtl_printf("\nApplication : ft-task %d, thread %x switching to running, degraded behavior\n",
ap_task_id, pthread_self());

 ap_no_cycle++;

 // For test
 if (ap_no_cycle == 10) {
 rtl_printf("\nApplication : ft-task %d, thread %x, no_cycle %d, degraded behavior\n",

ap_task_id, pthread_self(), ap_no_cycle);
 }

 // Timing loop
 ap_nloops=10000;
 for (ap_j=0; ap_j<ap_nloops; ap_j++);

 } // end of 'while'

 return (void *)0;
}

Application compiling

In order to compile an ft application, it is necessary to have OCERA architecture
installed and compiled (see general OCERA installation) with the following
components selected :

• posixtrace

• ft_components : ftappmon and ft_controller

The application code given as an example is located in the following directory :
$OCERA_DIR/components/ft/ftcontroller/examples/ftnormal+kill

The compilation of the example follows a classic module compilation procedure.

 - Change to example directory

$ cd $OCERA_DIR/components/ft/ftcontroller/examples/ftnormal+kill

- Clean the
$OCERA_DIR/components/ft/ftcontroller/examples/ftnormal+kill
directory:

$ make clean

Old ftnormal+kill.o file is cleaned up if it exists.

- Compile the ftnormal+kill module:

$ make all

The ftnormal+kill.o module is now available under the following
directory :

 $OCERA_DIR/components/ft/ftcontroller/examples/ftnormal+kil
l/src

Running an application

The procedure to launch the example is the following :

- Go to the ft/ftcontroller/examples/<example_name> directory level :

$ cd $OCERA_DIR/comp/ft/ftcontroller/examples/ftnormal+kill

– Be a root user

$ su
Password:
#

At this stage, it is necessary to be a root user. Further, the user has to be a
normal user.

– Install and execute all the module:

make example

- Get the modules execution traces:

tail -f /var/log/messages

Be careful to see only the last execution traces (not the previous
ones).

Additional information and recommendations

prerequisites

FT facilities for degraded mode management of real_time embedded
applications are available for Hard RTLinux environments only.

All application tasks are RTLinux tasks created within one single application
module that can be dynamically loaded into the system. A user application must
thus consist in one single RTLinux module. As usual this module must contain
declarations, one init_module function and one cleanup_module function.

The prerequisites are thus a running OCERA RTLinux kernel with PosixTrace
and FT_components installed (see FT configuration section in chapter three).
More precisely, the prerequisites are :

Configuration requirements

-> OS Type

+ Hard and Soft realtime (RTLinux + Linux)

-> Fault Tolerance components

+ FT dependencies + Bigphysarea support

+ Hard Realtime + Degraded Management

+ FT Controller

+ FT Application Monitoring

+ Utilities + Fault Tolerant Building Tool

-> Scheduling

+ Application defined scheduler

+ or EDF

+ or EDF + Deadline miss detection (very experimental)

Scheduling of tasks versus event detection is chosen at the configuration
level :

- either priority (PRIO) by Application defined scheduler or EDF for only
Pthread_kill events detection,

- or EDF and Deadline_miss detection for Pthread_kill and Deadline_miss
events detection.

It is important to consider that the scheduling choice versus event detection
has to be consistent with application modes transitions in the application
model specification in FT_builder. Remember that the scheduling
configuration choice automatically configures the FT components at
compilation level for Pthread_kill and/or deadline-miss events detection on
threads by ftcontroller.

-> Posix API

+ Posix Trace support

In the example presented in the previous section, only pthread_kills errors were
targetted. If you want to detect also deadline-miss errors you should first make
sure that the EDF+DLM configuration options have been selected in the
configuration steps.

Specify FT parameters of application with FTbuilder

Do not forget that application design must be done using Ftbuilder. This
acquisition tool is necessary to specify application modes, ft_tasks parameters
and application modes transition conditions. It then generates application model
files that have to be included in your application.

FT_tasks real-time parameters

The ft_tasks real-time parameters (period, start_time, estimated_duration,
deadline, priority) are entered via the FT_builder (see FT task specification in
user'sguide :chapter eight). Static scheduling plan on ft-tasks has to be
faisable.

Restrictions and recommandations for these real-time parameters are :

• 1 ms <= period < =100 s

• 0 <= start_time < period

• 0 < estimated_duration < period

• 1 ms <= deadline <= period

• 0 <= priority <=10

Note that the FT components ftappmon and ftcontroller have a priority value
superior to the ft_tasks priority values.

Include files

The application header must include the following ft specific files:

• header of the ft_components API : ft_api_appmon_appli.h

• header file for the application model (generated by the FT_builder)
: ft_appli_model.h

The application source file must include the following ftbuilder generated
specific file:

• ft_appli_model.c

This file contains the FT application model source code that instanciates internal
data structures of FT components and is used to monitor application and
implement dynamic reconfiguration.

Redundancy Management

Description

The Redundancy Management facilities offered by OCERA consist of two
complementary components: ftredundancymgr and ftreplicamgr. Used
together, they provide a framework for implementing redundancy management
support for user's application. They respectively control redundancy at the
application level and at the task level on each node.

This first implementation is intended to provide a basic framework whose goal is
to offer a global set of facilities that permit transparent implementation of
redundancy for developers of real-time applications. It offers a passive
replication model, the task model is a simplified one (periodic tasks), fault-
detection is based on heartbeats and timeouts, consistency of replicas is
ensured by periodic checkpointing.

The current implementation is located at Linux user-space level using ORTE
component for communication between nodes. However implementation choices
have been made in such a way as to facilitate the port to OCERA Hard Real-
Time level when ORTE become available at this level. Indeed these facilities can
be enriched in the future.

 In order to support data consistency and to facilitate tasks recovering on node
crash, a task model must verify synchronization properties. In the current
implementation, we have introduced a specific task model described in the FT
redundancy management section of the User's guide.

An application consists of a set of ftr_tasks (fault_tolerant redundant tasks). They
are basically encapsulation of real-time periodic tasks. Creating a ftr_task results
in the creation oone master (active) thread and several passive replicas
(suspended threads). A context object is defined for each ftr_task, the
application developer must define the set of variables which must be part of the
context at design time. This context object is automatically updated and
broadcasted at each end of cycle to all passive replicas.

Implementation principles are driven by the will to make redundancy
management as transparent as possible to the application developer. So in
order to develop an application, the user can almost forget about underlying ft
redundancy management architecture.

To support the approach, two features are introduced and used within the user's
process :

• creation of a control thread dedicated to redundancy control
(ftr_control_thread)

• encapsulation of application tasks into ftr_tasks_threads

The ftr_control_thread is in charge of initialization and control of application.
Created within the user application process it communicates with
ftredundancymgr and ftreplicamgr.

The ftr_tasks_threads are generic encapsulation of redundant tasks. A
ftr_task_thread is created for each user's application redundant task. It ensures
periodic execution of user's task routine, management of context entity and of
shared data entities and communication with ftreplicamgr for checkpointing.

Communication with ftreplicamgr and ftredundancymgr are achieved using
ORTE publisher/subscriber mechanisms both within a node and between nodes,
but this is transparent to the user since calls are made either from
ftr_control_thread or from ftr_tasks_threads generic part using specific internal
APIs that are described in the corresponding component sections below.

Usage

he FT facilities available at soft real-time level are Redundancy
Management.
Redundancy Management configuration process takes three steps:

1. OS Type Selection : Soft real-time must be chosen.

2. Components Selection :

• FT components/Soft Realtime/Redundancy Management.

• Communication components/ORTE

1. OS Type Selection

Redundancy Management is provided only at soft real-time level . So the Soft
real-time must be selected in the OS type section.

2.1 FT components selection

Select the Soft Realtime subsection in Fault Tolerance components, then the two
components Task Replica Manager and Task Redundancy Manager are
automatically selected.

2.2ORTE communication component selection

The Redundancy Management facility relies on ORTE (Realtime Ethernet)
components that implement RTPS (RealTime Publisher Subscriber Protocol)
communication protocol.

So you must select the following features in the communication components
section.

Figure 1 : FT Redundancy Management Configuration step1

Programming Interface (API)

The approach chosen results in a very limited user's API necessary mainly for
initialization and termination of user application. Most of user' s application code
consists in routines that will be run within ftr_tasks_threads. The important issue is
to specify the context data and shared resources for each task at design. Concurrency control
over such shared data is then automatically insured by the execution model. Then threads
routine can be written simply in a usual way.

So the external user API is actually restricted to the followin few functions :

int ftr_application_register(char *, FTR_APPLI_DESC * ,
 ManagedApp *);
int ftr_appli_desc_init(FTR_APPLI_DESC *);
int ftr_appli_task_create(FTR_APPLI_TASK_DESC *);
int ftr_appli_task_end(int);
int ftr_application_terminate(char*);

FT redundancy management User API

They are called within user's main application thread and handled by the
ftr_control_thread (named hereafter ftr_controller) running within the application
process. Then the ftr_controller uses internal API to communicate with
ftredundancymgr and with ftreplicamgr.

The ftredundancymgr has a small external API that is used to start or end the
redundancy management facility.

In addition, each component has also internal API(s) that permit interactions
between them.

Figure 2 : FT Redundancy Management Configuration step2

Principles of application execution

In the following figure we illustrate on a very simple example how an application
is started.

Once the design is done, the resulting architecture on a node is composed of the
user's process and of the Redundancy Management Facility process (in the
following view we do not show ORTE process).

Within the user's process the yellow (or white) parts concern code written by
users and blue (or gray) part concern generic ftr code.

Figure 3 : FT Redundancy Management User's API

Redundancy ManagementApplication

ftredundancymgr

ftreplicamgr

ftr_controller

ftr_notify_appli_task_created()
ftr_notify_appli_task_cycle_started()
ftr_notify_appli_task_cycle_finished()
ftr_notify_appli_task_ended()

ftr_task_context_commit()
ftr_task_context_update()
ftr_shared_data_commit()
ftr_shared_data_update()

ftr_application_register ()
ftr_appli_desc_init()
ftr_appli_task_create()
ftr_appli_task_end()
ftr_application_terminate()

ftr_notify_task_failed()

ftr_redundancy_management_start()
ftr_redundancy_management_end()

ftr_application_config_init()
ftr_application_config_modify()

ftr_notify_node_failed()
ftr_application_config_checkpoint()
ftr_ftredundancymgr_heartbeat()

User Application Main

ftr_task_group_add_member()
ftr_task_group_remove_member()
ftr_task_group_modify_member_attributes()

ftr_task_checkpoint()
ftr_ftreplicamgr_heartbeat()

ftr_task_group_init()
ftr_task_group_destroy()

First the application creates the ftr_control_thread (1), then it calls the
ftr_application_register primitive to register the application (2), the
ftr_control_thread then communicates with the ftredundancymgr to setup data
(3) for the new application, and waits for acknowledgment (4) from it before
returning OK (5) to the user main thread.

Then the ftr_appli_desc_init primitive is called to setup application data
structures and ftr_tasks_threads (6). At this stage ftr_tasks_threads are created
but the corresponding users routines are not started. When all the infrastructure
is ready, the ftreplicamgr notifies the ftr_control_thread (7) which returns OK (8)
to user's main thread.

Finally the user can call the ftr_appli_task_create primitive to start a ftr_task.(9).
The ftr_controller_thread then makes the ftr_task_thread start periodic call to the corresponding
user's ftr_task_routine (10).

Two other primitives are available to end an ftr_appli_task (ftr_appli_task_end) and to
terminate the overall application(ftr_application_terminate).

The user has to define specific data structures, one to describe the overall
application structure and one to describe each ftr_task.

It is intended that the Ftbuilder tool (already available for the specification of degraded mode
management) will assist the designer to determine these features and automatically generate the
corresponding data structures. For the moment this facility is not implemented yet, and data is
provided in a file read by the ftr_appli_desc_init primitive.

Figure 4 : FT Redundancy Management - application execution
principles

Node1

FTR Application : node1

ftr_task

 T1:m

Redundancy Management Faclity

CT1

ftredundancymgr ftreplicamgr

main ftr_control

r1m

Replica management

1

2

3

5

4

6
8

7

9
10

Global Application & Network control

Example

It is intended that the Ftbuilder tool (already available for the specification of
degraded mode management) will assist the designer to determine these
features and automatically generate the corresponding data structures. For the
moment this facility is not implemented yet, and data is provided in a file read by
the ftr_appli_desc_init primitive.

Coding steps

An application can be written rather simply following the different generic steps :

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <orte.h>
#include <netdb.h>
#include <pthread.h>
#include <simple_appli.h>
#include <ftredundancymgr.h>
#include <appli_controller.h>
ManagedApp *appli;
pthread_t ftr_control_thread;
int main(void)
{
 int res = 0;
 void *ret;
 FTR_APPLI_DESC application_desc;
 FTR_APPLI_TASK_DESC application_task_desc_1;
 FTR_APPLI_TASK_DESC application_task_desc_2;

1. Declarations for ftr_application

 /* Creation of ftr_control_thread */
 pthread_create(&ftr_control_thread, NULL,(*ftr_main_control_routine),
 NULL);
 if (res != 0) {
 perror("Redundancy Management thread creation failure ...
 exiting");
 exit(-1);
 };

2. Creation of ftr_control_thread of ftr_application

The ftr_control_thread of the application is created in the beginning of the main
thread to install the ftr architecture within the application process. In the future, it
will be replaced by a macro. The ftr_main_control_routine, is a generic control
loop that monitors events from and to the ftr_process. It also accepts requests
form the user main thread.

 /* Init appli_desc structure */
 res = ftr_appli_desc_init(&application_desc);

 if (res == -1) {
perror("Redundancy Management : application desc init failed ...

 exiting");
 exit(-1);
 };

3. initialization of application data structures

During this step, data structures describing application and tasks are initialized.

 /* Register application */
 res = ftr_application_register(APPLI_NAME, &application_desc,appli);
 if (res == -1) {
 perror("Redundancy Management : application registration failed...
 exiting");
 exit(-1);
 };

4. Registration of application

Application registration is done towards ftr process which in turn propagate
information over network (thanks to ORTE) to other ftr processes. (Application is
also registered as ORTE Application). (Internal tables are initialized, groups of
replicas are created and instances created on each node).

 /* Tasks creation */
 application_task_desc_1 = application_desc.appli_tasks_tab[1];
 application_task_desc_1.appli_task_routine = ft1;
 res = ftr_appli_task_create(&application_task_desc_1);
if (res == -1) {
 perror("Redundancy Management : task creation (1) failed...
 exiting");
 exit(-1);
 };
...

5. ftr_tasks creation for ftr_application

During this step each application task is created using the ftr_task_desc of each
one. This steps defines mainly the routine to be run within the generic
ftr_task_thread and the related real-time parameters (period,
estimated_duration, deadline). At the end of each period, the current context is
sent to all its replicas on other nodes.

Once this is done for each task, the application runs in a nominal way.

To end a task the following call is necessary.

 /* Requiring End of Task 1 */
 res = ftr_appli_task_end(1);
...

6. ftr_tasks ending for ftr_application

This ends the corresponding ftr_task (and all its replicas). All ftr_tasks have to be
ended before application itself can be ended.

 /* Requiring Application Termination */
 ftr_application_terminate(APPLI_NAME);
 /* Waiting for end of control_thread */

 pthread_join(ftr_control_thread,&ret);
 if (ret != PTHREAD_CANCELED) {
 i = (int) ret;
 printf("Main : end of ftr_control_thread ret = %d\n", i);
 };

 printf("\nAppli ending : ");
 return 0;
}

7. Termination of ftr_application

Once all the ftr_tasks are ended, resources are freed and the ftr_control_thread
is ended, then application terminates.

Obviously, the user must in addition provide the code of the routines that will be
run within each ftr_tasks_thread. A pointer to this routine is a member of the
ftr_task_desc structure.

In our simple example :

int ft1(int i)
{
 printf("Function ft1 running with arg %d\n",i);
 sleep(3);
 return 0;
}

The status of the current implementation is still in a testing phase. The example
implemented tests application setup, execution and termination.

How to run the examples

Up to now, the examples developed are common to the two components.The
example directory is located within the ftredundancymgr component :

ocera/components/ft/ftredundancymgr/examples/ftr_appli

It is the Makefile located within this directory that builds the test application. In
order to run the example it is necessary to compile and start the ftredundancy
management facility first.

Implementation :

The ft/ftredundancymgr/examples/ directory has the following structure:

 examples
 ! --- README
 ! --- INSTALL
 ! --- Makefile
 ! --- ftr_appli
 ! !--- README
 ! !--- INSTALL
 ! !--- Makefile
 ! !--- include
 ! ! !---ftr_appli.h
 ! !--- src
 ! ! !---ftr_appli.c

The ftr_appli is a simple application that has been developed to test the
ftredundancy management facility.

The general OCERA Makefile file permits the compilation of the overall OCERA
tree provided options are selected in the configuration step (see OCERA
HOWTO for OCERA configuration steps). However examples can be compiled
separately afterwards.

Compilation :

In order to compile the example please follow next steps :

- Go to the ft/ftredundancymngr/examples directory:
$ cd ft/ftredundancymngr/examples

- Clean the ft/ftredundancymngr/examples directory:
$ make clean

- Compile the examples:
$ make

Installation/Execution :

Note that execution of examples requires a distributed architecture. So the
ftcomponents and examples must be present on each machine that will be
involved in the test. This requires additional operations and controls before the
example can be run.

• Install OCERA (or at least ORTE and ftcomponents) on each machine.

• Insure that rights are set so as to allow for remote execution of the code
corresponding to both components and application.

• Set up environment variables

(See section 2.7 for details)

The example runs on two nodes N1 and N2. The application has two tasks T1
and T2.

T1 master task is running on node N1 and T2 master task is running on Node2.
Node1 is the master node on application start.

To run the application one must :

• start ftredundancy management

A shell script allows for this, it is located in ft/ftredundancymngr/src
:

$ ftrm_start <Node1> <Node2>
where <Nodei> is an hostname

It starts ORTEManager on each node, then starts ftredundancy
components on each node. Actually the two components of a node
are linked a single Linux executable named ft_redman.

The master node is the current node (it must be the same as the
first argument , here Node1).

• start application on master node

$ cd ftr_appli/src

$./ftr_appli

The application starts first on Node1 then on Node2. Replicas are
created and ftr_tasks started.

After a given number of cycles the application ends.

Comments

The current implementation is still a prototype one and the development status is
very experimental.We have adopted an incremental development cycle and
some functionalities have still very basic implementation. The main goal of this
step was to provide a consistent overall framework for redundancy management.
A lot of work has still to be done to make an efficient operational environment of
it.

However, the example has permitted to test the ft redundancy management
overall structure .

• Ft redundancy framework set-up and functioning

• Application registration

• Application execution

• Application termination.

• Node crash detection

• Application dynamic reconfiguration.

CAN

By
Frantisek Vacek - CTU
Pavel Pisa - CTU

Installation

CAN commponet uses the OMK make system. There is no ./configure script.
The component can be built as a part of OCERA tree or as a stanalone. If it is
build as a standalone you should run script can/switch2standalone.

[fanda@lab3-2 can]$./switch2standalone
Default config for /utils/suiut
Default config for /utils/ulut
Default config for /utils/flib
Default config for /utils
Default config for /canvca/libvca
Default config for /canvca/cantest
Default config for /canvca
Default config for /candev/cpickle
Default config for /candev/nascanhw
Default config for /candev
Default config for /canmon/canmond
Default config for /canmon/canmonitor
Default config for /canmon
Default config for /lincan/src
Default config for /lincan/utils
Default config for /lincan
Default config for

To modify required configuration options, create "config.omk" file
and add modified lines from "config.omk-default" file into it

To build project, call simple "make"

GNU make program version 3.81beta1 or newer is required to build project
check by "make --version" command

Default configuration of any subcommponent can be changed by introducing a
file config.omk in the subcommponent directory. Defines in this file simply
beats defines in file config.omk-default, so you can put there only defines
that are different that the default ones in the config.omk-default.

For example by default the building of Java application is disabled. That means
that there is a line CONFIG_OC_CANMONITOR=n in the config.omk-
default. If you have the Java SDK and the ant build system installed, add the
line CONFIG_OC_CANMONITOR=y to the file config.omk to enable the Java
applications to be build.

When you switch to standalone, you can build any particular commponent by
running make in the commponent directory.

For more details see file can/README.makerules.

You can download make version 3.81beta1 source from
http://cmp.felk.cvut.cz/~pisa/can/make-3.81beta1.tar.gz or the binary from
http://cmp.felk.cvut.cz/~pisa/can/make-3.81beta1-i586-0.gz.

Programs in this package does not need special installation. They can run from
any directory. Just type make in can/canmon directory and copy desired files
wherever you want. The make process is an out source build. After make you
can find your binaries in directory can/_compiled/bin. If you want to compile
only one component, type make in the component's directory. That commponent
and all commponents in subdirectories will be build.

Restrictions on versions of GNU C or glibc are not known in this stage of project
but gcc ver >= 3.0 is recommended. Java SDK ver. 1.4 or above is also
recommended (assert keyword support).

API / Compatibility

VCA base API

Name

struct canmsg_t — structure representing CAN message

Synopsis
struct canmsg_t {
 int flags;
 int cob;
 unsigned long id;
 canmsg_tstamp_t timestamp;
 unsigned short length;
 unsigned char * data;
};

Members

flags
message flags MSG_RTR .. message is Remote Transmission Request,
MSG_EXT .. message with extended ID, MSG_OVR .. indication of queue
overflow condition, MSG_LOCAL .. message originates from this node.

cob
communication object number (not used)

id
ID of CAN message

timestamp
not used

length
length of used data

data

data bytes buffer

Header

canmsg.h

Name

struct canfilt_t — structure for acceptance filter setup

Synopsis
struct canfilt_t {
 int flags;
 int queid;
 int cob;
 unsigned long id;
 unsigned long mask;
};

Members

flags
message flags MSG_RTR .. message is Remote Transmission Request,
MSG_EXT .. message with extended ID, MSG_OVR .. indication of queue
overflow condition, MSG_LOCAL .. message originates from this node. there
are corresponding mask bits MSG_RTR_MASK, MSG_EXT_MASK,
MSG_LOCAL_MASK. MSG_PROCESSLOCAL enables local messages
processing in the combination with global setting

queid
CAN queue identification in the case of the multiple queues per one user
(open instance)

cob
communication object number (not used)

id
selected required value of cared ID id bits

mask
select bits significand for the comparation; 1 .. take care about
corresponding ID bit, 0 .. don't care

Header

canmsg.h

Name

vca_h5log — converts VCA handle to printable number

Synopsis

long vca_h5log (vcah);
vca_handle_t vcah;

Arguments

vcah
VCA handle

Header

can_vca.h

Return Value

unique printable VCA handle number

Name

vca_open_handle — opens new VCA handle from CAN driver

Synopsis
int vca_open_handle (vcah_p,
 dev_name,
 options,
 flags);
vca_handle_t *

vcah_p;

const char *
dev_name
;

const char * options;
int flags;

Arguments

vcah_p
points to location filled by new VCA handle

dev_name
name of requested CAN device, if NULL, default VCA_DEV_NAME is used

options
options argument, can be NULL

flags
flags modifying style of open (VCA_O_NOBLOCK)

Header

can_vca.h

Return Value

VCA_OK in case of success

Name

vca_close_handle — closes previously acquired VCA handle

Synopsis

int vca_close_handle (vcah);
vca_handle_t vcah;

Arguments

vcah
VCA handle

Header

can_vca.h

Return Value

Same as libc close returns.

Name

vca_send_msg_seq — sends sequentially block of CAN messages

Synopsis
int vca_send_msg_seq (vcah,
 messages,
 count);
vca_handle_t

vcah;

canmsg_t * messages;
int count;

Arguments

vcah
VCA handle

messages
points to continuous array of CAN messages to send

count
count of messages in array

Header

can_vca.h

Return Value

Number of sucessfully sent messages or error < 0

Name

vca_rec_msg_seq — receive sequential block of CAN messages

Synopsis
int vca_rec_msg_seq (vcah,
 messages,
 count);
vca_handle_t

vcah;

canmsg_t * messages;
int count;

Arguments

vcah
VCA handle

messages
points to array for received CAN messages

count
number of message slots in array

Header

can_vca.h

Return Value

number of received messages or error < 0

Name

vca_wait — blocking wait for the new message(s)

Synopsis
int vca_wait (vcah,
 wait_msec,
 what);

vca_handle_t

vcah;

int wait_msec;
int what;

Arguments

vcah
VCA handle

wait_msec
number of miliseconds to wait, 0 => forever

what
0,1 => wait for Rx message, 2 => wait for Tx - free 3 => wait for both

Header

can_vca.h

Return Value

Positive value if wait condition is satisfied

Name

vca_gethex — gets one hexadecimal number from string

Synopsis

int vca_gethex (str, u);
const char * str;
int * u;

Arguments

str
scanned string

u
pointer to store got value

Return

the number of eaten chars

Header

can_vca.h

Name

vca_strmatch — get token from string

Synopsis
int vca_strmatch (str,
 template);
const char * str;
const char * template;

Arguments

str
scanned string

template
token template template consists of characters and '~' matching one or
more of spaces ie. '~hello' matches ' hello', ' hello', ' hello' etc.

Return

the number of used chars from str if match or negative value (number of partially
matched chars from str - 1) if template does not match

Header

can_vca.h

Name

vca_msg2str — converts canmsg_t to the string

Synopsis
int vca_msg2str (can_msg,
 buff,
 buff_len);
const struct canmsg_t *

can_msg;

char * buff;
int buff_len;

Arguments

can_msg
pointer to the serialized CAN message

buff
buffer for the serialized string

buff_len
max length of serialized string, including terminating zero

Return

the number of written chars not including terminating zero

Header

can_vca.h

Name

vca_byte2str — converts byte to the string

Synopsis
const char* vca_byte2str (b,
 base);
unsigned char b;
int base;

Arguments

b
byte to convert

base
base, can be (2, 8, 16)

Return

string representation of b in chosen base

Header

can_vca.h

Name

vca_str2msg — converts the string to the canmsg_t object

Synopsis
int vca_str2msg (can_msg,
 str);
struct canmsg_t *

can_msg;

const char * str;

Arguments

can_msg
pointer to the serialized CAN message

str
string representing CAN message

Return

number of read chars if succeed else zero or negative value.

Header

can_vca.h

Name

vca_cmp_terminated — compares two strings terminated either by '\0' or by
terminator.

Synopsis
int vca_cmp_terminated (pa,
 pb,
 terminator);
const char * pa;
const char * pb;
char terminator;

Arguments

pa
first string

pb
second string

terminator
aditional char (\0 stil terminates string too), that indicates end of string

Description

Usefull when one works with the path names.

Return

the same value like libc strcmp does.

Header

can_vca.h

Name

vca_log — generic logging facility for VCA library

Synopsis
void vca_log (domain,
 level,
 format,
 ...);
const char * domain;
int level;
const char * format;
... ...;

Arguments

domain
pointer to character string representing source of logged event, it is
VCA_LDOMAIN for library itself

level
severity level

format
printf style format followed by arguments

...
variable arguments

Description

This functions is used for logging of various events. If not overridden by
application, logged messages goes to the stderr. Environment variable
VCA_LOG_FILENAME can be used to redirect output to file. Environment variable
VCA_DEBUG_FLG can be used to select different set of logged events through
vca_debug_flg.

Note

There is a global variable vca_log_cutoff_level. Only the messages with
level <= vca_log_cutoff_level will be logged. see can_vca.h

Name

vca_log_redir — redirects default log output function

Synopsis
void vca_log_redir (log_fnc,
 add_flags);
vca_log_fnc_t *

log_fnc;

int add_flags;

Arguments

log_fnc
new log output function. Value NULL resets to default function

add_flags
some more flags

SDO processing API

Name

struct vcasdo_fsm_t — structure representing SDO FSM

Synopsis
struct vcasdo_fsm_t {
 unsigned srvcli_cob_id;
 unsigned clisrv_cob_id;
 unsigned node;
 unsigned index, subindex;
 struct timeval last_activity;
 int bytes_to_load;
 unsigned char toggle_bit;
 char is_server;
 char is_uploader;
 int state;
 vcasdo_fsm_state_fnc_t * statefnc;
 int err_no;
 ul_dbuff_t data;
 canmsg_t out_msg;
};

Members

srvcli_cob_id
SDO server-client COB_ID (default is 0x580 + node), port on which master
listen

clisrv_cob_id
SDO client-server COB_ID (default is 0x600 + node), port on which slave
listen

node
CANopen node number

subindex
subindex of communicated object

last_activity
time of last FSM activity (internal use)

bytes_to_load
number of stil not uploaded SDO data bytes (internal use)

toggle_bit

(internal use)
is_server

type of FSM client or server (Master or Slave) (internal use)
is_uploader

processing upload/download in state sdofsmRun, sdofsmDone
state

state of SDO (sdofsmIdle = 0, sdofsmRun, sdofsmDone,
sdofsmError, sdofsmAbort)

statefnc
pointer to the state function (internal use)

err_no
error number in state sdofsmError.

data
uploaded/downloaded bytes (see ul_dbuff.h)

out_msg
if vcasdo_taste_msg generates answer, it is stored in the out_msg

Header

vcasdo_fsm.h

Name

vcasdo_fsm_upload1 — starts SDO upload using parameters set by previous
calling vcasdo_init_fsm

Synopsis
int vcasdo_fsm_upload1 (fsm);
vcasdo_fsm_t *

fsm;

Arguments

fsm
FSM to work with

Return

the same as vcasdo_fsm_upload1

See also

vcasdo_fsm_upload1.

Header

vcasdo_fsm.h

Name

vcasdo_fsm_download1 — starts SDO download using parameters set by
previous calling vcasdo_init_fsm

Synopsis
int vcasdo_fsm_download1 (fsm,
 data);
vcasdo_fsm_t *

fsm;

ul_dbuff_t * data;

Arguments

fsm
FSM to work with

data
pointer to &ul_dbuff_t structure where downloaded data will be stored

Return

the same as vcasdo_fsm_download

See also

vcasdo_fsm_download.

Header

vcasdo_fsm.h

Name

vcasdo_read_multiplexor — reads index and subindex from multiplexor part of
CANopen mesage

Synopsis
void vcasdo_read_multiplexor (mult,
 index,
 subindex);
const byte * mult;
unsigned * index;
unsigned * subindex;

Arguments

mult
pointer to the multiplexor part of CANopen mesage

index
pointer to place to store read index

subindex
pointer to place to store read subindex

Header

vcasdo_fsm.h

Name

vcasdo_error_msg — translates err_no to the string message

Synopsis

const char* vcasdo_error_msg (err_no);
int err_no;

Arguments

err_no
number of error, if FSM state == sdofsmError

Return

textual error description.

Header

vcasdo_fsm.h

Name

vcasdo_init_fsm — init SDO FSM

Synopsis
void vcasdo_init_fsm (fsm,
 srvcli_cob_id,
 clisrv_cob_id,
 node);
vcasdo_fsm_t *

fsm;

unsigned srvcli_cob_id;
unsigned clisrv_cob_id;
unsigned node;

Arguments

fsm
fsm to init

srvcli_cob_id
port to use for server->client communication (default 0x850 used if
srvcli_cob_id==0)

clisrv_cob_id
port to use for client->server communication (default 0x600 used if
clisrv_cob_id==0)

node
number of node on CAN bus to communicate with

Header

vcasdo_fsm.h

Name

vcasdo_destroy_fsm — frees all SDO FSM resources (destructor)

Synopsis
void vcasdo_destroy_fsm (fsm);
vcasdo_fsm_t *

fsm;

Arguments

fsm
fsm to destroy

Header

vcasdo_fsm.h

Name

vcasdo_fsm_idle — sets SDO FSM to idle state

Synopsis

void vcasdo_fsm_idle (fsm);
vcasdo_fsm_t * fsm;

Arguments

fsm
SDO FSM

Header

vcasdo_fsm.h

Name

vcasdo_fsm_run — starts SDO communication protocol for this FSM

Synopsis

void vcasdo_fsm_run (fsm);
vcasdo_fsm_t * fsm;

Arguments

fsm
SDO FSM

Header

vcasdo_fsm.h

Name

vcasdo_fsm_abort — aborts SDO communication for this FSM, fill abort out_msg

Synopsis
void vcasdo_fsm_abort (fsm,
 abort_code);
vcasdo_fsm_t *

fsm;

uint32_t abort_code;

Arguments

fsm
SDO FSM

abort_code
code to fill to out_msg

Header

vcasdo_fsm.h

Name

vcasdo_fsm_upload — starts upload SDO communication protocol for this FSM

Synopsis
int vcasdo_fsm_upload (fsm,
 node,
 index,
 subindex,
 srvcli_cob_id,
 clisrv_cob_id);
vcasdo_fsm_t *

fsm;

int node;
unsigned index;
byte subindex;
unsigned srvcli_cob_id;
unsigned clisrv_cob_id;

Arguments

fsm
SDO FSM

node
CANopen device node to upload from

index
uploaded object index

subindex
uploaded object subindex

srvcli_cob_id
port to use for server->client communication (default 0x850 used if
srvcli_cob_id==0)

clisrv_cob_id
port to use for client->server communication (default 0x600 used if
clisrv_cob_id==0)

Return

not 0 if fsm->out_msg contains CAN message to sent

Header

vcasdo_fsm.h

Name

vcasdo_fsm_download — starts download SDO communication protocol for this
FSM

Synopsis
int vcasdo_fsm_download (fsm,

 dbuff,
 node,
 index,
 subindex,
 srvcli_cob_id,
 clisrv_cob_id);
vcasdo_fsm_t *

fsm;

ul_dbuff_t * dbuff;
int node;
unsigned index;
byte subindex;
unsigned srvcli_cob_id;
unsigned clisrv_cob_id;

Arguments

fsm
SDO FSM

dbuff
pointer to a ul_dbuff structure to store received/transmitted data

node
CANopen device node to upload from

index
uploaded object index

subindex
uploaded object subindex

srvcli_cob_id
port to use for server->client communication (default 0x850 used if
srvcli_cob_id==0)

clisrv_cob_id
port to use for client->server communication (default 0x600 used if
clisrv_cob_id==0)

Return

not 0 if fsm->out_msg contains CAN message to sent

Header

vcasdo_fsm.h

Name

vcasdo_fsm_taste_msg — try to process msg in FSM

Synopsis
int vcasdo_fsm_taste_msg (fsm,
 msg);
vcasdo_fsm_t * fsm;
const canmsg_t *

msg;

Arguments

fsm
fsm to process msg

msg
tasted msg

Return

0 if msg is not eatable for FSM, -1 if message has correct CobID but cann't be
processed in current FSM state, 1 if message is processed,

Header

vcasdo_fsm.h

Name

vcasdo_abort_msg — translates SDO abort_code to the string message

Synopsis
const char* vcasdo_abort_msg (abort_code);
uint32_t

abort_code;

Arguments

abort_code
abort code

Header

vcasdo_msg.h

PDO processing API

Name

struct vcapdo_mapping_t — structure representing mapping of sigle object in
PDO

Synopsis
struct vcapdo_mapping_t {
 vcaod_object_t * object;
 unsigned char start;
 unsigned char len;
 sui_dinfo_t * dinfo;
};

Members

object
pointer to the mapped object

start
bit offset of object value in PDO

len
bit length of object value in PDO

dinfo
pointer to object data source. Every PDO can be read/written through
dinfo to the OD or to hardware. Actualy there is no other way for PDO
object to do that.

Header

vca_pdo.h

Name

struct vcapdolst_object_t — structure representing single PDO object

Synopsis
struct vcapdolst_object_t {
 gavl_node_t my_node;
 struct vcaPDOProcessor_t * pdo_processor;
 unsigned long cob_id;
 unsigned char transmition_type;
 unsigned flags;
 unsigned char sync_every;
 unsigned char sync_counter;
 uint16_t inhibit_time;
 uint16_t event_timer;
 unsigned char * pdo_buff;
 int mapped_cnt;

 vcapdo_mapping_t * mapped_objects;
 evc_rx_hub_t rx_hub;
};

Members

my_node
structure necessary for storing node in GAVL tree

pdo_processor
pointer to PDO processor servicing this PDO

cob_id
COB ID of PDO

transmition_type
type of PDO transmission according to DS301 table 55

flags
PDO characteristics and parsed transmission_type

sync_every
synchronous PDO will be processed every n-th SYNC message

sync_counter
auxiliary variable for sync_every

inhibit_time
minimum gap between two PDO transmissions (multiples of 100 us)

event_timer
if nonzero, PDO is transmitted every event_timer ms. Valid only in
transmission modes 254, 255. (!vcapdoFlagSynchronous && !
vcapdoFlagRTROnly)

pdo_buff
buffer for received/transmitted PDO

mapped_cnt
number of mapped objects in OD

mapped_objects
array to structures describing mapping details for all mapped objects

rx_hub
If PDO communication is event driven, appropriate events are connected to
this hub

See also

GAVL usage (ul_gavlchk.c)

Header

vca_pdo.h

Name

struct vcapdolst_root_t — structure representing root of OD

Synopsis
struct vcapdolst_root_t {
 gavl_node_t * my_root;
};

Members

my_root
object dictionary GAVL tree root

See also

GAVL usage (ul_gavlchk.c)

Header

vca_pdo.h

Name

struct vcaPDOProcessor_t — structure used for PDO communication

Synopsis
struct vcaPDOProcessor_t {
 vcapdolst_root_t pdolst_root;
 // TODO send_to_can_fnc: remove this hack and add queue of outcoming
CAN messages// to make this library thread safe.// At present
send_to_can_fnc should be thread safe.vcapdo_send_to_can_fnc_t *;
 vcaod_root_t * od_root;
 //vcaDinfoManager_t * dinfo_mgr;
 int node_id;
};

Members

pdolst_root
GAVL containing all defined &vcapdolst_object_t structures

send_to_can_fnc
PDOProcessor should use this function if it needs to send CAN message
during processing

od_root
pointer to used OD (necessary for PDOs creation and initialization in
vcaPDOProcessor_createPDOLIst)

dinfo_mgr
pointer to used DinfoManager (providing HW dinfos during initialization)

node_id
Node number, optional parameter, if it is specified, default PDO COB-IDs
can be assigned if they are not specified in EDS. If node_id is 0, then it is
ignored.

Description

vcaPDOProcessor is responsible for all PDO related tasks in CANopen device

Header

vca_pdo.h

Name

vcaPDOProcessor_init — vcaPDOProcessor constructor

Synopsis
void vcaPDOProcessor_init (proc);
vcaPDOProcessor_t *

proc;

Arguments

proc
pointer to PDO processor to work with

Header

vca_pdo.h

Name

vcaPDOProcessor_destroy — vcaPDOProcessor destructor

Synopsis
void vcaPDOProcessor_destroy (proc);
vcaPDOProcessor_t *

proc;

Arguments

proc
pointer to PDO processor to work with

Description

It releases all PDO objects

Header

vca_pdo.h

Name

vcaPDOProcessor_setOD — assign OD to PDOProcessor

Synopsis
void vcaPDOProcessor_setOD (proc,
 od_root);
vcaPDOProcessor_t *

proc;

vcaod_root_t * od_root;

Arguments

proc
pointer to PDO processor to work with

od_root
assigned root of Object Dictionary

Header

vca_pdo.h

Name

vcaPDOProcessor_createPDOList — scans OD and creates all valid PDO
structures.

Synopsis
int vcaPDOProcessor_createPDOList (proc);
vcaPDOProcessor_t *

proc;

Arguments

proc
pointer to PDO processor to work with

Description

It also deletes previously created PDO structures (if any).

Return

0 or negative number in case of an error

Header

vca_pdo.h

Name

_vcaPDOProcessor_disconnectDinfoLinks — disconnect all PDOs and their
dinfo structures

Synopsis
void _vcaPDOProcessor_disconnectDinfoLinks (proc);
vcaPDOProcessor_t *

proc;

Arguments

proc
pointer to PDO processor to work with

Description

Actualy it only decrements RefCnt, so only dinfos with RefCnt==1 will be deleted

Note

this function is internal and it is not a part of VCA PDO public interface.

Header

vca_pdo.h

Name

vcaPDOProcessor_connectDinfoLinks — scans defined PDOs and makes
necessary data links from PDOs to OD and HW

Synopsis
void vcaPDOProcessor_connectDinfoLinks (proc);
vcaPDOProcessor_t *

proc;

Arguments

proc
pointer to PDO processor to work with

Description

Disconnect all connected dinfos. For each mapped object tries to find
appropriate dinfo asking DinfoManager. If DinfoManager returns NULL, thats
means, that no HW is connected to this object. In such case function creates
dbuff_dinfo for data stored in OD and connect it to mapped PDO.

Header

vca_pdo.h

Name

vcaPDOProcessor_processMsg — tries to process msg

Synopsis
int vcaPDOProcessor_processMsg (proc,
 msg);
vcaPDOProcessor_t *

proc;

canmsg_t * msg;

Arguments

proc
pointer to PDO processor to work with

msg
CAN msg to proceed

Return

zero if msg is processed

Header

vca_pdo.h

OD access API

Name

struct vcaod_root_t — structure representing root of OD

Synopsis
struct vcaod_root_t {
 gsa_array_field_t my_root;
};

Members

my_root
object dictionary GAVL tree root

Header

vca_od.h

Name

struct vcaod_object_t — structure representing single object in OD

Synopsis
struct vcaod_object_t {
 #ifndef CONFIG_OD_GSAgavl_node_t my_node;
 #endifunsigned index;
 int subindex;
 unsigned char data_type;
 unsigned object_type;
 int access;
 unsigned flags;
 char * name;
 struct vcaod_object_t * subobjects;
 int subcnt;
 vcaod_dbuff_t value;
 sui_dinfo_t * dinfo;
};

Members

my_node
structure neccessary for storing node in GAVL tree, is NULL for subindicies

index
index of object

subindex
subindex of subobject or -1 if object is not subobject

data_type
can be one of (BOOLEAN, INTEGER8, ...)

object_type
type of object (DOMAIN=2, DEFTYPE=5, DEFSTRUCT=6, VAR=7,
ARRAY=8, RECORD=9)

access
access attributes (RW, WO, RO, CONST)

flags
flags can be: VCAOD_OBJECT_FLAG_MANDATORY object is
mandatory/optional, VCAOD_OBJECT_FLAG_PDO_MAPPING object is
supposed to be PDO mapped, VCAOD_OBJECT_FLAG_WEAK_DINFO
dinfo is weak pointer

name
textual name of object

subobjects
pointer to array of subobjects (definition==DEFSTRUCT, RECORD) or
NULL

subcnt
number of subobjects

value
object values (definition==ARRAY) or single value (other definitions). If
definition==ARRAY all values have the same length and they are stored
sequently in value

dinfo
Reference to dinfo associated with current object. There are couple of
reasons for such a association. 1. Object is PDO mapped but its value
doesn't come from HW dinfo (it is not tecnological value) - in such a case
dbuff dinfo is created and referenced from that OD object. 2. Object is PDO
mapped and its value comes from HW dinfo (it is tecnological value) - in
such a case only weak reference is in OD object. When HW module is
unloaded or dinfo will be destroyed from any reason, also weak reference
to it will be cleared to NULL. 3. Object is not PDO mapped but its value
comes from HW dinfo - in such a case even SDO communication sholud
read that dinfo to get the propper object value.

Header

vca_od.h

Name

vcaod_find_object — finds object in OD. This function is not a part of the SDO
API

Synopsis
vcaod_object_t* vcaod_find_object (odroot,
 ix,
 subix,
 abort_code);
vcaod_root_t *

odroot;

unsigned ix;
unsigned subix;
uint32_t * abort_code;

Arguments

odroot
object dictionary

ix
object index

subix
object subindex, ignored if object does not have subobjects

abort_code

Pointer to the abort code in case of an ERROR. It can be NULL, than it is
ignored. Abort codes are defined in CANopen standart 301 and can be
translated to text calling vcasdo_abort_msg.

Return

found object or NULL

Header

vca_od.h

Name

vcaod_get_value — reads object value from Object Dictionary and copies them
to caller buffer

Synopsis
int vcaod_get_value (object,
 array_index,
 buff,
 len,
 abort_code);
const vcaod_object_t*

object;

int array_index;
void * buff;
int len;
uint32_t * abort_code;

Arguments

object
object from dictionary, see. vcaod_find_object

array_index
if object is an array array_index specifies which index to get, othervise it
is ignored.

buff
buffer to write requested data

len
length of the buffer

abort_code
Pointer to the abort code in case of an ERROR. It can be NULL, than it is
ignored. Abort codes are defined in CANopen standart 301 and can be
translated to text calling vcasdo_abort_msg.

Return

number of read bytes negative value in case of an error

Header

vca_od.h

Name

vcaod_set_value — copies object value from caller's buffer to Object Dictionary

Synopsis
int vcaod_set_value (object,
 array_index,
 buff,
 len,
 abort_code);
vcaod_object_t*

object;

int array_index;
const void * buff;
int len;
uint32_t * abort_code;

Arguments

object
object from dictionary, see. vcaod_find_object

array_index
if object is an array, array_index, tells which item to get, in other case it is
simply ignored.

buff
buffer containing written data

len
length of the data

abort_code
area to fill the abort code in case of an ERROR. It can be NULL, than it is
ignored. Abort codes are defined in CANopen standart 301 and can be
translated to text calling vcasdo_abort_msg.

Description

Function sets whole buffer to zeros before it starts to copy object data to it, even
if buffer is larger than data.

Return

number of stored data bytes negative value in case of an error

Header

vca_od.h

Name

vcaod_get_object_data_size — get size of object in bytes

Synopsis
int vcaod_get_object_data_size (object,
 abort_code);
const vcaod_object_t *

object;

uint32_t * abort_code;

Arguments

object
object from dictionary, see. vcaod_find_object

abort_code
area to fill the abort code in case of an ERROR. It can be NULL, than it is
ignored. Abort codes are defined in CANopen standart 301 and can be
translated to text calling vcasdo_abort_msg.

Return

number of stored data bytes negative value in case of an error

Header

vca_od.h

Name

od_item_set_value_as_str — set object value from its string representation.

Synopsis
int od_item_set_value_as_str (item,
 valstr);
vcaod_object_t *

item;

const char* valstr;

Arguments

item
object to set

valstr
string representation of object value

Return

negative value in case of an error

Header

vca_od.h

Name

vcaod_od_free — release all OD memory

Synopsis

void vcaod_od_free (odroot);
vcaod_root_t * odroot;

Arguments

odroot
pointer to the object dictionary root

Header

vca_od.h

Name

vcaod_dump_od — debug function, dumps OD to log

Synopsis

void vcaod_dump_od (odroot);
vcaod_root_t * odroot;

Arguments

odroot
root, which contains OD

Header

vca_od.h

Name

vcaod_get_dinfo_ref — returns reference to dinfo corresponting to obj

Synopsis
sui_dinfo_t * vcaod_get_dinfo_ref (obj,
 create_weak);
vcaod_object_t *

obj;

int create_weak;

Arguments

obj
object from OD

create_weak
if there is no HW dinfo for object, creates temporary dbuff dinfo

Description

If obj allready has its &dinfo assigned vcaod_get_dinfo_ref returns this
pointer, if it is not function creates new &dinfo object.

Return

pointer to associated dinfo with reference count increased or NULL if creation
fails

Header

vca_od.h

libulut API

Name

ul_dbuff_init — init memory allocated for dynamic buffer

Synopsis
int ul_dbuff_init (buf,
 flags);
ul_dbuff_t *

buf;

int flags;

Arguments

buf
buffer structure

flags
flags describing behaviour of the buffer only UL_DBUFF_IS_STATIC flag is
supported. in this case buffer use unly static array sbuf

Description

Returns capacity of initialised buffer

Name

ul_dbuff_destroy — frees all resources allocated by buf

Synopsis

void ul_dbuff_destroy (buf);
ul_dbuff_t * buf;

Arguments

buf
buffer structure

Name

ul_dbuff_prep — sets a new len and capacity of the buffer

Synopsis
int ul_dbuff_prep (buf,
 new_len);
ul_dbuff_t *

buf;

int new_len;

Arguments

buf
buffer structure

new_len
new desired buffer length

Description

Returns new buffer length

Name

struct ul_dbuff_t — Generic Buffer for Dynamic Data

Synopsis
struct ul_dbuff_t {
 unsigned long len;
 unsigned long capacity;
 int flags;
 unsigned char * data;
 unsigned char * sbuff;
};

Members

len
actual length of stored data

capacity
capacity of allocated buffer

flags
only one flag (UL_DBUFF_IS_STATIC) used now

data
pointer to dynamically allocated buffer

sbuff
static buffer for small data sizes

Name

ul_dbuff_set_capacity — change capacity of buffer to at least new_capacity

Synopsis
int ul_dbuff_set_capacity (buf,
 new_capacity);
ul_dbuff_t *

buf;

int new_capacity;

Arguments

buf
buffer structure

new_capacity
new capacity

Description

Returns real capacity of reallocated buffer

Name

ul_dbuff_set_len — sets a new len of the buffer, change the capacity if
neccessary

Synopsis
int ul_dbuff_set_len (buf,
 new_len);
ul_dbuff_t *

buf;

int new_len;

Arguments

buf
buffer structure

new_len
new desired buffer length

Description

Returns new buffer length

Name

ul_dbuff_set — copies bytes to buffer and change its capacity if neccessary like
memset

Synopsis
int ul_dbuff_set (buf,
 b,
 n);
ul_dbuff_t *

buf;

byte b;
int n;

Arguments

buf
buffer structure

b
appended bytes

n
number of apended bytes

Returns

length of buffer

Name

ul_dbuff_cpy — copies bytes to buffer and change its capacity if neccessary

Synopsis
int ul_dbuff_cpy (buf,
 b,
 n);
ul_dbuff_t * buf;
const void * b;
int n;

Arguments

buf
buffer structure

b
appended bytes

n
number of apended bytes

Returns

length of buffer

Name

ul_dbuff_cat — appends bytes at end of buffer and change its capacity if
neccessary

Synopsis
int ul_dbuff_cat (buf,
 b,
 n);
ul_dbuff_t * buf;
const void * b;
int n;

Arguments

buf
buffer structure

b

appended bytes
n

number of apended bytes

Returns

length of buffer

Name

ul_dbuff_strcat — appends str at dhe end of buffer and change its capacity if
neccessary

Synopsis
int ul_dbuff_strcat (buf,
 str);
ul_dbuff_t * buf;
const char * str;

Arguments

buf
buffer structure

str
string to append

Description

Returns number length of buffer (including terminating '\0')

Name

ul_dbuff_strcpy — copy str to the buffer and change its capacity if neccessary

Synopsis
int ul_dbuff_strcpy (buf,
 str);
ul_dbuff_t * buf;
const char * str;

Arguments

buf
buffer structure

str
string to copy

Description

Returns number length of buffer (including terminating '\0')

Name

ul_dbuff_append_byte — appends byte at dhe end of buffer and change its
capacity if neccessary

Synopsis
int ul_dbuff_append_byte (buf,
 b);
ul_dbuff_t * buf;
unsigned char b;

Arguments

buf
buffer structure

b
appended byte

Description

Returns number length of buffer (including terminating '\0')

Name

ul_dbuff_ltrim — remove all white space characters from the left

Synopsis

int ul_dbuff_ltrim (buf);
ul_dbuff_t * buf;

Arguments

buf
buffer structure

Return

new length of buffer

Name

ul_dbuff_rtrim — remove all white space characters from the right

Synopsis

int ul_dbuff_rtrim (buf);
ul_dbuff_t * buf;

Arguments

buf
buffer structure

Description

if buffer is terminated by '\0', than is also terminated after rtrim

Return

new length of buffer

Name

ul_dbuff_trim — remove all white space characters from the right and from the
left

Synopsis

int ul_dbuff_trim (buf);
ul_dbuff_t * buf;

Arguments

buf
buffer structure

Description

Returns number length of buffer (including terminating '\0')

Name

ul_dbuff_cpos — searches string for char

Synopsis
int ul_dbuff_cpos (buf,
 what,
 quote);
const ul_dbuff_t *

buf;

unsigned char what;
unsigned char quote;

Arguments

buf
searched dbuff

what
char to find

quote
skip str areas quoted in quote chars
 If you want to ignore quotes
assign '\0' to quote in function call

Return

position of what char or negative value

Name

ul_str_cpos — searches string for char

Synopsis
int ul_str_cpos (str,
 what,
 quote);
const unsigned char * str;
unsigned char what;
unsigned char quote;

Arguments

str
zero terminated string

what
char to find

quote
skip str areas quoted in quote chars If you want to ignore quotes assign '\0'
to quote in function call

Return

position of what char or negative value

Name

ul_str_pos — searches string for substring

Synopsis
int ul_str_pos (str,
 what,

 quote);
const unsigned char * str;
const unsigned char * what;
unsigned char quote;

Arguments

str
zero terminated string

what
string to find

quote
skip str areas quoted in quote chars If you want to ignore quotes assign '\0'
to quote in function call

Return

position of what string or negative value

Name

ul_str_ncpy — copies string to the buffer

Synopsis
int ul_str_ncpy (to,
 from,
 buff_size);
unsigned char * to;
const unsigned char * from;
int buff_size;

Arguments

to
buffer where to copy str

from
zero terminated string

buff_size
size of the to buffer (including terminating zero)

Description

Standard strncpy function have some disadvatages (ie. do not append term. zero
if copied string doesn't fit in to buffer, fills whole rest of buffer with zeros)

Returns strlen(to) or negative value in case of error

Name

ul_dbuff_log_hex — writes content of dbuff to log

Synopsis
void ul_dbuff_log_hex (buf,

log_level)
;

ul_dbuff_t *

buf;

int
log_level
;

Arguments

buf
buffer structure

log_level
logging level

Name

ul_dbuff_cut_pos — cut first n bytes from fromdb and copies it to todb.

Synopsis
void ul_dbuff_cut_pos (fromdb,
 todb,
 n);
ul_dbuff_t *

fromdb;

ul_dbuff_t *

todb;

int n;

Arguments

fromdb
buffer to cut from

todb
buffer to copy to

n
position where to cut

Description

If n is greater than fromdb.len whole fromdb is copied to todb. If n is negative
position to cut is counted from the end of fromdb. If n is zero fromdb stays
unchanged and todb is resized to len equal zero.

Name

ul_dbuff_cut_delimited — cuts bytes before delimiter + delimiter char from
fromdb and copies tham to the todb

Synopsis
void ul_dbuff_cut_delimited (fromdb,
 todb,
 delimiter,
 quote);
ul_dbuff_t *

fromdb;

ul_dbuff_t *

todb;

char delimiter;
char quote;

Arguments

fromdb
buffer to cut from

todb
buffer to copy to

delimiter
delimiter char

quote
quoted delimiters are ignored, quote can be '\0', than it is ignored.

Description

If fromdb doesn't contain delimiter todb is trimmed to zero length.

Name

ul_dbuff_cut_token — cuts not whitespaces from fromdb to todb.

Synopsis
void ul_dbuff_cut_token (fromdb,
 todb);
ul_dbuff_t *

fromdb;

ul_dbuff_t *

todb;

Arguments

fromdb
buffer to cut from

todb
buffer to copy to

Description

Leading whitespaces are ignored. Cut string is trimmed.

Name

evc_link_init — Initialize Event Connector Link

Synopsis

int evc_link_init (link);
evc_link_t * link;

Arguments

link
pointer to the link

Description

Link reference count is set to 1 by this function

Return Value

negative value informs about failure.

Name

evc_link_new — Allocates New Event Connector Link

Synopsis

evc_link_t * evc_link_new (void);
void;

Arguments

void
no arguments

Description

Link reference count is set to 1 by this function

Return Value

pointer to the new link or NULL.

Name

evc_link_connect — Connects Link between Two Hubs

Synopsis
int evc_link_connect (link,
 src,
 dst,
 prop);
evc_link_t * link;
evc_tx_hub_t * src;
evc_rx_hub_t * dst;
evc_prop_fnc_t * prop;

Arguments

link
pointer to the non-connected initialized link

src
pointer to the source hub of type &evc_tx_hub_t

dst
pointer to the destination hub of type &evc_rx_hub_t

prop
propagation function corresponding to source and destination expected
event arguments

Description

If ready flag is not set, link state is set to ready and reference count is increased.

Return Value

negative return value indicates fail.

Name

evc_link_init_standalone — Initialize Standalone Link

Synopsis
int evc_link_init_standalone (link,
 rx_fnc,
 context);
evc_link_t * link;

evc_rx_fnc_t * rx_fnc;
void * context;

Arguments

link
pointer to the link

rx_fnc
pointer to the function invoked by event reception

context
context for the rx_fnc function invocation

Description

Link reference count is set to 1 by this function

Return Value

negative value informs about failure.

Name

evc_link_new_standalone — Allocates New Standalone Link

Synopsis
evc_link_t * evc_link_new_standalone (rx_fnc,
 context);
evc_rx_fnc_t * rx_fnc;
void * context;

Arguments

rx_fnc
callback function invoked if event is delivered

context
context provided to the callback function

Description

Link reference count is set to 1 by this function

Return Value

pointer to the new link or NULL.

Name

evc_link_connect_standalone — Connects Standalone Link to Source Hubs

Synopsis
int evc_link_connect_standalone (link,
 src,
 prop);
evc_link_t * link;
evc_tx_hub_t * src;
evc_prop_fnc_t * prop;

Arguments

link
pointer to the non-connected initialized link

src
pointer to the source hub of type &evc_tx_hub_t

prop
propagation function corresponding to hub source and standalone rx_fnc
expected event arguments

Description

If ready flag is not set, link state is set to ready and reference count is increased.

Return Value

negative return value indicates failure.

Name

evc_link_delete — Deletes Link from Hubs Lists

Synopsis

int evc_link_delete (link);
evc_link_t * link;

Arguments

link
pointer to the possibly connected initialized link

Description

If ready flag is set, link ready flag is cleared and reference count is decreased.
This could lead to link disappear, if nobody is holding reference.

Return Value

positive return value indicates immediate delete, zero return value informs about
delayed delete.

Name

evc_link_dispose — Disposes Link

Synopsis

void evc_link_dispose (link);
evc_link_t * link;

Arguments

link
pointer to the possibly connected initialized link

Description

Deletes link from hubs, marks it as dead, calls final death propagate for the link
and if link is malloced, releases link occupied memory.

Name

evc_tx_hub_init — Initializes Event Transmition Hub

Synopsis

int evc_tx_hub_init (hub);
evc_tx_hub_t * hub;

Arguments

hub
pointer to the &evc_tx_hub_t type hub

Return Value

negative return value indicates failure.

Name

evc_tx_hub_done — Initializes Event Transmition Hub

Synopsis

void evc_tx_hub_done (hub);
evc_tx_hub_t * hub;

Arguments

hub
pointer to the &evc_tx_hub_t type hub

Name

evc_tx_hub_propagate — Propagate Event to Links Destinations

Synopsis
void evc_tx_hub_propagate (hub,
 args);
evc_tx_hub_t *

hub;

va_list args;

Arguments

hub
pointer to the &evc_tx_hub_t type hub

args
pointer to the variable arguments list

Description

The function propagates event to the connected links, it skips links marked as
dead, blocked or delete_pend. If the link is not marked as recursive, it
ensures, that link is not called twice.

Name

evc_tx_hub_emit — Emits Event to Hub

Synopsis
void evc_tx_hub_emit (hub,
 ...);
evc_tx_hub_t *

hub;

... ...;

Arguments

hub
pointer to the &evc_tx_hub_t type hub

...
variable arguments

Description

The function hands over arguments to evc_tx_hub_propagate as &va_list.

Name

evc_rx_hub_init — Initializes Event Receiption Hub

Synopsis
int evc_rx_hub_init (hub,
 rx_fnc,
 context);
evc_rx_hub_t *

hub;

evc_rx_fnc_t * rx_fnc;
void * context;

Arguments

hub
pointer to the &evc_rx_hub_t type hub

rx_fnc
pointer to the function invoked by event reception

context
context for the rx_fnc function invocation

Return Value

negative return value indicates failure.

Name

evc_rx_hub_done — Finalize Event Receiption Hub

Synopsis

void evc_rx_hub_done (hub);
evc_rx_hub_t * hub;

Arguments

hub
pointer to the &evc_rx_hub_t type hub

Name

struct evc_link — Event Connector Link

Synopsis
struct evc_link {
 struct dst;
 evc_prop_fnc_t * propagate;
 int refcnt;
 unsigned recursive:1;
 unsigned blocked:1;
 unsigned ready:1;
 unsigned dead:1;
 unsigned delete_pend:1;
 unsigned malloced:1;
 unsigned standalone:1;
 unsigned tx_full_hub:1;
 unsigned rx_full_hub:1;
 short taken;
};

Members

dst
determines destination of the event, it can be standalone rx_fnc
function with with context or &evc_tx_hub_t in the multi case

propagate
pointer to the arguments propagation function,

refcnt
link reference counter

recursive
link can propagate could be invoked recursively, else recursive events are
ignored by link

blocked
event propagation is blocked for the link, can be used by application

ready
link is ready and has purpose to live - it connects two active entities

dead
link is dead and cannot propagate events

delete_pend
link is being deleted, but it is taken simultaneously, delete has to wait for
finish of the propagate and to moving to the next link

malloced
link has been malloced and should be automatically freed when referenc
counts drop to zero

standalone
link is used for standalone function invocation

tx_full_hub
src points to the full hub structure

rx_full_hub
dst points to the full hub structure

taken
link is in middle of the propagation process

Description

The link delivers events from the source to the destination. The link specific
function propagate is called for each link leading from the hub activated by
evc_tx_hub_emit and evc_tx_hub_propagate. The propagate function is
responsible for parameters transformation before invocation of standalone or
destination hub rx_fnc function.

Name

struct evc_tx_hub — Event Transmit Hub

Synopsis
struct evc_tx_hub {
 ul_list_head_t links;
};

Members

links
list of links outgoing from the hub

Name

struct evc_rx_hub — Event Receiving Hub

Synopsis
struct evc_rx_hub {
 ul_list_head_t links;
 evc_rx_fnc_t * rx_fnc;
 void * context;
};

Members

links
list of links incoming to the hub

rx_fnc
function invoked when event arives

context
context for rx_fnc

Name

evc_link_inc_refcnt — Increment Link Reference Count

Synopsis
void evc_link_inc_refcnt (link);
evc_link_t *

link;

Arguments

link
pointer to link

Name

evc_link_dec_refcnt — Decrement Link Reference Count

Synopsis
void evc_link_dec_refcnt (link);
evc_link_t *

link;

Arguments

link
pointer to link

Description

if the link reference count drops to 0, link is deleted from hubs by
evc_link_dispose function and if malloced is sed, link memory is disposed
by free. Special handlink can be achieved if propagate returns non-zero value
if called with ded link.

Name

gavl_first_node — Returns First Node of GAVL Tree

Synopsis
gavl_node_t * gavl_first_node (root);
const gavl_root_t *

root;

Arguments

root
GAVL tree root

Return Value

pointer to the first node of tree according to ordering

Name

gavl_last_node — Returns Last Node of GAVL Tree

Synopsis
gavl_node_t * gavl_last_node (root);
const gavl_root_t *

root;

Arguments

root
GAVL tree root

Return Value

pointer to the last node of tree according to ordering

Name

gavl_is_empty — Check for Empty GAVL Tree

Synopsis
int gavl_is_empty (root);
const gavl_root_t *

root;

Arguments

root
GAVL tree root

Return Value

returns non-zero value if there is no node in the tree

Name

gavl_search_node — Search for Node or Place for Node by Key

Synopsis
int gavl_search_node (root,

 key,
 mode,
 nodep);
const gavl_root_t *

root;

const void * key;
int mode;
gavl_node_t ** nodep;

Arguments

root
GAVL tree root

key
key value searched for

mode
mode of the search operation

nodep
pointer to place for storing of pointer to found node or pointer to node which
should be parent of inserted node

Description

Core search routine for GAVL trees searches in tree starting at root for node of
item with value of item field at offset key_off equal to provided *key value.
Values are compared by function pointed by *cmp_fnc field in the tree root.
Integer mode modifies search algorithm: GAVL_FANY .. finds node of any item
with field value *key, GAVL_FFIRST .. finds node of first item with *key,
GAVL_FAFTER .. node points after last item with *key value, reworded - index
points at first item with higher value of field or after last item

Return Value

Return of nonzero value indicates match found. If the mode is ored with
GAVL_FCMP, result of last compare is returned.

Name

gavl_find — Find Item for Provided Key

Synopsis
void * gavl_find (root,
 key);
const gavl_root_t *

root;

const void * key;

Arguments

root
GAVL tree root

key
key value searched for

Return Value

pointer to item associated to key value.

Name

gavl_find_first — Find the First Item with Provided Key Value

Synopsis
void * gavl_find_first (root,
 key);
const gavl_root_t *

root;

const void * key;

Arguments

root
GAVL tree root

key
key value searched for

Description

same as above, but first matching item is found.

Return Value

pointer to the first item associated to key value.

Name

gavl_find_after — Find the First Item with Higher Key Value

Synopsis
void * gavl_find_after (root,
 key);
const gavl_root_t *

root;

const void * key;

Arguments

root
GAVL tree root

key
key value searched for

Description

same as above, but points to item with first key value above searched key.

Return Value

pointer to the first item associated to key value.

Name

gavl_insert_node_at — Insert Existing Node to Already Computed Place into
GAVL Tree

Synopsis
int gavl_insert_node_at (root,
 node,
 where,
 leftright);
gavl_root_t * root;
gavl_node_t *

node;

gavl_node_t *

where;

int leftright;

Arguments

root
GAVL tree root

node
pointer to inserted node

where
pointer to found parent node

leftright
left (1) or right (0) branch

Return Value

positive value informs about success

Name

gavl_insert_node — Insert Existing Node into GAVL Tree

Synopsis
int gavl_insert_node (root,
 node,
 mode);
gavl_root_t * root;
gavl_node_t *

node;

int mode;

Arguments

root
GAVL tree root

node
pointer to inserted node

mode
if mode is GAVL_FAFTER, multiple items with same key can be used, else
strict ordering is required

Return Value

positive value informs about success

Name

gavl_insert — Insert New Item into GAVL Tree

Synopsis
int gavl_insert (root,
 item,
 mode);
gavl_root_t *

root;

void * item;
int mode;

Arguments

root
GAVL tree root

item
pointer to inserted item

mode

if mode is GAVL_FAFTER, multiple items with same key can be used, else
strict ordering is required

Return Value

positive value informs about success, negative value indicates malloc fail or
attempt to insert item with already defined key.

Name

gavl_delete_node — Deletes/Unlinks Node from GAVL Tree

Synopsis
int gavl_delete_node (root,
 node);
gavl_root_t * root;
gavl_node_t *

node;

Arguments

root
GAVL tree root

node
pointer to deleted node

Return Value

positive value informs about success.

Name

gavl_delete — Delete/Unlink Item from GAVL Tree

Synopsis
int gavl_delete (root,
 item);
gavl_root_t *

root;

void * item;

Arguments

root
GAVL tree root

item
pointer to deleted item

Return Value

positive value informs about success, negative value indicates that item is not
found in tree defined by root

Name

gavl_delete_and_next_node — Delete/Unlink Item from GAVL Tree

Synopsis
gavl_node_t * gavl_delete_and_next_node (root,
 node);
gavl_root_t * root;
gavl_node_t *

node;

Arguments

root
GAVL tree root

node
pointer to actual node which is unlinked from tree after function call, it can
be unalocated or reused by application code after this call.

Description

This function can be used after call gavl_first_node for destructive traversal
through the tree, it cannot be combined with gavl_next_node or
gavl_prev_node and root is emptied after the end of traversal. If the tree is
used after unsuccessful/unfinished traversal, it must be balanced again. The
height differences are inconsistent in other case. If traversal could be interrupted,
the function gavl_cut_first could be better choice.

Return Value

pointer to next node or NULL, when all nodes are deleted

Name

gavl_cut_first — Cut First Item from Tree

Synopsis

void * gavl_cut_first (root);
gavl_root_t * root;

Arguments

root
GAVL tree root

Description

This enables fast delete of the first item without tree balancing. The resulting tree
is degraded but height differences are kept consistent. Use of this function can
result in height of tree maximally one greater the tree managed by optimal AVL
functions.

Return Value

returns the first item or NULL if the tree is empty

Name

struct gavl_node — Structure Representing Node of Generic AVL Tree

Synopsis
struct gavl_node {
 struct gavl_node * left;
 struct gavl_node * right;
 struct gavl_node * parent;
 int hdiff;
};

Members

left
pointer to left child or NULL

right
pointer to right child or NULL

parent
pointer to parent node, NULL for root

hdiff
difference of height between left and right child

Description

This structure represents one node in the tree and links left and right to
nodes with lower and higher value of order criterion. Each tree is built from one
type of items defined by user. User can decide to include node structure inside
item representation or GAVL can malloc node structures for each inserted item.
The GAVL allocates memory space with capacity sizeof(gavl_node_t)+sizeof
(void*) in the second case. The item pointer is stored following node structure
(void**)(node+1);

Name

struct gavl_root — Structure Representing Root of Generic AVL Tree

Synopsis
struct gavl_root {
 gavl_node_t * root_node;
 int node_offs;
 int key_offs;
 gavl_cmp_fnc_t * cmp_fnc;
};

Members

root_node
pointer to root node of GAVL tree

node_offs
offset between start of user defined item representation and included GAVL
node structure. If negative value is stored there, user item does not contain
node structure and GAVL manages standalone ones with item pointers.

key_offs
offset to compared (ordered) fields in the item representation

cmp_fnc
function defining order of items by comparing fields at offset key_offs.

Name

gavl_node2item — Conversion from GAVL Tree Node to User Defined Item

Synopsis
void * gavl_node2item (root,
 node);
const gavl_root_t * root;
const gavl_node_t *

node;

Arguments

root
GAVL tree root

node
node belonging to root GAVL tree

Return Value

pointer to item corresponding to node

Name

gavl_node2item_safe — Conversion from GAVL Tree Node to User Defined Item

Synopsis
void * gavl_node2item_safe (root,
 node);
const gavl_root_t * root;
const gavl_node_t *

node;

Arguments

root
GAVL tree root

node
node belonging to root GAVL tree

Return Value

pointer to item corresponding to node

Name

gavl_node2key — Conversion from GAVL Tree Node to Ordering Key

Synopsis
void * gavl_node2key (root,
 node);
const gavl_root_t * root;
const gavl_node_t *

node;

Arguments

root
GAVL tree root

node
node belonging to root GAVL tree

Return Value

pointer to key corresponding to node

Name

gavl_next_node — Returns Next Node of GAVL Tree

Synopsis
gavl_node_t * gavl_next_node (node);
const gavl_node_t *

node;

Arguments

node
node for which accessor is looked for

Return Value

pointer to next node of tree according to ordering

Name

gavl_prev_node — Returns Previous Node of GAVL Tree

Synopsis
gavl_node_t * gavl_prev_node (node);
const gavl_node_t *

node;

Arguments

node
node for which predecessor is looked for

Return Value

pointer to previous node of tree according to ordering

Name

gavl_balance_one — Balance One Node to Enhance Balance Factor

Synopsis
int gavl_balance_one (subtree);
gavl_node_t **

subtree;

Arguments

subtree
pointer to pointer to node for which balance is enhanced

Return Value

returns nonzero value if height of subtree is lowered by one

Name

gavl_insert_primitive_at — Low Lewel Routine to Insert Node into Tree

Synopsis
int gavl_insert_primitive_at (root_nodep,
 node,
 where,
 leftright);
gavl_node_t **

root_nodep
;

gavl_node_t * node;
gavl_node_t * where;
int leftright;

Arguments

root_nodep
pointer to pointer to GAVL tree root node

node
pointer to inserted node

where
pointer to found parent node

leftright
left (>=1) or right (<=0) branch

Description

This function can be used for implementing AVL trees with custom root
definition. The value of the selected left or right pointer of provided node
has to be NULL before insert operation, i.e. node has to be end node in the
selected direction.

Return Value

positive value informs about success

Name

gavl_delete_primitive — Low Lewel Deletes/Unlinks Node from GAVL Tree

Synopsis
int gavl_delete_primitive (root_nodep,

 node);
gavl_node_t **

root_nodep
;

gavl_node_t * node;

Arguments

root_nodep
pointer to pointer to GAVL tree root node

node
pointer to deleted node

Return Value

positive value informs about success.

Name

gavl_cut_first_primitive — Low Lewel Routine to Cut First Node from Tree

Synopsis

gavl_node_t * gavl_cut_first_primitive (root_nodep)
;

gavl_node_t **

root_nodep
;

Arguments

root_nodep
pointer to pointer to GAVL tree root node

Description

This enables fast delete of the first node without tree balancing. The resulting
tree is degraded but height differences are kept consistent. Use of this function
can result in height of tree maximally one greater the tree managed by optimal
AVL functions.

Return Value

returns the first node or NULL if the tree is empty

Name

gsa_struct_init — Initialize GSA Structure

Synopsis
void gsa_struct_init (array,
 key_offs,
 cmp_fnc);
gsa_array_t * array;
int key_offs;
gsa_cmp_fnc_t * cmp_fnc;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

key_offs
offset to the order controlling field obtained by UL_OFFSETOF

cmp_fnc
function defining order of items by comparing fields at offset key_offs.

Name

gsa_delete_all — Delete Pointers to the All Items in the Array

Synopsis

void gsa_delete_all (array);
gsa_array_t * array;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

Description

This function releases all internally allocated memory, but does not release
memory of the array structure

Name

gsa_bsearch_indx — Search for Item or Place for Item by Key

Synopsis
int gsa_bsearch_indx (array,
 key,
 key_offs,
 cmp_fnc,
 mode,
 indx);

gsa_array_t * array;
void * key;
int key_offs;
gsa_cmp_fnc_t * cmp_fnc;
int mode;
unsigned * indx;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

key
key value searched for

key_offs
offset to the order controlling field obtained by UL_OFFSETOF

cmp_fnc
function defining order of items by comparing fields

mode
mode of the search operation

indx
pointer to place, where store value of found item array index or index where
new item should be inserted

Description

Core search routine for GSA arrays binary searches for item with field at offset
key_off equal to key value Values are compared by function pointed by
*cmp_fnc field in the array structure array. Integer mode modifies search
algorithm: GSA_FANY .. finds item with field value *key, GSA_FFIRST .. finds the
first item with field value *key, GSA_FAFTER .. index points after last item with
*key value, reworded - index points at first item with higher value of field or after
last item

Return Value

Return of nonzero value indicates match found.

Name

gsa_find — Find Item for Provided Key

Synopsis
void * gsa_find (array,
 key);
gsa_array_t * array;
void * key;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

key
key value searched for

Return Value

pointer to item associated to key value or NULL.

Name

gsa_find_first — Find the First Item for Provided Key

Synopsis
void * gsa_find_first (array,
 key);
gsa_array_t * array;
void * key;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

key
key value searched for

Description

same as above, but first matching item is found.

Return Value

pointer to the first item associated to key value or NULL.

Name

gsa_find_indx — Find the First Item with Key Value and Return Its Index

Synopsis
void * gsa_find_indx (array,
 key,
 indx);
gsa_array_t * array;
void * key;
int * indx;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

key
key value searched for

indx
pointer to place for index, at which new item should be inserted

Description

same as above, but additionally stores item index value.

Return Value

pointer to the first item associated to key value or NULL.

Name

gsa_insert_at — Insert Existing Item to the Specified Array Index

Synopsis
int gsa_insert_at (array,
 item,
 where);
gsa_array_t * array;
void * item;
unsigned where;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

item
pointer to inserted Item

where
at which index should be item inserted

Return Value

positive or zero value informs about success

Name

gsa_insert — Insert Existing into Ordered Item Array

Synopsis
int gsa_insert (array,
 item,
 mode);
gsa_array_t * array;
void * item;
int mode;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

item
pointer to inserted Item

mode
if mode is GSA_FAFTER, multiple items with same key can be stored into
array, else strict ordering is required

Return Value

positive or zero value informs about success

Name

gsa_delete_at — Delete Item from the Specified Array Index

Synopsis
int gsa_delete_at (array,
 indx);
gsa_array_t * array;
unsigned indx;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

indx
index of deleted item

Return Value

positive or zero value informs about success

Name

gsa_delete — Delete Item from the Array

Synopsis
int gsa_delete (array,
 item);
gsa_array_t * array;
void * item;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

item
pointer to deleted Item

Return Value

positive or zero value informs about success

Name

gsa_resort_buble — Sort Again Array If Sorting Criteria Are Changed

Synopsis
int gsa_resort_buble (array,
 key_offs,
 cmp_fnc);
gsa_array_t * array;
int key_offs;
gsa_cmp_fnc_t * cmp_fnc;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

key_offs
offset to the order controlling field obtained by UL_OFFSETOF

cmp_fnc
function defining order of items by comparing fields

Return Value

non-zero value informs, that resorting changed order

Name

gsa_setsort — Change Array Sorting Criterion

Synopsis
int gsa_setsort (array,
 key_offs,
 cmp_fnc);
gsa_array_t * array;
int key_offs;
gsa_cmp_fnc_t * cmp_fnc;

Arguments

array
pointer to the array structure declared through GSA_ARRAY_FOR

key_offs
new value of offset to the order controlling field

cmp_fnc
new function defining order of items by comparing fields at offset
key_offs

Return Value

non-zero value informs, that resorting changed order

Name

struct gsa_array_field_t — Structure Representing Anchor of ustom GSA Array

Synopsis
struct gsa_array_field_t {
 void ** items;
 unsigned count;
 unsigned alloc_count;
};

Members

items
pointer to array of pointers to individual items

count
number of items in the sorted array

alloc_count
allocated pointer array capacity

Name

struct ul_htim_node — Timer queue entry base structure

Synopsis
struct ul_htim_node {
 #elseul_hpt_node_t node;
 #elseul_hpt_node_t node;
 #endiful_htim_time_t expires;
};

Members

node
regular GAVL node structure for insertion into

node
regular GAVL node structure for insertion into

expires
time to trigger timer in &ul_htim_time_t type defined resolution

Description

This is basic type useful to define more complete timer types

Name

struct ul_htim_queue — Timer queue head/root base structure

Synopsis
struct ul_htim_queue {
 #elseul_hpt_root_field_t timers;
 #elseul_hpt_root_field_t timers;
 #endifint first_changed;
};

Members

timers
root of FLES GAVL tree of timer entries

timers
root of FLES GAVL tree of timer entries

first_changed
flag, which is set after each add, detach operation which concerning of
firsts scheduled timer

Description

This is basic type useful to define more complete timer queues types

Name

struct ul_htimer — Standard timer entry with callback function

Synopsis
struct ul_htimer {
 ul_htim_node_t htim;
 ul_htimer_fnc_t * function;
 unsigned long data;
};

Members

htim
basic timer queue entry

function
user provided function to call at trigger time

data
user selected data

Description

This is standard timer type, which requires data casting in many cases. The
type of function field has to be declared in “ul_htimdefs.h” header file.

Name

struct ul_htimer_queue — Standard timer queue

Synopsis
struct ul_htimer_queue {
 ul_htim_queue_t htim_queue;
};

Members

htim_queue
the structure wraps &ul_htim_queue structure

Description

This is standard timer type, which requires data casting in many cases

Name

list_add — add a new entry

Synopsis
void list_add (new,
 head);

struct list_head *

new;

struct list_head *

head;

Arguments

new
new entry to be added

head
list head to add it after

Description

Insert a new entry after the specified head. This is good for implementing stacks.

Name

list_add_tail — add a new entry

Synopsis
void list_add_tail (new,
 head);
struct list_head *

new;

struct list_head *

head;

Arguments

new
new entry to be added

head
list head to add it before

Description

Insert a new entry before the specified head. This is useful for implementing
queues.

Name

list_del — deletes entry from list.

Synopsis

void list_del (entry);
struct list_head * entry;

Arguments

entry
the element to delete from the list.

Note

list_empty on entry does not return true after this, the entry is in an undefined
state.

Name

list_del_init — deletes entry from list and reinitialize it.

Synopsis
void list_del_init (entry);
struct list_head *

entry;

Arguments

entry
the element to delete from the list.

Name

list_move — delete from one list and add as another's head

Synopsis
void list_move (list,
 head);
struct list_head *

list;

struct list_head *

head;

Arguments

list
the entry to move

head
the head that will precede our entry

Name

list_move_tail — delete from one list and add as another's tail

Synopsis
void list_move_tail (list,
 head);
struct list_head *

list;

struct list_head *

head;

Arguments

list
the entry to move

head
the head that will follow our entry

Name

list_empty — tests whether a list is empty

Synopsis

int list_empty (head);
struct list_head * head;

Arguments

head
the list to test.

Name

list_splice — join two lists

Synopsis
void list_splice (list,
 head);
struct list_head *

list;

struct list_head *

head;

Arguments

list
the new list to add.

head
the place to add it in the first list.

Name

list_splice_init — join two lists and reinitialise the emptied list.

Synopsis
void list_splice_init (list,
 head);
struct list_head *

list;

struct list_head *

head;

Arguments

list
the new list to add.

head
the place to add it in the first list.

Description

The list at list is reinitialised

Name

list_entry — get the struct for this entry

Synopsis

list_entry (ptr, type, member);
ptr;
type;
member;

Arguments

ptr
the &struct list_head pointer.

type
the type of the struct this is embedded in.

member
the name of the list_struct within the struct.

Name

list_for_each — iterate over a list

Synopsis

list_for_each (pos, head);
pos;
head;

Arguments

pos
the &struct list_head to use as a loop counter.

head
the head for your list.

Name

__list_for_each — iterate over a list

Synopsis

__list_for_each (pos, head);
pos;
head;

Arguments

pos
the &struct list_head to use as a loop counter.

head
the head for your list.

Description

This variant differs from list_for_each in that it's the simplest possible list
iteration code, no prefetching is done. Use this for code that knows the list to be
very short (empty or 1 entry) most of the time.

Name

list_for_each_prev — iterate over a list backwards

Synopsis

list_for_each_prev (pos, head);
pos;
head;

Arguments

pos

the &struct list_head to use as a loop counter.
head

the head for your list.

Name

list_for_each_safe — iterate over a list safe against removal of list entry

Synopsis

list_for_each_safe (pos, n, head);
pos;
n;
head;

Arguments

pos
the &struct list_head to use as a loop counter.

n
another &struct list_head to use as temporary storage

head
the head for your list.

Name

list_for_each_entry — iterate over list of given type

Synopsis

list_for_each_entry (pos, head, member);
pos;
head;
member;

Arguments

pos
the type * to use as a loop counter.

head
the head for your list.

member
the name of the list_struct within the struct.

Name

list_for_each_entry_reverse — iterate backwards over list of given type.

Synopsis
list_for_each_entry_reverse (pos,
 head,
 member);
 pos;
 head;
 member;

Arguments

pos
the type * to use as a loop counter.

head
the head for your list.

member
the name of the list_struct within the struct.

Name

list_for_each_entry_safe — iterate over list of given type safe against removal of
list entry

Synopsis

list_for_each_entry_safe (pos, n, head, member);
pos;
n;
head;
member;

Arguments

pos
the type * to use as a loop counter.

n
another type * to use as temporary storage

head
the head for your list.

member
the name of the list_struct within the struct.

libsuiut API

Name

sui_dinfo_inc_refcnt — Increase reference count of DINFO

Synopsis
void sui_dinfo_inc_refcnt (datai);
sui_dinfo_t * datai;

Arguments

datai
Pointer to dinfo structure.

File

sui_dinfo.c

Name

sui_dinfo_dec_refcnt — Decrease reference count of DINFO

Synopsis
void sui_dinfo_dec_refcnt (datai);
sui_dinfo_t * datai;

Arguments

datai
Pointer to dinfo structure.

Description

If the reference count reaches zero, DINFO starts to be destroyed. The event
SUEV_COMMAND with command SUCM_DONE is sent to dinfo, next event
SUEV_FREE is emmited or direct free is called the SUEV_FREE is disabled.

File

sui_dinfo.c

Name

sui_create_dinfo — Creates new dynamic DINFO

Synopsis
sui_dinfo_t * sui_create_dinfo (adata,
 afdig,
 amin,
 amax,
 ainfo,
 rd,

 wr);
void * adata;
int afdig;
long amin;
long amax;
long ainfo;
sui_datai_rdfnc_t * rd;
sui_datai_wrfnc_t *

wr;

Arguments

adata
DINFO type specific pointer to the data

afdig
Number of fractional digits if the fixed decimal point format is used

amin
The minimal allowed value

amax
The maximal allowed value

ainfo
DINFO type specific pointer

rd
Pointer to the read processing function

wr
Pointer to the write processing function

Return Value

Pointer to newly created DINFO.

File

sui_dinfo.c

Name

sui_create_dinfo_int — Creates DINFO for signed integer or fixed point data

Synopsis
sui_dinfo_t * sui_create_dinfo_int (adata,
 aidxsize,
 asize);
void * adata;
long aidxsize;
int asize;

Arguments

adata
Pointer to the signed char, short, int, long or fixed point data

aidxsize
Allowed range of indexes form 0 to aidxsize-1, if zero, then no check

asize
The size of the integer type representation returned by sizeof

Return Value

Pointer to newly created DINFO.

File

sui_dinfo.c

Name

sui_create_dinfo_uint — Creates DINFO for unsigned integer or fixed point data

Synopsis
sui_dinfo_t * sui_create_dinfo_uint (adata,
 aidxsize,
 asize);
void * adata;
long aidxsize;
int asize;

Arguments

adata
Pointer to the unsigned char, short, int, long or fixed point data

aidxsize
Allowed range of indexes form 0 to aidxsize-1, if zero, then no check

asize
The size of the integer type representation returned by sizeof

Return Value

Pointer to newly created DINFO.

File

sui_dinfo.c

Name

sui_rd_long — Reads long integer data from specified DINFO

Synopsis
int sui_rd_long (datai,
 idx,
 buf);
sui_dinfo_t * datai;
long idx;
long * buf;

Arguments

datai
Pointer to the DIONFO

idx
Index of read data inside DINFO.

buf
Pointer to where the read value is stored

Return Value

Operation result code, SUDI_DATA_OK in the case of success.

File

sui_dinfo.c

Name

sui_wr_long — Writes long integer data to specifies DINFO

Synopsis
int sui_wr_long (datai,
 idx,
 buf);
sui_dinfo_t * datai;
long idx;
const long * buf;

Arguments

datai
Pointer to the DIONFO

idx
Index of read data inside DINFO.

buf

Pointer to the new data value

Return Value

Operation result code, SUDI_DATA_OK in the case of success.

File

sui_dinfo.c

Name

dinfo_scale_proxy — Creates value scale proxy DINFO

Synopsis
sui_dinfo_t * dinfo_scale_proxy (dfrom,
 ainfo,
 amultiply,
 adivide);
sui_dinfo_t * dfrom;
long ainfo;
long amultiply;
long adivide;

Arguments

dfrom
Pointer to the underlying DINFO

ainfo
The local DINFO specific parameter

amultiply
Multiply factor

adivide
Divide factor

Description

Creates scaling proxy DINFO. Read value is multiplied by amultiply factor and
then divided by adivide factor. The long integer overflow is not checked. If the
full checking is required use sui_lintrans_proxy instead which works with
wider numbers representations and checks for all overflow cases.

Return Value

Pointer to newly created DINFO.

File

sui_dinfo.c

Name

dinfo_simple_proxy — Creates simple proxy DINFO

Synopsis
sui_dinfo_t * dinfo_simple_proxy (dfrom,
 ainfo);
sui_dinfo_t * dfrom;
long ainfo;

Arguments

dfrom
Pointer to the underlying DINFO

ainfo
The local DINFO specific parameter which specifies index value for calling
of underlying DINFO

Return Value

Pointer to newly created DINFO.

File

sui_dinfo.c

Name

sui_dinfo_dbuff_create — Creates DINFO for ul_dbuff structure

Synopsis
sui_dinfo_t * sui_dinfo_dbuff_create (db,
 aidxsize);
ul_dbuff_t *

db;

long aidxsize;

Arguments

db
Pointer to the dbuff

aidxsize
Allowed range of indexes form 0 to aidxsize-1, if zero then no check

Returns

Pointer to newly created DINFO.

File

sui_dinfo_dbuff.c

Name

sui_dinfo_dbuff_rd_dbuff — Reads ul_dbuff data from specified DINFO

Synopsis
int sui_dinfo_dbuff_rd_dbuff (di,
 idx,
 dbuf);
sui_dinfo_t * di;
long idx;
ul_dbuff_t * dbuf;

Arguments

di
Pointer to the DIONFO

idx
Index of read data inside DINFO.

dbuf
Pointer to where the read value is stored

Return Value

Operation result code, SUDI_DATA_OK in the case of success.

File

sui_dinfo_dbuff.c

Name

sui_dinfo_dbuff_wr_dbuff — Writes ul_dbuff data to specifies DINFO

Synopsis
int sui_dinfo_dbuff_wr_dbuff (di,
 idx,
 dbuf);
sui_dinfo_t * di;
long idx;
const ul_dbuff_t *

dbuf;

Arguments

di
Pointer to the DIONFO

idx
Index of read data inside DINFO.

dbuf
Pointer to the dbuff

Return Value

Operation result code, SUDI_DATA_OK in the case of success.

File

sui_dinfo_dbuff.c

Name

sui_dinfo_dbuff_rd_long — Reads long integer data from specified dbuff DINFO

Synopsis
int sui_dinfo_dbuff_rd_long (di,
 idx,
 buf);
sui_dinfo_t * di;
long idx;
long * buf;

Arguments

di
Pointer to the DIONFO

idx
Index of read data inside DINFO.

buf
Pointer to the dbuff

Return Value

Operation result code, SUDI_DATA_OK in the case of success.

File

sui_dinfo_dbuff.c

Name

sui_dinfo_dbuff_wr_long — Writes long integer data to specified dbuff DINFO

Synopsis
int sui_dinfo_dbuff_wr_long (di,
 idx,
 buf);
sui_dinfo_t * di;
long idx;
const long * buf;

Arguments

di
Pointer to the DIONFO

idx
Index of read data inside DINFO.

buf
Pointer to the dbuff

Return Value

Operation result code, SUDI_DATA_OK in the case of success.

File

sui_dinfo_dbuff.c

Name

sui_dtree_lookup — Find dinfo in the named dinfo database

Synopsis
int sui_dtree_lookup (from_dir,
 path,
 found_dir,
 datai);
sui_dtree_dir_t * from_dir;
const char * path;
sui_dtree_dir_t ** found_dir;
sui_dinfo_t ** datai;

Arguments

from_dir
the directory to start from

path

path from directory to dinfo or directory
found_dir

the optional pointer to space that would hold pointer to directory of found
dinfo

datai
optional pointer to store the found dinfo

Return Value

SUI_DTREE_FOUND, SUI_DTREE_DIR, SUI_DTREE_NOPATH,
SUI_DTREE_ERROR

File

sui_dtree.c

Name

sui_dtree_mem_lookup — Find dinfo in the named dinfo database

Synopsis
int sui_dtree_mem_lookup (from_dir,
 path,
 consumed,
 found_dir,
 datai);
sui_dtree_dir_t * from_dir;
const char * path;
int * consumed;
sui_dtree_dir_t ** found_dir;
sui_dinfo_t ** datai;

Arguments

from_dir
the directory to start from

path
path from directory to dinfo or directory

consumed
pointer to location for numeber of consumed characters from path

found_dir
the optional pointer to space that would hold pointer to directory of found
dinfo

datai
optional pointer to store the found dinfo

Return Value

SUI_DTREE_FOUND, SUI_DTREE_DIR, SUI_DTREE_NOPATH,
SUI_DTREE_ERROR

File

sui_dtreemem.c

Name

struct sui_dtree_memdir_t — Ancestor of sui_dtree_dir_t which containing
sui_dtree_memnode_t GAVL list .

Synopsis
struct sui_dtree_memdir_t {
 sui_dtree_dir_t dir;
 gavl_cust_root_field_t name_root;
};

Members

dir
base struct (Container_of technology). Containing dir needs it.

name_root
GAVL with children of type &sui_dtree_memnode_t

Header

sui_dtreemem.h

Name

struct sui_dtree_memnode_t — structure representing single node in memtree.

Synopsis
struct sui_dtree_memnode_t {
 char * name;
 int node_type;
 gavl_node_t name_node;
 union ptr;
 void * dll_handle;
};

Members

name
structure neccessary for storing node in GAVL tree, is NULL for subindicies

node_type

type of node contens (dir or dinfo)
name_node

the structure can be stored in GAVL tree thanks to that field
ptr

pointer to dinfo or directory that this node contains.
dll_handle

if memnode is one imported from DLL, DLLs handle is stored here. (else it
is 0)

Description

Node can contain dinfo or directory (&sui_dtree_dir_t).

Header

sui_dtreemem.h.h

Name

struct sui_event — Common suitk event structure

Synopsis
struct sui_event {
 unsigned short what;
};

Members

what
Code of event.(See 'event_code' enum with 'SUEV_' prefix)

File

sui_base.h

Name

enum event_code — Code of SUITK events ['SUEV_' prefix]

Synopsis
enum event_code {
 SUEV_MDOWN,
 SUEV_MUP,
 SUEV_MMOVE,
 SUEV_MAUTO,
 SUEV_KDOWN,
 SUEV_KUP,
 SUEV_DRAW,
 SUEV_REDRAW,

 SUEV_COMMAND,
 SUEV_BROADCAST,
 SUEV_SIGNAL,
 SUEV_GLOBAL,
 SUEV_FREE,
 SUEV_NOTHING,
 SUEV_MOUSE,
 SUEV_KEYBOARD,
 SUEV_MESSAGE,
 SUEV_DEFMASK,
 SUEV_GRPMASK
};

Constants

SUEV_MDOWN
Mouse button is down.

SUEV_MUP
Mouse button is up.

SUEV_MMOVE
Mouse is in move.

SUEV_MAUTO
SUEV_KDOWN

Key is down.
SUEV_KUP

Key is up.
SUEV_DRAW

Draw widget.
SUEV_REDRAW

Redraw widget.
SUEV_COMMAND

Command event.
SUEV_BROADCAST

Bradcast event.
SUEV_SIGNAL

?
SUEV_GLOBAL

?
SUEV_FREE

?
SUEV_NOTHING

?
SUEV_MOUSE

?
SUEV_KEYBOARD

?
SUEV_MESSAGE

?
SUEV_DEFMASK

?

SUEV_GRPMASK
?

File

sui_base.h

Name

enum command_event — Command codes for command event ['SUCM_' prefix]

Synopsis
enum command_event {
 SUCM_VALID,
 SUCM_QUIT,
 SUCM_ERROR,
 SUCM_MENU,
 SUCM_CLOSE,
 SUCM_ZOOM,
 SUCM_RESIZE,
 SUCM_NEXT,
 SUCM_PREV,
 SUCM_HELP,
 SUCM_OK,
 SUCM_CANCEL,
 SUCM_YES,
 SUCM_NO,
 SUCM_DEFAULT,
 SUCM_FOCUSASK,
 SUCM_FOCUSSET,
 SUCM_FOCUSREL,
 SUCM_INIT,
 SUCM_DONE,
 SUCM_NEWDISPLAY,
 SUCM_DISPNUMB,
 SUCM_CHANGE_STBAR,
 SUCM_NEXT_GROUP,
 SUCM_PREV_GROUP,
 SUCM_EVC_LINK_TO
};

Constants

SUCM_VALID
VALID command event.

SUCM_QUIT
QUIT command event.

SUCM_ERROR
ERROR command event.

SUCM_MENU
MENU command event. Open, select, close, ... menu.

SUCM_CLOSE
CLOSE command event.

SUCM_ZOOM
ZOOM command event.

SUCM_RESIZE
RESIZE command event.

SUCM_NEXT
NEXT command event. Mainly for change widget focus by pressing TAB
key.

SUCM_PREV
PREV command event. Mainly for change widget focus by pressing
SHIFT+TAB key.

SUCM_HELP
HELP command event.

SUCM_OK
OK button pressed.

SUCM_CANCEL
CANCEL button pressed.

SUCM_YES
YES button pressed.

SUCM_NO
NO button pressed.

SUCM_DEFAULT
DEFAULT button pressed.

SUCM_FOCUSASK
Which widget has focus ?

SUCM_FOCUSSET
Set focus to the widget.

SUCM_FOCUSREL
Release focus from the widget.

SUCM_INIT
Initialize widget.

SUCM_DONE
Done widget - decrement reference counter, deallocate widget data.

SUCM_NEWDISPLAY
Create new screen from pointer to screen.

SUCM_DISPNUMB
Create new screen from number to screen.

SUCM_CHANGE_STBAR
Status bar is changed.

SUCM_NEXT_GROUP
Change focus between groups (like as ALT+TAB in Windows).

SUCM_PREV_GROUP
Change focus between groups.

SUCM_EVC_LINK_TO
Only Pavel Pisa knows :))

File

sui_base.h

