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Chapter 1. Introduction 

1.1. General

This document describes results of Ocera components validation on process control application platform.
Process control application is modular software solution running in embedded system supervised from
attached development host running on standard PC workstation. As the platform was choosen model of
control system for the real high-pressure gas turbocompressor plant in Kralice (the Czech Republic).

In the first part of the document there is overview of application design description and in the second part
validation test results follow. Description of the controlled application is contained in deliverable D9pc1.
Validation results are divided into two groups, separate components validation and whole application
validation.

1.2. Definitions, acronyms and abbreviations

Term Definition
Unicon UniControls proprietary distributed control system.
UcFramework C++ class library used to develop platform-independent applications
CANopen CAN-based higher layer protocol
Unicon CANopen Io
subsystem

Subsystem of Unicon control system, targeted to communication with
CANopen devices.

Table 1 – Definitions

Acronym Definition
CobId Communication Object Identifier
PDO Process Data Object
SDO Service Data Object
SYNC Synchronization Object
NMT Network Management
CAN Controller Area Network

Table 2 – Acronyms

1.3. References

Num. Publisher Document number Title
[1] CIA DS301 V.4.02 CANopen - Application Layer and

Communication Profile
[2] CIA DS302 V.3.0 Framework for Programmable CANopen

Devices

Table 3 – References
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Chapter 2. Design overview

2.1. Overall description

The whole software system consists of base modules including control algorithm interpreter, ethernet communication
subsystem and  CANopen remote IO subsystem. Software modularity is  based on open interfaces  allowing easy
connection of any new subsystem to algorithm interpreter.

The set of interfaces was developed in OCERA project and it allows connection of basic subsystems to interpreter
according IEC 61131 norm.

Fig. 1 shows block diagram of process control node. Particular application can consist of number of nodes.
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Fig 1 – Process control node bock diagram
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2.2. Application porting description

2.2.1. Signals on Linux platform

Linux signals

Linux kernel works with two types of signals, standard signals and POSIX real-time signals. 

Standard signals:
• only predefined signal names with defined meaning,
• no possibility for user defined signals,
• multiple instances of same signal are not queued (some signals may be lost),
• signals are not delivered in guaranteed order

POSIX real-time signals:
• signals from SIGRTMIN to SIGRTMAX (currently 32 signals),
• multiple instances of same signal are queued (no lost signals),
• signal can have an accompanying value (an integer or pointer),
• signals are delivered in a guaranteed order

Differences of framework signals and Linux signals:

Framework Linux
• numbered signals using 16bit integer • named signals
• unused signal numbers can be freely used

by applications
• no user-defined signals

• all signals are queued • only POSIX real-time signals are queued
• signal cannot carry additional data • POSIX real-time signals can carry

additional data

Framework signals are on Linux implemented using one POSIX real-time signal. The 16-bit signal
number is stored as parameter of this signal. Signals utilized by framework are in following table.

signal name signal value description
SIGUCF SIGRTMIN + 5 POSIX real-time signal used to carry the framework signal.
SIGAIO SIGRTMIN + 6 POSIX real-time signal used for asynchronous IO operations.
SIGALRM standard signal signal from process interval timer
SIGINT standard signal signal to interrupt process

Table 4 – Signals utilized by framework

Intercept routine

The framework provides single intercept routine to handle all signals in one place. Some signals are
handled specifically to provide required framework functionality not provided directly by Linux. All
other signals are packed into framework messages and placed into process internal message queue for
processing by application.

OCERA IST 35102
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Fig 2 – Intercept routine call graph

2.2.2. Shared memory on Linux platform

SharedObject class

The Linux operating system provides memory protection. This means that process cannot directly access
the memory of any other process. When the processes need to share memory, special operating system
mechanisms must be explicitly used. The Linux provides several ways how to share memory between
processes:

• System V IPC shared memory segments,
• virtual memory filesystem (tmpfs, formerly known as shmfs).

System V IPC shared memory mechanism has several important disadvantages for use in framework. The
most important one is that memory segments are identified only by 32 bit key (integer value). The
framework needs a named memory segments. The System V IPC API provides a function for generation
of segment key from an existing file name, but there still can be collisions in generated keys for different
files.
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Virtual memory filesystem works for applications as an obvious filesystem. The difference is that files are
kept only in virtual memory, they are not stored on any other medium. Together with the memory-
mapping files mechanism this can be used to share memory between different processes.

The framework uses virtual memory filesystem for shared memory implementation. The mechanism is
encapsulated in SharedObject class. SharedObject class is not a public framework class, can be used only
by framework itself. 

SharedObject class attributes:
• implements reference counter for class instances,
• provides methods for creation and accessing shared memory,
• when the object’s reference count reaches zero, the object is automatically deleted,
• objects can be sorted by their purpose

The virtual memory filesystem is usually mounted in /dev/shm mount point. Framework defines
several types of shared objects and every object type have its own prefix in filename path.

object type (prefix) description
/module objects used to implement DataModule class
/event objects used to implement Event class

• in object is stored System V IPC semaphore key used to implement event
/mmfile objects used to implement FileMapping class

• in object is stored mapping object size and full pathname to mapped file
/mutex objects used to implement Mutex class

• in object is stored System V IPC semaphore key used to implement mutex
/pipe objects used to implement Pipe class

• in object is stored pipe type and other information
/semaphore objects used to implement Semaphore class

• in object is stored System V IPC semaphore key used to implement semaphore

Table 5 – Shared objects types

The SharedObject data layout is very simple.

 

int refCount 

int size 

object reference counter  

object data size  
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Fig 3 – SharedObject data layout
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DataModule class

• DataModule class is derived from SharedObject class, so inherits all its features
• as object type is specified /module (modules can be found on /dev/shm/module path)

 

int refCount 

int size 

object reference counter  

object data size  

virtual memory filesystem  
/dev/shm/ module 

data 

SharedObject 

Fig 4 – SharedObject data layout for DataModule class implementation

2.2.3. Synchronization objects on Linux platform

Linux semaphores

When several processes need to use the same resources, some synchronization mechanisms are needed.
The Linux provides two types of synchronization objects:

• System V IPC semaphores,
• POSIX semaphores

Unfortunately Linux doesn’t support POSIX semaphores which can be accessed by different processes
(although POSIX defines them). This Linux “feature” disqualifies POSIX semaphores from usage in
framework.

The framework utilizes System V IPC semaphores for process synchronization.
• System V IPC semaphores are identified by 32-bit key (integer value),
• key is generated by function ftok() from the file representing shared object (stored in virtual

memory filesystem),
• resulting key is stored in shared object, so other processes can access the right semaphore,
• sem_get(), sem_ctl() and sem_op() calls are used to work with semaphores,
• detailed information can be found in Linux man pages
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Fig 5 – Synchronization objects implementation overview

Event class

• Event class is derived from SharedObject class, object type is specified as /event (events can
be found on /dev/shm/event path)

• in the shared object data is stored the System V IPC semaphore key used to access real semaphore
and auto/manual event flag
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Fig 6 – SharedObject data layout for Event class implementation
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Mutex class

• Mutex class is derived from SharedObject class, object type is specified as /mutex (mutexes can
be found on /dev/shm/mutex path)

• in the shared object data is stored the System V IPC semaphore key used to access real semaphore

 

int refCount 

int size 

object reference counter  

object data size  

key_t key System V IPC key  

Fig 7 – SharedObject data layout for Mutex class implementation

Semaphore class

• Semaphore class is derived from SharedObject class, object type is specified as  /semaphore
(semaphores can be found on /dev/shm/semaphore path)

• in the shared object data is stored the System V IPC semaphore key used to access real semaphore

 

int refCount 

int size 

object reference counter  

object data size  

key_t key System V IPC key  

Fig 8 – SharedObject data layout for Semaphore class implementation

2.2.4. Timers on Linux platform
The Linux provides each process with three interval timers, each decrementing in a distinct time domain.
When any timer expires a signal is sent to the process and the timer is (potentially) restarted. The three
time domains are:

time domain description
ITIMER_REAL decrements in real time, delivers SIGALRM upon expiration
ITIMER_VIRTUAL decrements only when the process is executing, delivers SIGVTALRM upon expiration
ITIMER_PROF decrements both when the process executes and when the system is executing on behalf of

the process, delivers SIGPROF upon expiration

Table 6 – Linux interval timers
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The framework application is not limited to single timer, which is provided to Linux applications. The
framework must emulate all application timers using single timer provided by Linux.

The implementation is based on:
• starting interval timer ITIMER_REAL provided by Linux,
• timer delivers periodically the SIGALRM signal,
• when signal is delivered, the list of application timer is checked if any of application timers has

expired

 

interval 
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intercept routine 

SIGALRM 

Timer::OnSignalProxy()  
callback 

running 
timers 

Timer::OnAlarm()  
callback 

Timer::OnAlarm()  
callback 

Process 

MSG_TIMER 

MSG_TIMER 

• periodic interval timer running in ITIMER_REAL domain  

• intercept routine is called when interval timer expires  

• intercept routine calls this callback when SIGALRM is 
received 

• list of running application timers is searched for expired 
timers 

• OnAlarm() is called for every expired timer  

Fig 9 – Timer class implementation call graph

2.2.5. Files on Linux platform

File class - low-level file interface

The File class is on Linux implemented straightforward. There are no special differences in files-related
API provided by Linux from any other operating system.
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method implemente
d using

description

File::Open() open() Open specified file.
File::Close() close() Close file.
File::Write() write() Write to file.
File::Read() read() Read from file.
File::Eof() fstat() Check for end-of-file condition.
File::Tell() lseek() Return current file pointer value.
File::Seek() lseek() Set file pointer.
File::Size() fstat() Return file size.

Table 7 – Low-level file interface overview

FileMapping class - memory mapped files

The Linux supports mapping files into memory using mmap() API. 
• FileMapping class is derived from SharedObject class, object type is specified as /mmfile.
• in shared object data part is stored mapping object size and full path to mapped file

 

virtual memory filesystem  
/dev/shm/ mmfile 

existing file 

FileMapping  

SharedObject 

pathname 

size 

Fig 10 – File mapping implementation overview

2.2.6. Input/Output on Linux platform

I/O availability signals

The Linux supports asynchronous IO using the fcntl() API. The signal SIGAIO is delivered to process
when IO becomes available. Because there is no possibility to define user signals, all IO operations share
the same signal. The system provides only the file descriptor number of the file where IO is available. The
framework must maintain the list of asynchronous IO operations and when signal is delivered the list is
searched for object who serves the IO on given file.
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Fig 11 – Asynchronous IO notifications call graph

Serial ports

Serial ports on Linux are accessible using low-level file interface. Functions for manipulating serial ports
setup are placed in termios library. Device files used to access serial ports on Linux are usually named /
dev/ttyS0 and so on. ComPort class is derived from AsyncIoDevice class and inherits support for I/O
availability signals.

method implemented
using

description

ComPort::Open() open() Open specified serial port.
ComPort::Close() close() Close serial port.
ComPort::Setup() tcgetattr()

tcsetattr()
Setup serial port (baud rate, data format).

ComPort::SetChars() tcgetattr()
tcsetattr()

Setup transmission control characters (XON, XOFF ...).

ComPort::Read() read() Read from serial port.
ComPort::Write() write() Write to serial port.
ComPort::SetSignal() fcntl() Install notification signal for IO availability.
ComPort::ReleaseSignal() fcntl() Disable notification signal.
ComPort::GetReadyCount() ioctl() Return number of bytes ready for reading.

Table 8 – Serial ports interface overview
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Console – terminal screen

Linux console is compatible with default ANSI/VT100 terminals. The Console class is directly derived
from AnsiTerminal class and implements only low-level methods PutString() and PutChar()
using the low-level file write() API.

Pipes – simple interprocess communication

Linux named pipes are implemented as special files on the filesystem. These files are created on virtual
memory filesystem along the shared object file with additional control data. The Linux doesn’t support IO
availability signals for pipes, so the framework must provide its own implementation.
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Pipe_in Pipe 

SharedObject 

pid1 
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Pipe_out 

special file  
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Fig 12 – Pipe implementation overview

Sockets – network communication

Linux natively supports network communication using the BSD sockets API. IO availability signals are
also supported for sockets. Implementation is quite straightforward.

2.3. CANopen subsystem manager for Unicon

2.3.1. Overview

CANopen subsystem manager is implemented as process named CopIo (CANopen IO). The process is
tightly coupled with Unicon in several ways:

• process works with configuration from Unicon Application Target Database (ATD),
• process is managed by Unicon Node Manager,
• process data from/to CANopen modules are stored in traffic store in a compatible way with older

CANopen manager used in Unicon node (process copman).
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Fig 13 – CANopen subsystem manager for Unicon

2.3.2. External interfaces

Communication with Unicon Node Manager

Unicon node manager communicates with its subsystems using FIFO message queues. Every subsystem after its
startup creates own input message queue and registers the queue in the node manager. The message queue is an
instance of object class IpcMsgQueue. Notifications to node managers are sent to his input message queue. The list of
messages and their meaning is in the following table, comprehensive description can be found in SD0577A
document.

Message Description
NDMSG_SUBSYS_REGISTER The subsystem registers its own input message queue in the node manager.
NDMSG_SUBSYS_WATCHDOG The subsystem registers the watchdog timer in the node manager.
NDMSG_SUBSYS_RESPAWN The subsystem requests its own respawn (in case of fatal failure).
NDNTF_SUBSYS_ACTIVE The subsystem notifies the node manager that its status changed to ACTIVE.
NDNTF_SUBSYS_STANDBY The subsystem notifies the node manager that its state changed to

STANDBY.
NDNTF_SUBSYS_READY The subsystem notifies the node manager that its state changed to READY.
NDNTF_SUBSYS_FAILURE The subsystem notifies the node manager that its state changed to FAILURE.
NDNTF_SUBSYS_RESTART The subsystem notifies the node manager that its state changed to

STARTING.
NDCMD_SUBSYS_ACTIVATE The message is a command for subsystem to change status to ACTIVE. 
NDCMD_SUBSYS_STANDBY The message is a command for subsystem to change status to STANDBY.
NDCMD_SUBSYS_STOP The message is a command for subsystem to change status to READY.
NDCMD_SUBSYS_SHUTDOWN The message is a command for subsystem to shutdown itself.
NDCMD_SUBSYS_RESTART The message is a command for subsystem to restart with new

parameterization.

Table 9 – Unicon node manager messages
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RIO module format specification

The RIO parameterization module contains a description of remote inputs and outputs.

module header Module header is a structure of type sXEDA_FILE_HEAD.
• creation time
• project name
• node name
• node number
• module revision

number of nets Total number of nets.
number of modules Total number of io modules.
array of net descriptors Net descriptors are structures of type sRIO_NET.

- every net descriptor is followed by net parameters
- type and size of net parameters depends on net class

(sCAN_NET_PAR for CANopen nets)

array of module descriptor offsets Array of offsets of io module descriptors.

array of module descriptors Io module descriptors are structures of type sRIO_MOD.
Every module descriptor is followed by:

• array of its input channel descriptors (array of sRIO_IOCHNL
structures),

• array of its output channel descriptors (arrays of
sRIO_IOCHNL structures),

• module internal parameters (type and size of module internal
parameters depends on module class – sCAN_MOD_PAR for
CANopen modules)

CHN module format specification

The CHN parameterization module contains a description of communication channels.

module header Module header is a structure of type sXEDA_FILE_HEAD.
• creation time
• project name
• node name
• node number
• module revision

number of channels Total number of channels.
array of channel descriptor offsets Array of offsets of channel descriptors.

array of channel descriptors Channel descriptors are structures of type sCHNL_DESC.
- every channel descriptor is followed by channel parameters
- type and size of channel parameters depends on channel type

(sCAN_NET_CHNL for CAN channels)

OCERA IST 35102
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Traffic store format specification

Traffic store is a data module where process data are store stored.

traffic store header Traffic store header is a structure of type sRIO_TS_COP.
• net status
• inputs enable flag
• outputs enable flag
• number of modules

array of module control tables Module control tables are structures of type sRIO_COP_MCT.
• number of ports in every of 4 module cages
• offsets of first port of every used module cage
• module status
• module io channels validity bits

traffic store ports Data are stored in ports.
• port is 16 bytes of memory
• cage can have max. 8 ports
• every module has 4 cages

2.3.3. Decomposition to classes

The design of CANopen Io manager can be split into three basic hierarchical levels. 

Io subsystem manager level

• handles communication with node manager using message queues,
• attaches to Application Target Database (ATD) modules RIO and CHN,
• opens and owns the subsystem configuration file or data module,
• creates and owns subsystem log,
• creates and owns timer providing subsystem tick (base period for timeout evaluations),
• creates and manages individual CANopen networks (can manage up to eight networks),
• evaluates overall subsystem status as composition of states of individual CANopen networks

OCERA IST 35102
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Fig 14 – Io subsystem manager level design overview

CANopenIoMan class members

data type member description
IpcMsgQueue msqQueue - input message queue

• node manager sends his commands as messages
IpcMsgQueue ndQueue - node manager’s input message queue

• notifications and responses to node manager’s commands are sent
back as messages

NdStatus status - Unicon subsystem status
• see the [3] for detailed description

LogExt log - error/run log
• all significant events are recorded to log,
• all errors are recorded,
• log can be configured (verbosity, destination – file, data module,

non-volatile memory),
• log can be disabled

Ptr<CfgBase> cfg - configuration database
• needed to keep additional configuration not contained in ATD,
• for example the communication bitrate can be specified

RioBase rio - ATD RIO module
• describes all remote io networks in Unicon node (include

CANopen ones),
• the number and types of remote io devices are described,
• every CANopen network is connected to one CAN

communication channel described in CHN module
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ChnBase chn - ATD CHN module
• describes all communication channels and their parameters in

Unicon node
• CAN communication channel is specified by symbolic name of

associated CAN controller (for example ‘/dev/can0’)
Timer tmr - timer object

• used for periodic tick signal generation,
• tick signal is used to feed the application timer queue tmrQueue

TimerQueue tmrQueue - ordered queue of application timers
• used for timeout evaluation throughout entire application,
• provides services to register timer event with callback when event

expires,
• required for efficient implementation of large number of

simultaneously running application timers
Ptr<CopNet> net[8] array of pointers to instances of CopNet class

• every managed CANopen is represented by instance of CopNet
class

• when the net of given index is not defined, the pointer is NULL
• array size is hard coded to 8, which defines maximum number of

managed networks (can be changed if necessary)

CANopenIoMan class operations

method description
Init() - initialization method of framework application, provides:

• command line arguments parsing,
• opens configuration file/module,
• calls InitResources() method,
• calls StartupSubsystem() method,
• registers application to Unicon node manager

InitResources() - initializes general subsystem resources as:
• opens and configures log,
• creates and configures input message queue,
• installs periodic tick timer

StartupSubsystem() - performs steps necessary to startup entire subsystem:
• connect to ATD modules directory,
• find activated RIO and CHN ATD modules,
• build resources for all CANopen networks defined in RIO

ShutdownSubsystem() - performs steps necessary to shutdown subsystem:
• free resources allocated for all CANopen networks

ActivateSubsystem() - performs steps necessary to activate subsystem:
• activate all managed CANopen networks

StandbySubsystem() - performs steps necessary to standby subsystem:
• standby all managed CANopen networks

StopSubsystem() - performs steps necessary to stop subsystem:
• stop all managed CANopen networks,
• network resources remain allocated

RestartSubsystem() - performs subsystem restart as sequence of:
• subsystem shutdown,
• subsystem startup with new RIO and CHN modules
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BuildAllNets() - builds resources for all networks:
• iterates through RIO module, search CANopen networks,
• checks consistency of information in RIO module,
• for every found CANopen network calls its BuildNet() method

BuildNet() - build resources for single network:
• iterate through RIO module,
• search for modules connected to given CANopen network,
• allocate instance of class associated with found module type
• attach module to network

CANopenIoMan class handlers

method description
OnMsgQueue() - input message queue handler

1. signal is sent when there is a message in input message queue
2. handler reads message,
3. calls operation associated with received command

OnTick() - periodic timer signal handler
• application timer queue is evaluated for expired timers

OnCanMsg() - CAN controller signal handler
• network’s OnCanMsg() handler is called

OnNetStatusChange() - network status change notification handler
• method is called by managed CANopen networks when their

status changes
• overall subsystem status is updated depending on states of all

managed networks
OnException() - uncatched exception handler

• method is called when exception is thrown and not catched by
any other catch block

• exception is logged into subsystem log

Network level

• opens and owns CAN controller device used for given CANopen network,
• creates and owns traffic store for process data storage,
• creates and manages set of CANopen module objects (they represent individual devices on the

network),
• provides SYNC message generation,
• evaluates overall CANopen network status as composition of states of individual CANopen

modules
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Fig 15 – CANopen network level overview

CopNet class members

data type member description
CopStatus status - CANopen network status
CANopenIoMan * man - pointer to CANopenIoMan which owns this network

• pointer is used to call OnNetStatusChange() callback
method

CanController can - CAN controller class
• provides an abstract layer between the application and

real hardware
• this allows to easily port the application to use various

CAN controller hardware
• current implementation supports:

o lincan driver on Linux platform,
o usb-can driver on Windows platform,
o vcan driver on OS9 platform

CopNetDesc nd - CANopen network descriptor in RIO module
• descriptor provides network configuration parameters,

ie. SYNC message period
CopTs ts - traffic store object

• traffic store is used for process data stotage
Array<Ptr<CopMod>> rio - array of pointers to CANopen modules

• size of array is equal to number of network modules
CopMod * idMap[128] - CANopen module ID cache

• cache for fast resolving of “module ID to C++ object”
• in cache is address of appropriate C++ object

representing CANopen module with given CANopen
module ID
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CopNet class operations

method description
RegisterModule() - registers new module into network internal structures

• called during building of network resources,
• module is queried for required number of ports in traffic store
• address of module object is stored in module ID cache

BuildNetwork() - creates network resources for all registered modules
• called as final step of building of network resources,
• traffic store is created,
• all registered modules are attached to their MCTs and ports in

traffic store,
• CAN controller is opened

ActivateNetwork() - performs steps necessary to activate network
• all modules are switched to pre-operational state
• node guarding is enabled for all modules
• module configuration is started

StandbyNetwork() - performs steps necessary to standby network
• no messages are sent to the network in standby mode,
• all PDOs are intercepted and process data are transferred to traffic

store (traffic stores in active and standby nodes are synchronized)
StopNetwork() - performs steps necessary to stop network

• SYNC message producer is disabled,
• node guarding for all modules is disabled

SendMsg() - sends raw CAN message to network
SendNmt() - prepares and sends NMT message to network

• message can be addressed to specified module,
• or can be sent as broadcast to all modules

SendNdg() - prepares and sends NDG message to network
• message is sent to specified module only

SendSync() - prepares and sends SYNC message to network

CopNet class handlers

method description
OnCanMsg() - received CAN message handler

• message type and module ID is extracted,
• appropriate module object handler is called

OnSyncTimer() - SYNC timer callback handler
• SYNC message is sent to the network
• OnSync callback is called for all modules

OnModStatusChange() - module status change handler
• method is called by modules when their status changes
• overall network status is updated depending on states of all

modules
• and appropriate operation is called when needed
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Module level

• keeps pointer to module control table in traffic store (in module control table are stored process
data validity bits and module status bits),

• keeps pointers to module process data in traffic store ports,
• owns SDO state machine for service data objects upload/download,
• provides NDG message generation for given module,
• evaluates timeouts for responses to NDG messages and SDO communications,
• provides mechanism for module configuration (module can be configured using a sequence of

SDO downloads before its switched into an operational state)
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Fig 16 – CANopen module level overview

CopMod class members

data type member description
CopStatus status - CANopen module status
CopNmtState nmt - module NMT state
CopModDesc md - CANopen module descriptor in RIO module

• descriptor provides module configuration
parameters, ie. NDG message period, timeouts ...

CopNet * net - pointer to network object to which module belongs
• pointer is used to call network’s

OnModStatusChange() callback
CopTs * ts - pointer to network’s traffic store object
CopTsMct * mct - address of module’s control table in traffic store

• MCT contains module status
• and validity bits of its input and output channels

CopSdo sdo - SDO state machine object
1. controls SDO uploads and downloads

OCERA IST 35102
26



CopMod class operations

method description
ReservePorts() - module returns required number of ports in traffic store

1. called during building of network resources
Attach() - attach module to its resources in traffic store

1. called as final step of building of network resources
2. address of module’s control table in traffic store is stored,
3. addresses of module’s process data in traffic store ports are stored
4. addresses of module’s channels validity bits are stored

EnableNodeGuarding() - enables or disables node guarding for module
• module installs or deletes timer to generate NDG messages

Configure() - module configuration is started
ConfigureNextSdo() - start download of next configuration SDO object

• module is configured when all SDOs are successfully downloaded

CopMod class handlers

method description
OnSync() - network SYNC handler

• called when SYNC event occurs,
• module’s receive PDOs are prepared and sent

OnNodeGuardMsg() - NDG message handler
• called when response to NDG message is received,
• module NMT state is stored,

OnNodeGuardTimer() - node guarding timer handler
• NDG message is sent to module

OnNodeGuardTimeout() - node guarding timeout handler
• called when module didn’t respond to NDG message,

OnTransmitPdoMsg() - transmit PDO message handler
• called when TPDO is received
• PDO is processed and data are placed to traffic store
• appropriate validity bits are set

OnReceivePdoMsg() - receive PDO message handler
• called when RPDO is received in standby mode
• PDO is processed and data are placed to traffic store

OnTransmitSdoMsg() - transmit SDO message handler
• called when transmit SDO message is received,
• SDO state machine object callback is called

OnReceiveSdoMsg() - receive SDO message handler
• called when receive SDO message is received
• no actions executed (message is ignored)

OnEmergencyMsg() - emergency message handler
• called when emergency message is received
• message data are copied into MCT in traffic store
• module status in MCT is updated

OnSdoStatusChange() - SDO status change handler
• called from SDO state machine when SDO download or upload is

finished
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CanController class

CanController is a class which encapsulates CAN controller device. The purpose of this class is to define
an interface between the application and various CAN controllers. 

• open/close CAN controller device
• services to write sequence of raw CAN messages to controller output queue
• services to read received raw CAN messages from controller input queue
• services to subscribe notification of CAN message reception
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Fig 17 – CanController class

CanController class methods

method description
Open() - open specified CAN controller device

• device is specified by its name (ie. ‘/dev/can0’, ‘vcan0’ ...)
• the CAN bus bitrate can be also specified, or left on default value

(default value is HW/driver dependant, usually configured in
driver setup)

Close() - close open CAN controller device
SendSeq() - send a sequence of CAN messages

• more than one message can be sent in one call (this allows to
lower the overhead of system call - switch to driver kernel space)

RecvSeq() - read a sequence of CAN messages from driver input queue
• method returns number of CAN messages read,
• method never blocks the caller if there are no messages available

to read
SetNotifySignal() - set notification signal number

• notification signal is sent by driver when first CAN message
arrives into drivers input queue
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CanMsg struct

CANopen manager works with CAN messages represented by structure CanMsg. Using own structure is
needed to fulfill requirement to work with various drivers. Every driver usually defines its own structure
representing raw CAN message. CanController class interface works only with CanMsg structures, thus
isolates the rest of the application from driver-specific issues. The disadvantage is some performance loss,
because CanController class must always repack CAN messages to and from driver-specific format.

CanMsg struct members

data type member description
unsigned int flags - message flags

• CANMSG_RTR ... remote request message
• CANMSG_EXT ... message with extended COB-ID

unsigned int id - message COB-ID
unsigned int length - message length (number of used data bytes)
unsigned char data[8] - message data

CopTs class

CopTs is a class which encapsulates the traffic store. Its purpose is to simplify access to traffic store for
CopMod objects.

• creates traffic store and initializes its contents
• provides methods for accessing the module control tables and extracting information from them
• provides methods for accessing data ports
• traffic store format is binary compatible with older ‘copman’ application, only for compatibility

reasons  (applications  accessing  the  process  data  stored  in  the  traffic  store  don’t  need  to  be
updated)

CopTs class members

data type member description
DataModule mod - traffic store data module
CopTsHdr * ts - address of traffic store header
CopTsMct * mct - address of MCT array in traffic store
char * port - address of first port in traffic store

CopTs class methods

method description
Open() - opens existing traffic store

• traffic stores are numbered, the data module name is constructed
as ‘dm_tscopX’ where X is traffic store number

Create() - create new traffic store
• traffic stores are numbered, the data module name is constructed

as ‘dm_tscopX’ where X is traffic store number
Close() - close traffic store
GetNetStatus() - return CANopen network status

• network status is stored in traffic store header
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SetNetStatus() - set CANopen network status
GetNumMods() - return number of module control tables in traffic store
GetModuleControlTable() - return address of specified module control table
GetPortAddress() - return address of specified port of given module
GetNumPortsInCage() - return number of ports in specified cage of given module
GetPortOffset() - return offset of port in specified cage of given module
GetModStatus() - return specified module status

• module status is store in its MCT
SetModStatus() - set specified module status
GetInpValBitsAddr() - return address of given module inputs validity bits

• input channels validity bits are stored in MCT
GetOutValBitsAddr() - return address of given module outputs validity bits

• output channels validity bits are stored in MCT
GetEmergencyMsgAddr() - return address of module’s CANopen emergency message

• emergency message data are stored in MCT
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Chapter 3. Validation tests

3.1. CAN monitor/analyzer tests

There is no need to develop custom software to test functions of OCERA developed CAN monitor. The
OCERA software suite contains a set of basic utilities and examples which can be used for specified test.

Components tested

Component Description
lincan CAN device driver for Linux/RTLinux/OCERA kernel

canslave CANopen slave component.
canmaster/canmond CANopen master component with monitor daemon.

canmond-simple CAN monitor daemon component.
canmonitor CAN monitor user interface component.

readcan Command line utility for reading raw CAN messages on the bus.
sendcan Command line utility for sending raw CAN messages to the bus.
EDS file Electronic Data Sheet with description of emulated/analyzed CANopen slave.

Table 10 – Components used in CAN monitor/analyzer test

Test setup

 

canmond -simple 

CAN bus 

named pipes  TCP/IP 

canslave  EDS file 

canmaster  canmond  

canmonitor  

sendcan  

readcan  

Fig 18 - CAN monitor/analyzer test setup
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• components can run on the same or on different computers,
• when all components run on single computer, the lincan device driver can run in virtual mode (no

real CAN device needed)

3.2. Communication latency test

Components tested

Component Description
lincan CAN device driver for Linux/RTLinux/OCERA kernel

Table 11 – Components used in communication latency test

Test setup
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Fig 19 – Communication latency test setup

Required hardware

Hardware Description
PC104 computer computer board running Linux/OCERA components (Dig.Logic

MSM586SEN/SEV)
CAN controller CAN controller board supported by lincan driver (Advantech PCM3680)

CAN-MIX3 module intelligent CANopen io module produced by Unicontrols
oscilloscope two-channel oscilloscope for taking measurements

Table 12 – Required hardware for communication latency test
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Test application flowchart
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sleep specified time (for example 100 ms)  

Fig 20 – Communication latency test flowchart

Results

Fig 21 – Measured latency on digital output
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Fig 22 – Measured  latency of CAN message

Fig 23 – Measured latency with NDG messages on line

3.3. Communication throughput test

Components tested

Component Description
lincan CAN device driver for Linux/RTLinux/OCERA kernel

Table 13 – Components used in communication throughput test
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Test setup

 

PDO 
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CAN bus 

CAN-MIX3 
module  

throughput test 
application  

Fig 24 – Communication throughput test setup

Required hardware

Hardware Description
PC104 computer computer board running Linux/OCERA components (Dig.Logic

MSM586SEN/SEV)
CAN controller CAN controller board supported by lincan driver (Advantech PCM3680)

CAN-MIX3 module intelligent CANopen io module produced by Unicontrols

Table 14 – Required hardware for communication throughput test

Test application flowchart
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Fig 25 – Communication throughput test flowchart
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Results

Results were measured with CAN-MIX module at CAN bus speed 125 kb/s.
Bytes per message Messages per second Bytes per second

0 2349.1 N/A
1 2063.1 2063.1

2 1738.0 3476.0

3 1580.4 4741.2

4 1451.8 5807.2

5 1326.9 6634.3

6 1223.5 7340.8

7 1113.9 7797.3

8 1039.8 8318.0

Table 15 – Measured communication throughput

3.4. Scheduler delay test

Results

Comparison of scheduling accuracy of soft real-time versus hard real-time tasks

HW: Pentium M 1.5 GHz
soft-rt: 2.4.18

hard-rt: 2.4.18-ocera-1.0.0

 soft-rt hard-rt
Average: 0.500249034 0.500000002

Min: 0.498200178 0.499997920
Max: 0.519970179 0.500002592

Delta: 0.021770000 0.000004672
Stddev: 0.001652106 0.000000719

Fig 26 – Measured scheduler latency
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Chapter 4. Validation of Process Control Application

4.1. Test results

The process control application was tested on system with PowerPC processor board VMP1 (MPC8240/250
MHz), operating system Linux, kernel 2.4.18-ocera-1.1.
The interpreted control algorithms consits of 9 tasks, tasks 2, 3 and 10 were interpreted with the period 25 ms, tasks
4, 5, 6, 7, 8 and 9 with period 50 ms (fig. 1).
The interpreted database contains about 50000 variables which are evaluated
in each period. There is a statistics of interpreted tasks in the figure 1, item
StartCnt contains number of interpreted periods, item Over1Cnt contains number
of periods when interpretation wasn’t finished in time. We can see that  interpretation was performed practicaly
without a delay.

Fig 27 –  Statistics of interpreted tasks
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The main functions of the real time part of UniCAP were tested both in OS9 and 
Linux+RTLinux environment by using the Process Control Application.
There is a chart showing regulation of rotates of the turbine in fig. 2, UniCAP applications on the control
system and on the technology simulator were executed
in Linux+RTLinux environment.

Fig 28 –  Regulation of rotates of the turbine
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Chapter 5. Conclusion

All parameters requested by process control application are satisfied. The following table shows the
results for defined criteria of the porting of the real time part of UniCAP from OS9 to Linux+RTLinux
environment.
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Passed

Passed

Passed

Passed

Passed

Test 
result

Not longer time in 
Linux+RTLinux than in 
OS9 environment

PCA canceled operational 
state on the same 
conditions 

PCA gave the same 
warnings on the same 
conditions as in OS9

PCA reacted to blocking 
conditions the same way as

in OS9

Operational state of PCA 
was reached the same way 
as in OS9

Qualitative or 
quantitative criterion

The time of change of real 
rotates according to requested 
rotates

PCA should cancel operational 
state on the same conditions as 

in OS9

PCA should give the same 
warnings on the same 

conditions as in OS9

PCA should react to blocking 
conditions the same way as in 
OS9

Operational state of PCA must 
be available the same way as in 
OS9

Parameter description

PCA – regulation of 
rotates

PCA – cancellation 
of operational state

PCA – warnings

PCA – blocking 
conditions

Process Control 
Application (PCA) - 
operational state

Parameter name


