
Demo phases

UPVLC SSSA CTU CEA UC MNIS VT

O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A
 O

C
E

R
A

 O
C

E
R

A

Demo 1: Stand Alone RTLinux
Author: Vicente Esteve (UPVLC)

Goals:
This demo checks the correct behavior of the Stand Alone RTLinux component, which is a porting
of the RTLinux-GPL executive to a bare machine. saRTL do not need Linux to operate.
The goal is to develop a water tank control aplication to run in a bare machine with saRTL. The
evolution of the simulated system is monitored using RTTerminal component.

Description:

The aplication is a level and temperature control of a water tank. Level of water in the tank is
controlled by a cold water input (Qn), while temperature is controlled by a warm water input
(Qt), to compensate the output flow water (Qs). The control law implemented in the level and
temperature control tasks is a propocional regulator.

Conclusions and results:
The execution of the application shows how the level and the temperature of the tank is controlled as it was expected. Through gdb, the
code can be executed step by step, which enables a complete control of the system. Interaction with the system, for instance, to change
the reference of the controller parameters is not possible now, since the keyboard interaction is not implemented in the RTTerminal version
for saRTL.

Phase 1
Write the application code, in the host machine:

● File sartl_directory/tasks/demo.c contains
the code of the four real-time tasks

● In sartl_directory/tasks/tasks.c
● Create the pthread_t variables of each

thread implemented in demo.c
● In init_tasks() function create the

threads using pthread_create

Phase 2
Compile and make the floppy image. Type:
make clean; make; cd arch/i386/boot; make
disk
*If you want to debug the application then
compile with the option „Enable GDB Agent“
and „Start Breakpoint“

Phase 3
Boot the target from the floppy disk. If
debugging is enabled, wait until the conection
message with gdb appears.

Tested components:

● saRTL (WP05)
● RTTerminal (WP05)

OPEN COMPONENTS FOR EMBEDDED REAL-TIME APPLICATIONS

The system has 4 tasks:

● Temperature control task. Calculates the degree of the warm water flow
valve.

● Level control task. Calculates the degree of the cold water flow valve.
● Simulation task. Simulates the tank behaviour, since the computer is not

connected to a real process.
● Monitoring task, that prints the state of the system in the console. This

last task uses RTTerminal component to print messages and to draw the
tank on the terminal, so the evolution of the system can be monitored in
real-time.

Phase 4
Run ddd (or gdb) from the host machine, connected via RS232 with the target. You can even put breakpoints to stop the execution in
the RTLinux scheduler function.

