
1

UPVLC SSSA CTU CEA UC MNIS VTUPVLC SSSA CTU CEA UC MNIS VT

http://www.ocera.org

OPEN COMPONENTS FOR REAL-TIME APPLICATIONS IST 2001 - 35102

Universidad Politecnica de Valencia (Spain) Scuola Superiore Santa Anna (Italy)
Czech Technical University (Cezch Republic) Commissariat a l'Energie Atomique (France)
UniControl A.S (Cezch Republic) MNIS (France)
Visual Tools S.A. (Spain)

OCERA FT components are providing user
support for the implementation of embedded
real-time fault-tolerant applications. The
Degraded Mode Management Framework has
been designed to offer transparent
management of dynamic reconfiguration of
applications on detection of faulty situations.
Continuity of service is maintained in case of
partial failure through graceful degradation
management.

Features

RTLinux style programming (periodic threads)
Error detection (kill, timing errors)
Application modes handling
Transparent dynamic reconfiguration on

detection of abnormal situation.
Ft-tasks have several behaviors (normal,

degraded) predefined.

Model characteristics

Periodic tasks
Synchronized communication model

(one writer/several possible readers. A reader task
reads values emitted during previous period of
writer task).

Two possible behaviors (normal and degraded)
for each task are defined by the developer. These
behaviors are implemented in two alternative
threads that are activated or suspended
depending on application mode.

The Degraded Mode Management Framework
offers an integrated set of tools and
components.

Design/build tool. The Ftbuilder permits the
specification of application real-time constraints,
different possible application modes along with
related transition conditions.
From this specification, code generation is
achieved in order to instantiate internal control
data-bases of run-time components (ftappmon
and ftcontroller) and to provide application
model files.

API. A specific but reduced API has been
defined for manipulating so called ft-tasks. Three
main functions: ft_task_init(), ft_task_create,
ft_task_end(). These ft-tasks are actually
encapsulation of periodic RTLinux tasks. Other
functions are used to init internal data-bases.
Besides these specific functions , application
developers can use any RTLinux programming
feature.

ftappmon . The ftappmon component is
devoted to global application handling. It is in
charge of overall application setup and on
reconfiguration decisions. It contains information
on different possible application modes and on
transition conditions. When an error is detected
and notified by the ftcontroller, the ftmonitor
analyzes the event and issues reconfiguration
orders (stop, awake, switch ft-task behavior)
towards the ftcontroller.

ftcontroller . The ftcontroller is in charge of
the direct control of application threads. It
provides error detection (kill or timing error)
and notification (towards ftappmon) and
executes reconfiguration orders at task level.

Performance

Hard real-time applications with 1ms period can be
handled. For 20 ft-tasks with a total of cpu use of
70% application, reconfiguration can be achieved
within the 1ms period (450 microseconds) in the
worst case (all tasks change).

Degraded Mode Management Framework

OCERA
LinuxOCERA

RTLinux

Hardware

XtratuM

Linux user tasksHard ft-tasks

ftappmon +
ftcontroller

