WP9 Validation on Platform

©n =

Deliverable D9pc.4
Process Control
Application

WP9 Validation on Platform : Deliverable 9pc.4 Process Control Application
By Stanislav Benes, Petr Cvachoucek, and Ales Hajny

Published January 2005
Copyright © 2005 by OCERA Consortium

Table of Contens

IS) o 0 =SSR 3
IR 0 =0 =SSP 4
(@1 7=10] (= ot IR 1 01 (0 L1 o (o o ISR 6
O T 0 - S 6
1.2. Definitions, acronyms and abbreviations.............ceevveeirneine e 6
R . = (= 0100 6
Chapter 2. DESIGN OVEIVIEW.ouitirieitieieeiiee ettt sttt be st ese e se e s e besbesbe st e seese e e e e e seesbesbesbenneas 7
2.1, OVErall OESCIIPLION.cueeiieeiieterie ettt b ettt bbbt et ne e ens 7
2.2. Application POrting AESCIIPLION.ueiieee e ese et e e e e e e sreeeseeeeeeeeenes 8
2.3. CANopen subsystem manager fOor UNiCON............coveeeieeieeie e 17
Chapter 3. Validation LESES.......ccueeiieeiecie ettt ae st e e s neeaeenesneesseennans 31
3.1. CAN MONItOr/@NAlYZEN LESIS......eeiueeceeeie ettt et reenaeennas 31
3.2. CommUNICatioN [ELENCY TESL.......ccveiiie et 32
3.3. Communication throughpUL tESE...........oiiuieiie e 34
3.4, SChedUIEr AEl@Y TESE.......eo et sre e e 36
Chapter 4. Validation of Process Control AppliCaIoN............cooiieriereieneeseseeeee e 37
N I = B =S U RS 37
Chapter 5. CONCIUSION......c.uiiiiiiieieee et e et se et se e sre e e 39
List of figures
Fig 1 — Process control node boCK diagram............cceiveieereiieieie e see e 7
Fig 2 —Intercept routing Call graph..........coceieeii et 9
Fig 3 — SharedObject data layOUL...............cceiieiiiee et 10
Fig 4 — SharedObject data layout for DataM odule class implementation.............cccccceeveeiiieeninns 11
Fig 5 — Synchronization objects implementation OVENVIEW...........ccocveeieeiie e 12
Fig 6 — SharedObject data layout for Event classimplementation............ccccceeveeiieecveecviie e, 12
Fig 7 — SharedObject data layout for Mutex class implementation..............ccocevereeneneneneeiiennenn 13
Fig 8 — SharedObject data layout for Semaphore class implementation.............cccccoceeiieieniennne. 13
Fig 9 — Timer classimplementation call graph............coooeeiiiiiii e 14
Fig 10 — File mapping implementation OVEINVIEW.coueiierereene et 15
Fig 11 — Asynchronous 1O notifications call graph...........cccooeeeieriiiineneeeee e 16
Fig 12 — Pipe implementation OVEIVIEW.coueieiiirieeieie st 17
Fig 13 — CANopen subsystem manager for UNICON..........c.cocuveveriieeeiieeieeieesieeseesieesieesseeseeseenseens 18
Fig 14 — 10 subsystem manager |evel deSigN OVEIVIEW..........cecvueeieeieereeie e e ee e sae e 21
Fig 15— CANOpPeNn NEtWOrK [EVEl OVENVIEW..........c.veeiecie et 24
Fig 16 — CANOPen MOodUIE |EVEl OVEIVIEW..........cc.eciueeieecieceeteeceestee sttt nne e 26
Fig 17 — CanCoNtroller ClasS.......c.uiiiiiiiiiece et 28
Fig 18 - CAN monitor/analyzZer teSt SEIUP.......ccouviiirie et 31
Fig 19 — Communication [alenCy tESE SEIUP........eeriiieie et 32
Fig 20 — Communication latency test fIOWCHAI...........cccvii i 33
Fig 21 —Measured latency on digital QULPUL............coceeiiiiiiiiiieieeee e 33
Fig 22 —Measured latency Of CAN MESSAE........ccueruiririiririieieee ettt 34

OCERA IST 35102
3

Fig 23 —Measured latency with NDG messages 0N liNe.........coeoiierinineeie e 34

Fig 24 — Communication throughput tESt SELUP...........cceereiieriesee e ee e 35
Fig 25 — Communication throughput test flowchart..............ccoeoeeiieii i 35
Fig 26 — Measured SChedUIEr [aLENCY.........civeieeie et sneens 36
Fig 27 — Statistics Of INErPreted taskS........c.uvceeieeiie e ettt ae e e e nneens 37
Fig 28 — Regulation of rotates of the turbine.............ccce v 38

List of tables

TaDIE L — DEFINITIONS......eiieiieieeie ettt s e e e st e et e e b e e tessseeneesneesneesneesseenseens 6
TADIE 2 — ACTONYIMS......eoeeeee ettt e bt h e s s et e e et e b bt b e nne e e e s et e 6
TADIE 3 — REFEIEINCES.coieeeee ettt s e e s e s be et e sseesseeseeneesseenteeneesreensneneens 6
Table 4 — Signals utilized Dy frameWorK............ooeiieie s 8
Table 5 — Shared ODJECIS TYPES........coiieeee e 10
Table 6 — LiNUX INTENVEl TIMEIS.......coiiieiieie ettt bbb sne e 13
Table 7 — Low-level file iNterfate OVEIVIEW.ouiiiiiriieeese e e 15
Table 8 — Serial POrtSiNterface OVEIVIEW..........ccve i 16
Table 9 — Unicon NOde Manager MESSAQES......ccuueireeireeireeeeereseesseesseesseessessesssessesssessseessesssesssessses 18
Table 10 — Components used in CAN monitor/analyzZer tESt..........covvevieeiiieiiiee e 31
Table 11 — Components used in communication [aency teSt..........ccccvvvvieecieevee i 32
Table 12 — Required hardware for communication 1atency test...........ccooveeveereerienneenee e 32
Table 13 — Components used in communication throughput teSL............cooviiiininieniiereeeee 34
Table 14 — Required hardware for communication throughput teSL............ccceiiriiiieic e 35
Table 15 — Measured communication throUghPUL.............eooeieririere e 36

OCERA IST 35102
4

Document Presentation

Project Coordinator

Organisation:UPVLC
Responsible person:Alfons Crespo
Address:Camino Vera, 14, 46022 Vaencia, Spain
Phone:+34 963877576
Fax:+34 963877576

Email:afons@disca.upv.es

Participant List

Role Id. Participant Name Acronym
CO 1 Universidad Politecnica de Vaencia UPVLC
CR 2 Scuola Superiore Santa Anna SSSA
CR 3 Czech Technical University in Prague CTU
CR 4 CEA/DRT/LIST/DTS CEA
CR 5 Unicontrols ucC
CR 6 MNIS MNIS
CR 7 Visual Tools SA. VT

Document version
Release Date Reason of change
10 20/01/2005 First release

OCERA IST 35102
5

Country
E
I
(674
FR
674
FR
E

Chapter 1. Introduction

1.1. General

This document describes results of Ocera components validation on process control application platform.
Process control application is modular software solution running in embedded system supervised from
attached devel opment host running on standard PC workstation. As the platform was choosen model of

control system for the rea high-pressure gas turbocompressor plant in Kralice (the Czech Republic).

In the first part of the document thereis overview of application design description and in the second part
validation test results follow. Description of the controlled application is contained in deliverable D9pcl.

Validation results are divided into two groups, separate components validation and whole application

validation.

1.2. Definitions, acronyms and abbreviations

Term Definition
Unicon UniControls proprietary distributed control system.
UcFramework C++ class library used to devel op platform-independent applications
CANopen CAN-based higher layer protocol
Unicon CANopen lo Subsystem of Unicon control system, targeted to communication with
subsystem CANOopen devices.
Table 1 —Definitions
Acronym Definition
Caobld Communication Object Identifier
PDO Process Data Object
SDO Service Data Object
SYNC Synchronization Object
NMT Network Management
CAN Controller Area Network

Table 2 — Acronyms

1.3. References

Num. Publisher Document number
[1] CIA DS301 V.4.02
[2] CIA DS302 V.3.0

Table 3 — References

OCERA IST 35102
6

Title

CANopen - Application Layer and
Communication Profile

Framework for Programmable CANopen
Devices

Chapter 2. Design overview

2.1. Overall description

The whole software system consists of base modules including control algorithm interpreter, ethernet communication
subsystem and CANopen remote 10 subsystem. Software modularity is based on open interfaces allowing easy
connection of any new subsystem to algorithm interpreter.

The set of interfaces was developed in OCERA project and it allows connection of basic subsystems to interpreter
according IEC 61131 norm.

Fig. 1 shows block diagram of process control node. Particular application can consist of number of nodes.

R

igsss varstore

1Lt

’m%:r% bekout
msgstore
[
bekin
@D msgstore
L =

Fig 1 — Process control node bock diagram

OCERA IST 35102
7

2.2. Application porting description

2.2.1. Signalson Linux platform

Linux signals
Linux kernel works with two types of signals, standard signals and POSIX real-time signals.

Standard signals:
e only predefined signal names with defined meaning,
e no possibility for user defined signals,
« multiple instances of same signal are not queued (some signals may be logt),
e signals are not delivered in guaranteed order

POSIX real-time signals:
» gignalsfrom SIGRTMIN to SSIGRTMAX (currently 32 signals),
* multiple instances of same signal are queued (no lost signals),
e signal can have an accompanying value (an integer or pointer),
e signasareddivered in aguaranteed order

Differences of framework signals and Linux signals:

Framework Linux
» numbered signals using 16bit integer e named signals
e unused signal numbers can be freely used e no user-defined signals
by applications
e all sgnasare queued e only POSIX real-time signals are queued
» signal cannot carry additional data » POSIX red-time signals can carry
additional data

Framework signals are on Linux implemented using one POSI X real-time signal. The 16-bit signal
number is stored as parameter of this signal. Signals utilized by framework are in following table.

signhal name signal value description

SIGUCF SIGRTMIN +5 | POSIX real-time signal used to carry the framework signal.
SIGAIO SIGRTMIN +6 | POSIX real-time signal used for asynchronous 10 operations.
SIGALRM standard signal signal from process interval timer

SIGINT standard signal signal to interrupt process

Table 4 — Signals utilized by framework

I nter cept routine

The framework provides single intercept routine to handle al signalsin one place. Some signals are
handled specifically to provide required framework functionality not provided directly by Linux. All
other signals are packed into framework messages and placed into process internal message queue for
processing by application.

OCERA IST 35102
8

signal sender « signalsare delivered to process intercept routine

SIGALRM

single interceptroutine handles all signals

SIGALRM MSG_TIMER

SIGAIO MSG_SIGNAL

SIGUCF MSG_SIGNAL

standard
signals

MSG_SIGNAL

«

Fig 2 — Intercept routine call graph

2.2.2. Shared memory on Linux platform

SharedObject class

The Linux operating system provides memory protection. This means that process cannot directly access
the memory of any other process. When the processes need to share memory, special operating system
mechanisms must be explicitly used. The Linux provides severa ways how to share memory between
processes:

* System V IPC shared memory segments,

» virtua memory filesystem (tmpfs, formerly known as shmfs).

System V 1PC shared memory mechanism has several important disadvantages for use in framework. The
most important one is that memory segments are identified only by 32 bit key (integer value). The
framework needs a named memory segments. The System V IPC API provides afunction for generation
of segment key from an existing file name, but there still can be collisions in generated keys for different
files.

OCERA IST 35102
9

Virtual memory filesystem works for applications as an obvious filesystem. The difference is that files are
kept only in virtual memory, they are not stored on any other medium. Together with the memory-
mapping files mechanism this can be used to share memory between different processes.

The framework uses virtual memory filesystem for shared memory implementation. The mechanismis
encapsulated in SharedObject class. SharedObject classis not a public framework class, can be used only
by framework itself.

SharedObject class attributes:
* implements reference counter for class instances,
» provides methods for creation and accessing shared memory,
« when the object’ s reference count reaches zero, the object is automatically deleted,
» objects can be sorted by their purpose

The virtual memory filesystem is usually mounted in /dev/shm mount point. Framework defines
several types of shared objects and every object type have its own prefix in filename path.

object type (prefix) description
/module objects used to implement DataM odule class
/event objects used to implement Event class

* inobject is stored System V IPC semaphore key used to implement event
/mmfile objects used to implement FileMapping class

* inobject is stored mapping object size and full pathname to mapped file
/mutex objects used to implement Mutex class

e inobject is stored System V IPC semaphore key used to implement mutex
/pipe objects used to implement Pipe class

* inobject is stored pipe type and other information
/semaphore objects used to implement Semaphore class

* inobject is stored System V IPC semaphore key used to implement semaphore

Table5— Shared objectstypes

The SharedObject data layout is very simple.

object reference counter

object data size

object data (size bytes)

Fig 3 — SharedObject data layout

OCERA IST 35102
10

DataM odule class

« DataModule classis derived from SharedObject class, so inherits al its features
e asobject typeis specified /module (modules can be found on /dev/shm/module path)

virtual memory filesystem
/dev/shm/ module

SharedObject

object reference counter

object data size

Fig 4 — SharedObject data layout for DataM odule class implementation

2.2.3. Synchronization objectson Linux platform

Linux semaphores

When severa processes need to use the same resources, some synchronization mechanisms are needed.
The Linux provides two types of synchronization objects:

e SystemV IPC semaphores,

e POSIX semaphores

Unfortunately Linux doesn’t support POSIX semaphores which can be accessed by different processes
(although POSIX defines them). This Linux “feature” disqualifies POSIX semaphores from usagein
framework.

The framework utilizes System V |PC semaphores for process synchronization.
» SystemV IPC semaphores are identified by 32-hit key (integer value),
» Kkey is generated by function ftok () from the file representing shared object (stored in virtual
memory filesystem),
» resulting key is stored in shared object, so other processes can access the right semaphore,
* sem get(),sem ctl() adsem op () callsareusedtowork with ssmaphores,
» detailed information can be found in Linux man pages

OCERA IST 35102
11

virtual memory filesystem
/dev/shm/ event

SharedObject

/dev/shm/ mutex SystemV IPC
semaphores

SharedObject
key sema
key sema

/dev/shm/ semaphore \ key sema

key sema
SharedObject /

Fig 5— Synchronization objects implementation overview

Event class

» Event class is derived from SharedObject class, object type is specified as /event (events can
be found on /dev/shm/event path)

e inthe shared object datais stored the System V IPC semaphore key used to access real semaphore
and auto/manual event flag

object reference counter

object data size

key t key System V IPC key

bool manual auto/manual event flag

Fig 6 — SharedObject data layout for Event classimplementation

OCERA IST 35102
12

Mutex class

e Mutex classis derived from SharedObject class, object typeis specified as /mutex (mutexes can

befound on /dev/shm/mutex path)

* inthe shared object datais stored the System V IPC semaphore key used to access real semaphore

key t key

object reference counter

object data size

System V IPC key

Fig 7 — SharedObject data layout for M utex classimplementation

Semaphore class

e Semaphore class is derived from SharedObject class, object type is specified as /semaphore
(semaphores can befound on /dev/shm/semaphore path)
* inthe shared object datais stored the System V IPC semaphore key used to access real semaphore

key t key

object reference counter

object data size

System V IPC key

Fig 8 — SharedObject data layout for Semaphor e classimplementation

2.2.4. Timerson Linux platform

The Linux provides each process with three interval timers, each decrementing in a distinct time domain.
When any timer expires asignal is sent to the process and the timer is (potentially) restarted. The three

time domains are:

timedomain description

ITIMER_REAL decrementsin real time, delivers SIGALRM upon expiration

ITIMER_VIRTUAL | decrements only when the process is executing, delivers SIGVTALRM upon expiration

ITIMER_PROF decrements both when the process executes and when the system is executing on behalf of
the process, delivers SIGPROF upon expiration

Table6 —Linux interval timers

OCERA IST 35102
13

The framework application is not limited to single timer, which is provided to Linux applications. The
framework must emulate all application timers using single timer provided by Linux.

The implementation is based on:
e starting interval timer ITIMER_REAL provided by Linux,
» timer delivers periodically the SSIGALRM signal,
» when signal is delivered, the list of application timer is checked if any of application timers has
expired

e periodicinterval imer running in ITMER_REAL domain

SIGALRM

. intercept routine is called when interval timer expires

* interceptroutine calls this callback when SIGALRM is
received

. list of running application timers is searched for expired
timers

OnAlarm() is called for every expired timer

MSG_TIMER

MSG_TIMER

Fig 9 —Timer classimplementation call graph
2.2.5. Fileson Linux platform
Fileclass- low-leve fileinterface

The File classis on Linux implemented straightforward. There are no special differencesin files-related
API provided by Linux from any other operating system.

OCERA IST 35102
14

method implemente = description

d using
File: :Open () open () Open specified file.
File::Close() close () Closefile.
File::Write () write () Write to file.
File::Read() read() Read fromfile.
File::Eof () fstat () Check for end-of-file condition.
File::Tell () lseek () Return current file pointer value.
File::Seek() lseek () Set file pointer.
File::Size () fstat () Return file size.

Table 7 — Low-level fileinterface overview

FileMapping class - memory mapped files

The Linux supports mapping files into memory using mmap () API.
» FileMapping classis derived from SharedObject class, object typeis specified as /mmfile.
e inshared object data part is stored mapping object size and full path to mapped file

virtual memory filesystem
/dev/shm/ mmfile

SharedObject

existing file

Fig 10 — File mapping implementation overview

2.2.6. Input/Output on Linux platform

I/O availability signals

The Linux supports asynchronous IO using the fcnt1 () API. The signa SIGAIO isdelivered to process
when 10 becomes available. Because there is no possibility to define user signals, all 10 operations share
the same signal. The system provides only the file descriptor number of the file where 1O is available. The
framework must maintain the list of asynchronous 10 operations and when signal isddivered thelist is
searched for object who serves the 10 on given file.

OCERA IST 35102
15

* whenthe /O on filesbecomes available, the kernel sendsthe S IGAIO signal
e file descriptoris attached to signal

SIGAIO

. interceptroutine calls AsyncIoDevice: :OnSignalProxy () callback

« listofregistered file descriptors is searched
for device which owns the file
. associated signal is sentto process

MSG_SIGNAL

Fig 11 — Asynchronous | O natifications call graph

Serial ports

Serial portson Linux are accessible using low-level file interface. Functions for manipulating serial ports
setup are placed in termios library. Device files used to access serial ports on Linux are usually named /
dev/ttyS0 and so on. ComPort class is derived from AsyncloDevice class and inherits support for 1/0
availability signals.

method implemented description
using
ComPort: :Open () open () Open specified serial port.
ComPort::Close () close() Close serial port.
ComPort::Setup () tcgetattr () Setup seria port (baud rate, dataformat).
tcsetattr ()
ComPort: :SetChars () tcgetattr () Setup transmission control characters (XON, XOFF ...).
tcsetattr ()
ComPort: :Read() read () Read from serial port.
ComPort::Write () write () Write to seria port.
ComPort::SetSignal () fentl () Install notification signal for 10 availahility.
ComPort::ReleaseSignal () fentl () Disable notification signal.
ComPort::GetReadyCount () dioctl() Return number of bytes ready for reading.

Table 8 — Serial portsinterface overview

OCERA IST 35102
16

Console —terminal screen

Linux console is compatible with default ANSI/VT100 terminals. The Console class is directly derived
from AnsiTerminal class and implements only low-level methods PutString () and PutChar ()

using the low-level filewrite () API.

Pipes— simple inter process communication

Linux named pipes are implemented as special files on the filesystem. These files are created on virtual
memory filesystem along the shared object file with additional control data. The Linux doesn’t support 10
availability signas for pipes, so the framework must provide its own implementation.

virtual memory filesystem
/dev/shm/ pipe

SharedObject

special file

Pipe_in

special file

Pipe_out

Fig 12 — Pipe implementation overview

Sockets — networ k communication

Linux natively supports network communication using the BSD sockets API. 10 availability signas are

also supported for sockets. Implementation is quite straightforward.

2.3. CANopen subsystem manager for Unicon

2.3.1. Overview

CANopen subsystem manager isimplemented as process named Coplo (CANopen 10). The processis

tightly coupled with Unicon in several ways:

» process works with configuration from Unicon Application Target Database (ATD),
» processis managed by Unicon Node Manager,
» process data from/to CANopen modules are stored in traffic store in a compatible way with older

CANOopen manager used in Unicon node (process copman).

OCERA IST 35102
17

nddir

ndsubs

lincan Coplo cop
(CAN driver) TS

cop
TS

Fig 13 — CANopen subsystem manager for Unicon

2.3.2. External interfaces

Communication with Unicon Node M anager

Unicon node manager communicates with its subsystems using FIFO message queues. Every subsystem after its
startup creates own input message queue and registers the queue in the node manager. The message queue is an
instance of object class IpcMsgQueue. Notifications to node managers are sent to his input message queue. The list of
messages and their meaning is in the following table, comprehensive description can be found in SD0577A
document.

M essage Description
NDMSG _SUBSYS REGISTER The subsystem registers its own input message queue in the node manager.
NDMSG _SUBSYS WATCHDOG | The subsystem registers the watchdog timer in the node manager.
NDMSG_SUBSYS RESPAWN The subsystem requests its own respawn (in case of fatal failure).

NDNTF _SUBSYS ACTIVE The subsystem notifies the node manager that its status changed to ACTIVE.

NDNTF_SUBSYS STANDBY The subsystem notifies the node manager that its state changed to
STANDBY.

NDNTF_SUBSYS READY The subsystem notifies the node manager that its state changed to READY .

NDNTF _SUBSYS FAILURE The subsystem notifies the node manager that its state changed to FAILURE.
NDNTF_SUBSYS RESTART The subsystem notifies the node manager that its state changed to
STARTING.
NDCMD_SUBSYS ACTIVATE The messageis acommand for subsystem to change statusto ACTIVE.
NDCMD_SUBSYS STANDBY The message is a command for subsystem to change statusto STANDBY .
NDCMD_SUBSYS STOP The message is a command for subsystem to change statusto READY .
NDCMD _SUBSYS SHUTDOWN | The message is a command for subsystem to shutdown itself.
NDCMD_SUBSYS_RESTART The message is a command for subsystem to restart with new
parameterization.

Table 9 — Unicon node manager messages

OCERA IST 35102
18

RIO module format specification

The RIO parameterization module contains a description of remote inputs and outputs.

module header

number of nets

number of modules

array of net descriptors

array of module descriptor offsets

array of module descriptors

Module header is a structure of type SXEDA_FILE HEAD.
e creationtime
e project name
* node name
e node number
e modulerevison
Total number of nets.
Total number of io modules.
Net descriptors are structures of type sSRIO_NET.
- every net descriptor isfollowed by net parameters
- typeand size of net parameters depends on net class
(SCAN_NET_PAR for CANopen nets)

Array of offsets of io module descriptors.

lo module descriptors are structures of type sRIO_MOD.
Every module descriptor is followed by:

e array of itsinput channel descriptors (array of SRIO_IOCHNL

structures),

e array of itsoutput channel descriptors (arrays of
SRIO_IOCHNL structures),

e moduleinterna parameters (type and size of module internal
parameters depends on module class— SCAN_MOD_PAR for

CANopen modules)

CHN module format specification

The CHN parameterization module contains a description of communication channels.

module header

number of channels

array of channel descriptor offsets

Module header is a structure of type SXEDA_FILE HEAD.
e creationtime
* project name
* node name
e node number
* modulerevison
Total number of channels.
Array of offsets of channel descriptors.

array of channel descriptors

OCERA IST 35102
19

Channel descriptors are structures of type SCHNL_DESC.

- every channel descriptor isfollowed by channd parameters
- typeand size of channel parameters depends on channel type

(SCAN_NET_CHNL for CAN channels)

Traffic store format specification

Traffic store is a data module where process data are store stored.

traffic store header Traffic store header is a structure of type sRIO_TS_COP.
* net status

* inputsenableflag

* outputs enable flag

* number of modules

array of module control tables Module control tables are structures of type sRIO_COP_MCT.
* number of portsin every of 4 module cages

» offsets of first port of every used module cage

* module status

* moduleio channels validity bits

traffic store ports Data are stored in ports.

e portis 16 bytes of memory
e cage can have max. 8 ports
* every module has 4 cages

2.3.3. Decomposition to classes
The design of CANopen o manager can be split into three basic hierarchical levels.
| o subsystem manager level

» handles communication with node manager using message queues,

» attachesto Application Target Database (ATD) modules RIO and CHN,

» opens and owns the subsystem configuration file or data module,

e creates and owns subsystem log,

» creates and ownstimer providing subsystem tick (base period for timeout eval uations),

» creates and manages individua CANopen networks (can manage up to eight networks),

e evaluates overall subsystem status as composition of states of individual CANopen networks

OCERA IST 35102
20

configuration configuration

(net topology description) (subsystem settings) error/run log
RIO CHN ClgFile Log
/
CfgModule

tick (base

commands from
Node Manager
CopNet class
array of
CopNet class objects
(up to 8 nets supported)

\
Fig 14 — o subsystem manager level design overview

CANopenloMan class members

data type member description
IpcMsgQueue msgQueue - input message queue
* node manager sends his commands as messages
IpcMsgQueue ndQueue - node manager’s input message queue
» noetifications and responses to node manager’ s commands are sent
back as messages
NdStatus status - Unicon subsystem status
e seethe[3] for detailed description
LogExt log - eror/runlog

» al significant events are recorded to log,

» dl erorsare recorded,

* log can be configured (verbosity, destination — file, data module,
non-volatile memory),

* log can be disabled

Ptr<CfgBase> cfg - configuration database
» needed to keep additional configuration not contained in ATD,
» for example the communication bitrate can be specified

RioBase rio - ATD RIO module
» describesal remoteio networksin Unicon node (include
CANopen ones),

» the number and types of remote io devices are described,

» every CANopen network is connected to one CAN
communication channel described in CHN module

OCERA IST 35102
21

ChnBase chn

Timer tmr

TimerQueue tmrQueue

Ptr<CopNet> net [8]

ATD CHN module
e describes al communication channels and their parametersin
Unicon node
e CAN communication channel is specified by symbolic name of
associated CAN controller (for example ‘/dev/can0’)
timer object
e used for periodic tick signal generation,
» tick signal is used to feed the application timer queue tmrQueue
ordered queue of application timers
» used for timeout evaluation throughout entire application,
e provides services to register timer event with callback when event
expires,
* required for efficient implementation of large number of
simultaneously running application timers
array of pointers to instances of CopNet class
« every managed CANopen is represented by instance of CopNet
class
* when the net of given index is not defined, the pointer is NULL
e array sizeis hard coded to 8, which defines maximum number of
managed networks (can be changed if necessary)

CANopenloM an class oper ations

method
Init ()

InitResources ()

StartupSubsystem/()

ShutdownSubsystem ()
ActivateSubsystem()
StandbySubsystem ()

StopSubsystem ()

RestartSubsystem()

OCERA IST 35102
22

description
initialization method of framework application, provides:

e command line arguments parsing,

e opens configuration file/module,

e callsInitResources() method,

e cals StartupSubsystem() method,

e registers application to Unicon node manager
initializes general subsystem resources as:

e opensand configureslog,

e creates and configures input message queue,

e instalsperiodic tick timer
performs steps necessary to startup entire subsystem:

e connect to ATD modules directory,

¢ find activated RIO and CHN ATD modules,

e build resources for all CANopen networks defined in RIO
performs steps necessary to shutdown subsystem:

« freeresources dlocated for all CANopen networks
performs steps necessary to activate subsystem:

e activate al managed CANopen networks
performs steps necessary to standby subsystem:

e standby all managed CANopen networks
performs steps necessary to stop subsystem:

e stop al managed CANopen networks,

¢ network resources remain allocated
performs subsystem restart as sequence of:

e subsystem shutdown,

¢ subsystem startup with new RIO and CHN modules

BuildAllNets () - buildsresources for al networks:

e iterates through RIO module, search CANopen networks,

» checksconsistency of information in RIO module,

e for every found CANopen network calls its BuildNet() method
BuildNet () - build resources for single network:

e iterate through RIO module,

e search for modules connected to given CANopen network,

« dlocate instance of class associated with found module type
e attach module to network

CANopenloMan class handlers

method description

OnMsgQueue () - input message queue handler
1. signd is sent when there is a message in input message queue
2. handler reads message,
3. callsoperation associated with received command

OnTick () - periodic timer signal handler
e gpplication timer queueis evaluated for expired timers
OnCanMsg () - CAN controller signal handler
¢ network’s OnCanMsg() handler is called
OnNetStatusChange () - network status change notification handler
e method is called by managed CANopen networks when their
status changes

e overall subsystem statusis updated depending on states of all
managed networks

OnException () - uncatched exception handler
» method is called when exception is thrown and not catched by
any other catch block

e exception islogged into subsystem log

Network leve

» opensand owns CAN controller device used for given CANopen network,

» creates and ownstraffic store for process data storage,

« creates and manages set of CANopen module objects (they represent individual devices on the
network),

e provides SYNC message generation,

» evaluates overall CANopen network status as composition of states of individual CANopen
modules

OCERA IST 35102
23

CAN device

CanController

CopNet class members

data type
CopStatus

CANopenIoMan *

CanController

CopNetDesc

CopTs

Array<Ptr<CopMod>>

CopMod *

OCERA IST 35102
24

SYNCtiming } traffic store
CopTs class
.
A
array of t
pointers to
modules
4
B
‘—

Fig 15— CANopen network level overview

member
status -
man -

can -

ts -
rio -

idMap[128] -

description
CANopen network status
pointer to CANopenloMan which owns this network
e pointer isused to call OnNetStatusChange() callback
method
CAN controller class
e provides an abstract layer between the application and
real hardware
« thisallowsto easily port the application to use various
CAN controller hardware
e current implementation supports:
o lincan driver on Linux platform,
o usb-can driver on Windows platform,
o vcandriver on OS9 platform
CANopen network descriptor in RIO module
e descriptor provides network configuration parameters,
ie. SYNC message period
traffic store object
» traffic storeisused for process data stotage
array of pointers to CANopen modules
e sizeof array isequal to number of network modules
CANopen module ID cache
» cachefor fast resolving of “module ID to C++ object”
e incacheisaddress of appropriate C++ object
representing CANopen module with given CANopen
module ID

CopNet class oper ations

method
RegisterModule ()

BuildNetwork ()

ActivateNetwork ()

StandbyNetwork ()

StopNetwork ()

SendMsg ()
SendNmt ()

SendNdg ()

SendSync ()

CopNet classhandlers
method
OnCanMsg ()

OnSyncTimer ()

OnModStatusChange ()

OCERA IST 35102
25

description
registers new module into network internal structures
e called during building of network resources,
e moduleis queried for required number of portsin traffic store
e address of module abject is stored in module ID cache
creates network resources for all registered modules
e called asfina step of building of network resources,
e traffic storeis created,
e dl registered modules are attached to their MCTs and portsin
traffic store,
e CAN controller is opened
performs steps necessary to activate network
e dl modules are switched to pre-operational state
¢ node guarding is enabled for all modules
e module configuration is started
performs steps necessary to standby network
* NO messages are sent to the network in standby mode,
e dl PDOsareintercepted and process data are transferred to traffic
store (traffic stores in active and standby nodes are synchronized)
performs steps necessary to stop network
¢ SYNC message producer is disabled,
¢ node guarding for all modulesis disabled
sends raw CAN message to network
prepares and sends NMT message to network
e message can be addressed to specified module,
e or can be sent as broadcast to al modules
prepares and sends NDG message to network
* messageis sent to specified module only
prepares and sends SYNC message to network

description
received CAN message handler
e message type and module ID is extracted,
e appropriate module object handler iscaled
SYNC timer callback handler
¢ SYNC messageis sent to the network
e OnSync calback is called for all modules
module status change handler
« method is called by modules when their status changes

e overal network statusis updated depending on states of all
modules

e and appropriate operation is called when needed

Moduleleve

» keeps pointer to module control table in traffic store (in module control table are stored process
data validity bits and module status hits),

e keeps pointers to module process datain traffic store ports,

» owns SDO state machine for service data objects upload/downl oad,

» provides NDG message generation for given module,

» evaluates timeouts for responses to NDG messages and SDO communications,

» provides mechanism for module configuration (module can be configured using a sequence of
SDO downloads before its switched into an operational state)

traffic store

+ SDO timeouts NDG timing
M]
A 4
CopSdo class CopTs class
pointerto [4 eo---—-----o
SDO module control table : : :
upload/download (status, validity bits) MCT ptr o
state machine
pointers to DATA
individual ports pointers /
associated with =
given module] /
process data &
L J

Fig 16 — CANopen module level overview

CopMod class members

data type member description

CopStatus status - CANopen module status

CopNmtState nmt - module NMT state

CopModDesc md - CANopen module descriptor in RIO module

» descriptor provides module configuration
parameters, ie. NDG message period, timeouts ...
CopNet * net - pointer to network object to which module belongs
e pointer isused to call network’s
OnModStatusChange() callback
CopTs * ts - pointer to network’ s traffic store object
CopTsMct * mct - address of modul€’s control table in traffic store
* MCT contains module status
« and validity bits of itsinput and output channels
CopSdo sdo - SDO state machine object
1. controls SDO uploads and downloads

OCERA IST 35102
26

CopMod class operations

method
ReservePorts ()

Attach ()

EnableNodeGuarding ()

Configure ()
ConfigureNextSdo ()

CopMod class handlers
method
OnSync ()

OnNodeGuardMsg ()

OnNodeGuardTimer ()
OnNodeGuardTimeout ()
OnTransmitPdoMsg ()
OnReceivePdoMsg ()
OnTransmitSdoMsg ()

OnReceiveSdoMsg ()

OnEmergencyMsqg ()

OnSdoStatusChange ()

OCERA IST 35102
27

description
module returns required number of ports in traffic store
1. caled during building of network resources
attach module to its resources in traffic store
1. caled asfinal step of building of network resources
2. address of modul€e's control table in traffic store is stored,
3. addresses of modul€’s process data in traffic store ports are stored
4. addresses of modul€e's channels validity bits are stored
enables or disables node guarding for module
¢ moduleinstalls or deletes timer to generate NDG messages
module configuration is started
start download of next configuration SDO object
e moduleis configured when all SDOs are successfully downloaded

description
network SYNC handler
e caled when SYNC event occurs,
e module’'s receive PDOs are prepared and sent
NDG message handler
e called when response to NDG message s received,
e module NMT state is stored,
node guarding timer handler
e NDG messageis sent to module
node guarding timeout handler
e called when module didn’t respond to NDG message,
transmit PDO message handler
e caled when TPDO isreceived
e PDOisprocessed and data are placed to traffic store
e appropriate validity bits are set
receive PDO message handler
e called when RPDO isreceived in standby mode
e PDOisprocessed and data are placed to traffic store
transmit SDO message handler
e called when transmit SDO message is received,
¢ SDO state machine object callback is called
receive SDO message handler
e called when receive SDO message is received
e no actions executed (message is ignored)
emergency message handler
e called when emergency message is received
e message data are copied into MCT in traffic store
e module statusin MCT is updated
SDO status change handler
e cdled from SDO state machine when SDO download or upload is
finished

CanController class

CanController is a class which encapsulates CAN controller device. The purpose of this classisto define
an interface between the application and various CAN controllers.

« open/close CAN controller device

e servicesto write sequence of raw CAN messages to controller output queue
» servicesto read received raw CAN messages from controller input queue

» servicesto subscribe notification of CAN message reception

HW specific
API

CanController class

provides abstraction
layer between HW and
CANopen manager

- o

Fig 17 — CanController class

CanController class methods

method description
Open () - open specified CAN controller device
e deviceis specified by itsname (ie. ‘/dev/can0’, ‘vcan0’ ...)
« the CAN bus hitrate can be also specified, or |eft on default value
(default value is HW/driver dependant, usually configured in

driver setup)
Close () - close open CAN controller device
SendSeq () - send a sequence of CAN messages

¢ more than one message can be sent in one call (this allowsto
lower the overhead of system call - switch to driver kernel space)
RecvSeq() - read a sequence of CAN messages from driver input queue
¢ method returns number of CAN messages read,
« method never blocks the caller if there are no messages available
to read
SetNotifySignal () - set notification signal number
e notification signd is sent by driver when first CAN message
arrives into drivers input queue

OCERA IST 35102
28

CanMsg struct

CANopen manager works with CAN messages represented by structure CanMsg. Using own structure is
needed to fulfill requirement to work with various drivers. Every driver usually defines its own structure
representing raw CAN message. CanController class interface works only with CanMsg structures, thus
isolates the rest of the application from driver-specific issues. The disadvantage is some performance 10ss,
because CanController class must always repack CAN messages to and from driver-specific format.

CanMgg struct members

data type member description
unsigned int flags - messageflags
e CANMSG_RTR ... remote request message
* CANMSG_EXT ... message with extended COB-1D
unsigned int id - message COB-ID
unsigned int length - message length (number of used data bytes)
unsigned char datal8] - message data
CopTsclass

CopTsisaclass which encapsulates the traffic store. Its purpose is to simplify access to traffic store for
CopMod objects.

» createstraffic store and initializes its contents

» provides methods for accessing the module control tables and extracting information from them

e provides methods for accessing data ports

» traffic store format is binary compatible with older ‘copman’ application, only for compatibility
reasons (applications accessing the process data stored in the traffic store don't need to be
updated)

CopTsclass members

data type member description

DataModule mod - traffic store data module

CopTsHdr * ts - address of traffic store header
CopTsMct * mct - addressof MCT array in traffic store
char * port - address of first port in traffic store

CopTsclass methods

method description
Open () - opens existing traffic store
o ftraffic stores are numbered, the data module name is constructed
as‘dm_tscopX’ where X istraffic store number
Create () - create new traffic store
» traffic stores are numbered, the data module name is constructed
as‘dm_tscopX’ where X istraffic store number
Close() - closetraffic store
GetNetStatus () - return CANopen network status
» network statusis stored in traffic store header

OCERA IST 35102
29

SetNetStatus ()
GetNumMods ()
GetModuleControlTable ()
GetPortAddress ()
GetNumPortsInCage ()
GetPortOffset ()
GetModStatus ()

SetModStatus ()
GetInpValBitsAddr ()

GetOutValBitsAddr ()

GetEmergencyMsgAddr ()

OCERA IST 35102
30

set CANopen network status
return number of module control tables in traffic store
return address of specified module control table
return address of specified port of given module
return number of ports in specified cage of given module
return offset of port in specified cage of given module
return specified module status
* module statusis storeinits MCT
set specified module status
return address of given module inputs validity bits
* input channels validity bits are stored in MCT
return address of given module outputs vaidity bits
» output channels validity bits are stored in MCT
return address of module’ s CANopen emergency message
* emergency message data are stored in MCT

Chapter 3. Validation tests

3.1. CAN monitor/analyzer tests

There is no need to develop custom software to test functions of OCERA developed CAN monitor. The
OCERA software suite contains a set of basic utilities and examples which can be used for specified test.

Components tested
Component Description
lincan CAN device driver for Linux/RTLinux/OCERA kernel
canslave CANopen slave component.

canmaster/canmond CANopen master component with monitor daemon.

canmond-simple | CAN monitor daemon component.

canmonitor CAN monitor user interface component.
readcan Command line utility for reading raw CAN messages on the bus.
sendcan Command line utility for sending raw CAN messages to the bus.
EDSfile Electronic Data Sheet with description of emulated/analyzed CANopen save.

Table 10 — Componentsused in CAN monitor/analyzer test

Test setup

CAN bus

canslave EDS file

Y
A
I
I
I
I
I
1

named pipes TCPI/IP

Fig 18 - CAN monitor/analyzer test setup

OCERA IST 35102
31

e components can run on the same or on different computers,
» when al components run on single computer, the lincan device driver can run in virtual mode (no
real CAN device needed)

3.2. Communication latency test

Components tested
Component Description
lincan CAN device driver for Linux/RTLinux/OCERA kernel

Table 11 — Componentsused in communication latency test

Test setup

CAN bus
DO1
digital output
CAN-MIX3
< —> module

1m--- = >

. PDO

!

i PC104 board

— - A.ﬁ Serial mrt

Fig 19 — Communication latency test setup

DTR pin
on serial port

Required hardware

Hardware Description
PC104 computer computer board running Linux/OCERA components (Dig.Logic
MSM586SEN/SEV)

CAN controller CAN controller board supported by lincan driver (Advantech PCM 3680)
CAN-MIX3 module intelligent CANopen io module produced by Unicontrols
oscilloscope two-channel oscilloscope for taking measurements

Table 12 — Required hardware for communication latency test

OCERA IST 35102
32

Test application flowchart

Latency
open CAN open CAN deV|ce'
device (default CAN device can be found on /dev/can0)
open serial open serial port
port (first serial port can be found on /dev/ttyS0)
initialize 10 conﬂgure IO module to operational state
module (using NMT message)
invert output on invert selected output on serial port (DTR output)
serial port
invert output 10 invert selected output on IO module
module (using PDO message)
S'eepts_pecmed sleep specified time (for example 100 ms)
ime

Fig 20 — Communication latency test flowchart

Results

T SE6. Bus
A SEH. Bus
f:1.786kH=z
Lh:—g. 28l
Uz—5, 8@l
& SEEML

f:1.198kHz
U=, il
Uz —3. @ial
A0 S6EMU

Fig 21 —Measured latency on digital output

OCERA IST 35102
33

FETT TR T Y

T 104, Bus
Nl 184, 6us
f:9.615kH=z

o8 L)i: -5, 261

EET TS TET TN

P TR LT T T Y PP PP

Te 358, Bus
A 358, Bus
f:2.857kH=z

EERTT T TR TN

=&, 8al)
=7 . 28l
A2 SEEML

Fig 23 —Measured latency with NDG messageson line

3.3. Communication throughput test

Components tested
Component Description
lincan CAN device driver for Linux/RTLinux/OCERA kernel

Table 13 — Components used in communication throughput test

OCERA IST 35102
34

|
_ 1
(@}
=
5

CAN-MIX3
< module
1m---- >
. PDO
i PC104 board
i

|mm e mmm L~
& »

Fig 24 — Communication throughput test setup

Required hardware

Hardware Description
PC104 computer | computer board running Linux/OCERA components (Dig.Logic
MSM586SEN/SEV)

CAN controller CAN controller board supported by lincan driver (Advantech PCM 3680)
CAN-MIX3 module intelligent CANopen io module produced by Unicontrols

Table 14 — Required hardware for communication throughput test

Test application flowchart

Throughput
open CAN open CAN device in blocking mode

device (default CAN device can be found on /dev/can0)
initialize 10 configure I0 module to operational state

module (using NMT message)
send PDO wriFe value to IO module digital outputs

(using PDO message)
print average display average throughput on console
throughput (number of iterations per elapsed time)
[

Fig 25 — Communication throughput test flowchart

OCERA IST 35102
35

Results

Results were measured with CAN-MIX module at CAN bus speed 125 kb/s.
Bytes per message | Messages per second Bytes per second

Results

0 2349.1 N/A

1 2063.1 2063.1
2 1738.0 3476.0
3 1580.4 4741.2
4 1451.8 5807.2
5 1326.9 6634.3
6 12235 7340.8
7 1113.9 7797.3
8 1039.8 8318.0

Table 15— Measured communication throughput

3.4. Scheduler delay test

Comparison of scheduling accuracy of soft real-time versus hard real-time tasks

HW: Pentium M 1.5 GHz
soft-rt: 2.4.18
hard-rt: 2.4.18-ocera-1.0.0

| soft-rt hard-rt
Average: 0.500249034 0.500000002
Min: 0.498200178 0.499997920
Max: 0.519970179 0.500002592
Delta: 0.021770000 0.000004672
Stddev: 0.001652106 0.000000719
Scheduling accuracy comparison - zoomed on soft-rt Scheduling y comp: -zoomed on hard-rt
g oisosoooooo | H :::zzzzz i =
) 0.500000000 +—4 H ; 0.499998000 .

OCERA IST 35102

36

Fig 26 — Measured scheduler latency

Chapter 4. Validation of Process Control Application

4.1. Test results

The process control application was tested on system with PowerPC processor board VMP1 (MPC8240/250
MHz), operating system Linux, kernel 2.4.18-ocera-1.1.
The interpreted control algorithms consits of 9 tasks, tasks 2, 3 and 10 were interpreted with the period 25 ms, tasks
4,5, 6, 7, 8 and 9 with period 50 ms (fig. 1).
The interpreted database contains about 50000 variables which are evaluated
in each period. There is a statistics of interpreted tasks in the figure 1, item
StartCnt contains number of interpreted periods, item Over1Cnt contains number
of periods when interpretation wasn't finished in time. We can see that interpretation was performed practicaly

without a delay.
i -10(x|
[# Database Edit Wiew Draw Tables Object Variables Run Debug Optiens Window Help o =l
&l dlzE e ¥ MEl bz | BEeldn s ve] &a0s B B8
02 - MainTask ‘ ; ‘ 03 - Ac_Tur ‘ ; ‘ 04 - Stav_Tur ‘ ; ‘ 05 - Stav_Ko ‘ ; ‘ 06 - Ac_Ko ‘ Al
HainTask 3t Mo &c Tur 3t M| 8caw Tur 3t M Staw Ko &t | &c Ko 8t e
T8Start: oool-0z-07 17::| | Tastart: oool-0z-07 17| .| Testare: oool-nz-07 17::| . | Testare: oo0l-0z-07 17| . | T8%tare: oool-02-07 17::]
TeScarcE: 082 o | TE5cartE: 08z D | TeScartE: 082 L[| TE5careE: 08Ee o | TEStartE: 08z 4
Status: o7 - | Sratus: o7 - | Bratus: no? - | Eratus: no? - | Eratus: o7 i
TEErr: 0000-00-00 00:¢| . | T8Er:: 0000-00-00 00| . | T8Eer: 0000-00-00 00:(| . | T8Ex:: 0000-00-00 00| . | T8Er:: 0000-00-00 00:(.
TEErrE: aao D || TEEexE: aao | TEExrE: aaa D TEExxE: aaa D || TEErxE: aaa §
Errfode: aaa - [ExrrCode: a0l - | ErrCode: aaa - || ErrCode: aaa - | ExrrCode: aga
ErrNoSET: 00000 | ErrNoZETO: 00000 | ExxNoSET: 00000 | ErrMoSETO: 00000 | ExrrNoSET0O: 00000
Erriddr: 00000 | Erriddr: aoooo | Exrddde: 00000 | Erradde: aoooo ‘| Exrridde: aoooo
ErpCount: 0000000000 | Errcount: oooooooool o | ErrCount: 0000000000 | Errcount: 0oooooopoo | Errcount: oooooooooo Lol
Starclnt: O00ZZ1le9EZ O 3tartlnt: O0DEZ1E3EZE C|&StartCnt: 0001108477 o Starclint: Qo0l10e477 O dtarclnt: 0001108477
OwerlCnt: 0000000000 + || Overlint: 0000000001 | OwerlChnt: 0000000000 + | Owerlint: 0000000000 + | OwerlCnt: 0000000000
IncupNod: 000 .| IncupMNods: 0oo .| IncupMod: 000 | Incuplode: 000 .| IncwpNoda: 0oa
IncwpTas: 000 V|| IncupTask: 000 | IncwpTas: 000 V|| IncwpTask: 000 V|| IncwpTask: 000
ELEIT Ty aoooo - || Drumimsy = aoono - | Dnammy : ooooo - [Duamnmyy 2 aoooo - || Drumamr s agooo
SndMsgCn: 0000000000 || endMsgtne: 0000000000 | SmdMsgCrn: 0000000000 | smdMsgCnt: 0000000000 || ndMsgCht: 0000000001
BovlMsgCn: 0000000000 || BewMsgCne: 0000000000 o | BevMsgCn: 0000000000 || BevMsgCnt: 0000000000 || BovlsgCnt: Q000000000
TimexMin: 00000 o | TimexMin: oooog o | TimexMin: 00000 o | TimexMin: 00000 o | TimexMin: o000
TimexMax: O000Z0 O TimexMazx: 00ol1o U | TimexMax: 00010 O TimexMax: aoalo | TimexMaz: a0alo
Lelay: ooo3n <[Delay: o030 - | Delay: ooosa - [Delay: ooosn | Delay: ogosa
DelayMin: 00020 C|pelayMin: 00010 | |pelayMin: ooo3o " |petayMin: 00030 " |pelayMin: 00020
DelayMax: 00050 | PelayMazx: oon40 | DelayMax: 00070 | DelayMax: ooovo || elaytazx: ooos0
LastFWE: aoono - || LastFWE: aoong - | LastFWE: aoooo - || LastFUE: Qoooo - || LastFWE: oQooo
NofFWE: 0000002141 . | Ha £FWE: 0000002671 . | Mo £FUE: 0000000181 .| Mo £FWE: Q000000047 .| Mo £FWE: 0000002431
07 - Stav_Di 08 - Hav 09 - Chlaz
ftav Di 8t M [Hav &t & | Chlaz 8t M T 0il 8t
T83cart: o001-02-07 17| © | T8start: oo00l-02-07 17| | T8stare: o00l-02-07 17| | T8stare: 0001-0z-07
Ta3tarcE: 08z S| TE3cartE: 08z D | Te88tarcE: 08z C| TEstarcE: 08E
Status: o7 | Btatus: o7 - | Btatus: o7 - | Status: oo?
TEErr: 0000-00-00 00| | | TSEer: 0000-00-00 00| | | T8Err: 0000-00-00 00| | | T8Err: ooo0-00-00
TSErrE: ooo D || TSErrE: ooo | TEEErE: ooo D TEEEEE: ooo
ErrCoda: Qoo - | ExrCode: oo - | ExrCode: oo - | Exrloda: ool
ErrNo2ETd: 00000 | ErrNoZETO: 00000 .| ExeMoZETO: 00000 | ErrMoSETO: 00000
Erriddr: aoaona || Erriddr: 00000 | Erriddr: aoaan || Erriddr: aoaan
Errlount: ooooaoooon | ErrCount: 0000000000 | Brrount ooo0ooaoon | Breount - ooo0anaool
Startlint: 0001108477 o | Startint: 0001108477 || Startint: 0001108477 | Starcint: O00EZ1695E
Owerlint: Qoooooooon | OwerlCnt: oooooooooo || OwerllCnt: ooooooooon - OwerliCnt: QoooooonoL
IncupNode: 000 .| IncupNods: o000 . | IncupNode: o000 .| Incuplode: 000
IncupTask: 000 || IncupTask: 000 C | IncmpTask: 000 || IncwpTask: 000
i |
Reaty lcom: =571 [1172 R¥:5 UniTUMEMode 111

55 Starker | B supervise I @nctive Alat... | EdiuniGraph -.. |iu\u®mﬂﬁg.}% ‘ﬂﬁ g4z
Fig 27 — Statistics of interpreted tasks

i#lstart |J M8 |j Brera Term-..‘l z

OCERA IST 35102
37

The main functions of the real time part of UniCAP were tested both in OS9 and

Linux+RTLinux environment by using the Process Control Application.

There is achart showing regulation of rotates of the turbinein fig. 2, UniCAP applications on the control
system and on the technology simulator were executed

in Linux+RTLinux environment.

Fle Edt Miew UserProcrams Area Discram Graph Tools Window Help
- 1 oo] i il = il s 1 1 1 e 1 all Why
!Dperatnr choice of graphs [T -|D|ﬂ —
439 TE5 00704 atddley WIT 2 TE [3T00-4500 ordd0 TE5 K2li Zidank otddinr [3700-4500 ot/min)
4500.. 4500, Y,

44204 4420

43401 4340,

42600 4260

41800 4180

41001 4100

40204 4020

33401 3540

J8E0] 3860

37801 3780

300l 3700 I | } | | |
9:02:13 §:02:83 9:05:33 8:07:13 9:08:52 9010033 9:12:13
10.2.2005 10.2.2005 10.2.2005 10.2.2005 10.2.2005 10.2.2005 10.2.2005

.

For.HEip, press FL 1022005 |3:09:55

@Start'l“ il H EIGSS Star...l WSupervise @ﬁ&ct'ivenll... | H.Windows | Microsoft | icroscit | @\ngﬁﬂﬂgﬁ I8 om

Fig 28 — Regulation of rotates of the turbine

OCERA IST 35102
38

Chapter 5. Conclusion

All parameters requested by process control application are satisfied. The following table shows the
results for defined criteria of the porting of the real time part of UniCAP from OS9 to Linux+RTLinux

environment.

rotates

rotates according to requested
rotates

Linux+RTLinux than in
0OS9 environment

Parameter name Parameter description Qualitative or Test
quantitative criterion result
Process Control Operational state of PCA must Operational state of PCA Passed
Application (PCA) - be available the same way as in was reached the same way
operational state 0S9 as in OS9
PCA - blocking PCA should react to blocking PCA reacted to blocking Passed
conditions conditions the same way as in conditions the same way as
0S89
in OS9
PCA — warnings PCA should give the same PCA gave the same Passed
warnings on the same warnings on the same
conditions as in OS9 conditions as in OS9
PCA — cancellation PCA should cancel operational PCA canceled operational Passed
of operational state state on the same conditions as state on the same
in 0S9 conditions
PCA - regulation of The time of change of real Not longer time in Passed

OCERA IST 35102
39

