
WP2 - Architecture Specification

OCERA Architecture and Component
Definiton

WP2 - Architecture Specification : OCERA Architecture and Component Definiton
by Ismael Ripoll, Alfons Crespo, Adrian Matellanes, Zdenek Hanzalek, Agnes Lanusse, and
Giuseppe Lipari

Copyright © 2002 by OCERA Consortium

Table of Contents
Document presentation ...i
1. Introduction ..1
2. Real-Time in Linux ..2

2.1. Concurrent execution paradigm..4
3. OCERA components ..6

3.1. Component classification ...6
3.2. Design guidelines ...7

4. OCERA Architecture ...9
4.1. Hard real-time system configuration ..9
4.2. Hard and Soft real-time system configuration ...9
4.3. Soft real-time system configuration ..10
4.4. Distributed architecture ..11
4.5. Hardware platforms...13

5. Fault-Tolerance Management ...14
5.1. Applications characteristics ..14
5.2. Faults considered ...14
5.3. Fault-Tolerance in OCERA..15

6. Component description ..17
6.1. Resource Management...17
6.2. Real-Time Scheduling..19
6.3. Fault-Tolerance ..21
6.4. Communication ..22

7. Glossary of terms ...25
Bibliography..27

iii

List of Tables
1. Project Co-ordinator ...i
2. Participant List...i
2-1. Process versus thread...4

List of Figures
2-1. General Linux and RTLinux overview..2
2-2. Different view of the execution environments ..3
4-1. OCERA Architecture, hard real-time support ..9
4-2. OCERA Architecture, hard and soft real-time support..10
4-3. OCERA Architecture, soft real-time support ..11
4-4. ORTE architecture ...12

iv

Document presentation
Table 1. Project Co-ordinator

Organisation: UPVLC
Responsible person: Alfons Crespo

Address: Camino Vera, 14. CP: 46022, Valencia, Spain
Phone: +34 9877576

Fax: +34 9877579
E-mail: alfons@disca.upv.es

Table 2. Participant List

Role Id. Name Acronym Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore S. Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA CEA FR
CR 5 UNICONTROLS UC CZ
CR 6 MNIS MNIS FR
CR 7 VISUAL TOOLS S.A. VT E

i

Chapter 1. Introduction
The goal of the OCERA project is to provide support to real-time applications in em-
bedded systems based on the Linux kernel. This support will be provided by a set of
components that will be:

• flexible: new schedulers will support a wide variety of applications from hard to soft
real-time;

• configurable and scalable from a small to a fully featured system;

• robust, providing fault-tolerant and high performance;

• portable to several hw/sw configurations.

The results of the project will be:

• a library of open source software components for the Linux kernel, that support real-
time embedded systems at the design and at the implementation phase.

• a contribution to the improvement of the Linux kernel by participating in the evolu-
tion of an open community of developers.

The OCERA consortium will join the real-time Linux community by following the stan-
dard development and design methodology currently used in open source projects. In
this way the OCERA consortium and the Linux community will both benefit of mutual
collaboration; also, the results of the OCERA project will be maintained and developed
after the end of the project.

In this project, we will to provide support for:

• critical real-time applications that need a very low response time and can be consid-
ered as "trusted" (that is, we can guarantee their correctness);

• less critical and more complex real-time applications, that may not be trusted (that
is we are not sure about their correctness).

Since critical applications need low response time and are "trusted", we will use the
same approach followed by the RTLinux executive (see Section 2): the critical applica-
tions run in kernel space and can directly access the hardware. However, we want also
to treat less critical applications by providing real-time support in user space. This is
particular useful when deadline with untrusted applications.

This documents is organised as follows: next section presents a general overview of the
main Linux developments related with real-time, and the different approaches used;
following section deals with the OCERA components definition; followed by the archi-
tecture section, with a general overview of the different scenarios where OCERA com-
ponents will be used; finally a section with a concrete description of each component
and the role and place it will have in the general architecture; last section provides a
glossary of the terms and concepts used in all the OCERA documentation.

1

Chapter 2. Real-Time in Linux
Linux is a full-featured UNIX implementation, conforming to the POSIX standard. The
Linux kernel was not originally designed for real-time applications. Althought kernel
developers are actively working in improving the responsiveness of the kernel, Linux is
still not suited to support hard real-time applications with tight timing requirements
for at least two reasons:

• Kernel responsiveness. The default mechanims used by Linux for protecting its inter-
nal kernel structures can cause long non-preemptable sections.

• The lack of real-time mechanisms, like priority inheritance, sufficient timing resolu-
tion, etc.

Several mechanisms have been proposed for supporting real-time in Linux. They can be
divided in two distinct classes [Dankwardt00]:

• Mechanisms that use Linux for accessing the hardware. Following this approach, the
latency of the Linux kernel must be reduced as much as possible. It is also necessary
to modify the kernel by introducing real-time mechanisms like priority inheritance,
dynamic scheduler, high resolution timers etc.

• Mechanisms that by-pass Linux for accessing the hardware. In this case, the hard-
ware interrupts must be virtualized. The interrupts that are used by critical hard
real time tasks are directly handled by-passing the standard Linux kernel. The other
interrupts are forwarded to Linux when no real-time task is active. Also, cli and sti in-
structions must be modified to avoid that Linux disables interrupts for long intervals
of time.

There are several on-going projects in both approaches. The so-called "low latency patch"
and "preemption patch" belong to the first one. Also, several research groups proposed
modifications to Linux for introducing real-time mechanisms. Examples of this approach
are Linux/RK by TimeSys, RED-Linux, etc.

The second solution can be implemented in different ways. RTLinux [RTLinux.org] and
RTAI [RTAI] implement a real-time executive (which consists of a interrupt handler
plus a scheduler and some real-time mechanism) and real-time tasks as kernel modules
that are dynamically linked with the Linux kernel and run in kernel space.

A different approach is used by other systems, like L4-Linux [L4], in which a small
microkernel is used for running both a modified version of the Linux kernel and real-
time tasks in user space.

RTLinux and RTAI use similar mechanisms to acquire direct control of the hardware, by
intercepting the interrupts and modifying a small portion of the Linux kernel code. On
the other hand, L4-Linux differs from previous approaches in that Linux runs completely
in user space as a task on the L4 microkernel. Therefore, the L4 microkernel has full con-
trol of the "guest" operating system. As a consequence, by introducing a small overhead,
it is possible to implement memory protection and other security mechanisms.

The OCERA architecture is based on the RTLinux architecture. Figure 2-1 presents a
schematic overview of the relations between Linux kernel and RTLinux. RTLinux is
located just above the hardware to represent the tight control that RTLinux has on it.
Also it is important to note that while RTLinux has direct control of the interrupts (dark
angled arrows), Linux works with virtual interrupts delivered by RTLinux. Hardware
devices can trigger an interrupt which will be received by RTLinux, but will not be
delivered to Linux until all real-time tasks are idle.

2

Chapter 2. Real-Time in Linux

Figure 2-1. General Linux and RTLinux overview

Figure 2-2. Different view of the execution environments

OCERA. IST 35102 3

Chapter 2. Real-Time in Linux

Although RTLinux and Linux run both in kernel space, when RTLinux is installed, the
code of Linux is modified (applying a patch to the sources files and recompiled) to prevent
Linux from disabling interrupts. As a result, Linux has no direct control of the interrupt
and timer subsystems. For this reason, RTLinux is used for hard real-time execution,
and Linux jointly with its user applications is used for background (or non-hard) real-
time activities. In OCERA, we plan to provide components both at the RTLinux level
and at the Linux level.

As a summary of the pros and cons of the RTLinux approach to real-time: RTLinux ap-
plications run faster; can work with the hardware like most programmers are costumed
to do (MSDOS® style); but buggy task can compromise the system integrity due to the
lack of protection.

2.1. Concurrent execution paradigm
An operating system can provide concurrent execution in two different forms: processes
and threads. In general, each process has a protected virtual address space, a set of open
files, one single execution flow (program counter), etc. Processes are self-contained units.
A thread, on the other hand, consists of an execution context and a state (i.e., a program
counter, a stack, and local variables). Usually, a thread is contained within a process;
thus, a thread has global access to all states within its containing process. A process
can contain more than one thread. Threads contained by different processes may only
communicate through inter-process communication mechanisms.

The main differences between processes and treads as real-time is concerned are sum-
marised in the following table:

Table 2-1. Process versus thread

Process Thread

* Memory protection among processes.
* Easy to distribute in a distributed system.
* Well defined and complete program-
ming API.

* Easy and small support implementation.
* Fast context switch.
* Intrinsic shared memory.
* Efficient communication.
* Finer grain parallelism.

It is common to use both methodologies in a real-time embedded application. Threads
are better suited to program the low level, hard real-time activities, while processes can
be used for human interaction and tasks that do not require short timing response.

Most of the POSIX real-time extensions are based on the thread model, an example
of this is that solution to priority inversion is only available in thread API
(PTHREAD_PRIO_PROTECTand PTHREAD_PRIO_INHERIT protocols). POSIX profiles
define subsets of the operating system API which fulfil the requirements of specific
targets. There are four profiles: "Minimal System", "Controller", "Dedicated System"
and "Multipurpose System". The two first profiles do not have process support, only
thread support is required. RTLinux follows the "Minimal System" standard.

There are three different libraries that provide thread support on Linux. The first
implementation was done By Xavier Leroy and is known as the LinuxThreads. It is
integrated and distributed jointly with the standard "C" library. Currently there are
two new competing implementations [Cooperstein02] of the POSIX thread standard
called: “New Generation POSIX Threads” (NGPT) and “Native POSIX Thread Library”
(NPTH). These implementations improve both, compatibility with POSIX standard and
performance.

OCERA. IST 35102 4

Chapter 2. Real-Time in Linux

OCERA components will assume the thread model if not explicitly stated otherwise. The
term “task” will be used to refer to both process or thread.

OCERA. IST 35102 5

Chapter 3. OCERA components
Most computer applications can be designed following a clear and standard software
engineering methodology like object oriented methodology or client/server model. The
code that is part of the operating system can not be easily categorised or described in a
unique way, specially when the type of operating system is an RTOS. In this case, the
intrinsic characteristic of an RTOS: efficiency and predictability of the code are mostly
opposed to clearly divided and well organised code. It do not mean that the internal
code of the RTOS is bad written or chaotic, what it means is that the RTOS can not be
structured in a well defined and clearly separated blocks of code with clear inputs and
outputs. For example, when RTLinux is loaded (inserted as a kernel module) it takes
the control of the interrupt system by modifying the Linux code while Linux is running,
which is one of the less advisable programming methods but provides the fastest result.

One of the definitions of what is an operating system is that it is the piece of software
that hides all the complexity of the underlaying hardware to provide a clear and orthog-
onal programming environment to user applications.

An OCERA component is defined as follows:

“A piece of software that brings some new functionality or feature at different levels in some
of the fields: Scheduling, Quality of Service, Fault-Tolerance and Communications”

This is a fairly general definition that will be extended and detailed next.

As a piece of software we mean:

• a modification of the Linux kernel or RTLinux executive, which will be released as a
patch file against a specific kernel version or integrated into the final OCERA kernel;

• a module which can be loaded (with the insmod/modprobe commands) and provides
new functionalities and may use some of the already installed services;

• a library, dynamic or static, which can be linked with the user application;

• or a standalone thread or process (for example a debugging program).

3.1. Component classification
OCERA components can be classified according to two criteria:

• Protection

• Level

According to the “protection” criteria, we can identify components that run in user space
and components that run in kenel space. User space components are Linux applications
running in their own address spaces at the lowest privilege level. Because of the protec-
tion mechanism enforced by the Linux kernel, these components are not able to crash
the system, even if they misbehave and try to access random memory locations.

Components running in kernel space are: the (patched) Linux kernel (including its own
device drivers), the RTLinux executive, and the hard real-time tasks (also referred as
RTLinux tasks or RTLinux applications).

According to the “level” criteria, kernel space components can be located in the RTLinux
layer (as modifications or additions to the RTLinux executive) or in the Linux layer (as
modifications to the Linux kernel, which are independent from RTLinux).

Note that some functionalities can be provided both in user space and in kernel space
(for example, the QoS manager developed by SSSA will be available both as a kernel

6

Chapter 3. OCERA components

module or as an user space daemon), and other functionalities can be implemented at
different levels in kernel space (for example, the CBS scheduler will be implemented
both in the RTLinux layer - by UPVLC - and in the Linux layer - by SSSA). For this
reason, each component documentation will contain precise information about its pro-
tection level (user space / kernel space) ant its location (RTLinux layer / Linux layer).

It is worth to note that the RTLinux layer can be logically divided in three sub-layers:

1. Low-level RTLinux: This kind of components are highly related with the current
RTLinux capabilities or internal algorithms, thus it requires to modify the current
RTLinux source code in order to provide the new functionality or to improve an
available one.

This kind of component will be distributed in a patch-form and hopefully incorpo-
rated in the main stream of the implied kernel source.

2. High-level RTLinux: It only needs the current API of the RTLinux kernel or an
extended API offered by other kernel component in order to implement its new func-
tionality. It does not require to modify the existing kernel source code or any low-
level kernel component.

3. RTLinux Applications: This kind of component uses the kernel API to provide
a new service. It does not require to modify the existing kernel source code or any
kernel component. The main characteristic of these components are that they are
implemented as an application-level processes/threads, offering some kind of service
to other processes/threads (as a kind of a classical UNIX daemon).

In a similar way, the Linux layer is also split in two layers:

4. Low-level Linux : Like the low-level RTLinux executive components, these com-
ponents modify the current kernel and has to be distributed as patch files.

5. High-level Linux : Components located inside the Linux kernel that use but do
not modify the Linux kernel code. Device drivers are components of this category.

The third level (Linux applications) coincides with user space applications.

Most of the components will fit in one of these categories, but others will require the
modification of several layers. For example, the CBS component at the RTLinux execu-
tive will also require small modifications of the Linux kernel.

3.2. Design guidelines
It is mandatory to follow some design and implementation guidelines to obtain good
quality code.

List of features that must meet OCERA components:

• Open source, GPL or GPL like license. Some components may be incorporated into the
RTLinux/Open distribution and in that case they will be covered by the RTLinux/Open
License.

• Uniform API. The API will be POSIX like in the case that new functionalities. POSIX
current tendency is to minimise the use of complex data structures in favour of object
style attributes (set/get pair functions for each individual attribute).

• Small memory footprint. It must be optimised to minimise memory usage but paying
more attention to the execution speed and predictability.

• Integrated into the main OCERA distribution.

OCERA. IST 35102 7

Chapter 3. OCERA components

• Minimum dependencies. The component and the accompanying examples will be as
stand alone as possible.

• Optional. To reduce the memory footprint of the final target system, the user will
have the option to choose only the components needed. Therefore, components will be
implemented as conditional compiling or separate modules.

• Component record description. Each component will be described filling a standard
record form.

• Well documented. The following questions will be considered when preparing the
documentation:

� What is the component useful for.

� Small review of similar or related facilities in other RTOS.

� How it can be used: is it a patch, a stand alone module, a thread.

� Configuration parameters if any.

� Complexity analysis, both temporal and spatial memory worst case analysis.

• Installation instructions, in the case that the component could be used independently
of the OCERA distribution, dependencies with other components from OCERA or ex-
ternal developers will be specified.

• Usage examples.

• Regression tests, used to validate the correct implementation of the component.

• Cross partner validation. Every component will be developed by a partner and re-
viewed by a different one.

OCERA. IST 35102 8

Chapter 4. OCERA Architecture
The OCERA architecture does not focus on a single and specific class of real-time or
embedded systems, but it is aimed to provide a complete and flexible framework capable
to be adapted to a wide range of applications. This section will describe the different
OCERA Architecture configurations that OCERA components will support.

4.1. Hard real-time system configuration
In this configuration the whole application runs in the RTLinux layer, where hard real-
time performance can be guaranteed. OCERA Linux will be a stripped kernel version
with the minimal functionality and memory footprint just to boot the system and execute
simple background tasks.

Figure 4-1. OCERA Architecture, hard real-time support

In the Figure 4-1 figure, the Linux kernel has been intentionally drawn smaller to show
that it will be a reduced kernel, and only marginal tasks will run on Linux layer.

4.2. Hard and Soft real-time system configuration
Since most complex applications require a hybrid solution, requiring at the same time
both hard and soft real-time, this configuration of the OCERA architecture allows the
user to organise the real-time tasks in two groups: hard real-time tasks and soft real-
time tasks. This special feature is provided by a QoS component which reserves a frac-
tion of the processor time for the Linux layer without endangering the the correct and
predictable execution of the hard-real-time tasks.

Hard real-time tasks will give precise and deterministic control of the system, very high
time accuracy and very low latency. Hard real time performance will be provided at the
RTLinux layer. The main design criteria at this level is predictability and low overhead
(what is necessary to build a real-time system); therefore, this layer lacks most of the

9

Chapter 4. OCERA Architecture

general facilities found in conventional OS but provides as much determinism as the
underlying hardware provides.

The Linux layer, on the other hand, does not provide so much time accuracy, its execution
depends on both the RTLinux work load and on the Linux unbounded behaviour. To
minimise latency and deadline misses the OCERA Linux kernel will integrate several
patches (low latency patch, preemptable patch, etc.), as well as the OCERA developed
components.

The Linux layer is mainly used for serving user-space applications: in user-space, tasks
can access the full range of Linux services, like drivers, debugging tools, network, graph-
ics, file system, etc.

Figure 4-2. OCERA Architecture, hard and soft real-time support

Although the same API cannot be provided at both levels, some OCERA components are
aimed at improving the API compatibility of both execution layers; being, at the same
time, as close as possible to the POSIX real-time extensions. The benefit will be twofold:

1. It will be possible to develop real-time applications in user-space. At this level, we
can use many debugging facilities like gdb, dynamic memory debuggers, etc., and
the system will not hang on application bugs.

2. For some application, like applications with soft or firm timing requirements, the
decision about which part of the application will run in the kernel space or in user
space has not to be taken at the initial design phase, but can be delayed after the
implementation, at the deployment phase.

OCERA. IST 35102 10

Chapter 4. OCERA Architecture

4.3. Soft real-time system configuration
The RTLinux layer is also optional in the OCERA architecture. It can be removed if it is
not required, which results in a embedded system with a single enhanced Linux OS.

This configuration is preferred in systems that do not have tight timing constrains, or
where the absolute time requirements are long enough to be correctly met by tasks
running in user space.

Figure 4-3. OCERA Architecture, soft real-time support

This architecture should be the first choice when starting a new application design since
it is closer to the standard development methodology of general Linux applications (ap-
plications that do not directy handle hardware and have no timing requirements), and
also it is a more robust execution and debugging environment.

4.4. Distributed architecture
Real-time distributed system under consideration consists of application tasks, operat-
ing system and communication support. Hard and soft real-time application require-
ments have strong impact on the architecture of such systems. If given real-time re-
quirements have to be met then communication support has to be able to guarantee
specific characteristics of the message delivery paradigm. The matter is quite complex
since the message delivery is realized via shared media.

Specifically the deterministic protocol behaviour, the message priority and the guaran-
teed message delivery time are required in hard real-time distributed systems. Concise
verification of such systems considering all possible states is needed when analysing
hard real-time applications. Consequently CAN bus is well-suited communication sup-
port for hard real-time distributed systems and it is widely used in this application area.
"OCERA Hard RT CAN architecture" is accessed via POSIX compliant VCA (Virtual
CAN API). VCA offers minimal set of functions enabling to open/close/configure CAN
device and to send/receive CAN message.

OCERA. IST 35102 11

Chapter 4. OCERA Architecture

Since a complex distributed application possibly consists of non-Linux products (e.g.
sensor - driven by programmable 8-bit micro-controllers) and various third party prod-
ucts (e.g. operator interface - closed non-Linux system that can be parameterised but
not programmed), it is needed to use application level protocol in OCERA architecture.
Choice of CANopen is based on a fact, that it is open, well documented and widely used
in factory automation. "OCERA Hard RT CANopen architecture" is formed by CANopen
communication standard in the same manner as it is used in typical factory automation
areas. It is based on Finite State Machine (FSM), which enables to access data stored in
device Object Dictionary (OD) to other CANopen devices connected to CAN bus. VCA is
used to connect CAN bus and FSM.

On the other hand the network throughput and message delivery time given as statistic
values (e.g. probability distribution functions) are sought in soft real-time distributed
systems. Performance measures based on simulations or stress tests are usually appro-
priate for evaluation of these systems. Consequently RT-Ethernet is well-suited com-
munication support for soft real-time distributed systems since it has high performance,
guaranteed throughput (isolated from external traffic, publisher/subscriber architecture
resulting in restricted traffic from upper layers), and wide range of supporting hard-
ware. "ORTE (Ocera Real-Time Ethernet) architecture" is implementation of RTPS pro-
tocol originally developed by RTI. As a consequence it is composed of one "Manager"
per each node and one "Managed application" per each local or remote user application.
Publisher/subscriber mechanism is used to share data between user applications.

OCERA. IST 35102 12

Chapter 4. OCERA Architecture

Figure 4-4. ORTE architecture

4.5. Hardware platforms
The OCERA architecture will be developed on the Intel™ x86 platform, and ported to
ARM® and PowerPC® embedded targets.

x86 computers are the default hardware used on desktop systems and can also be found
on some industrial applications. For that reason the x86 will be the reference hardware
platform to implement and validate the OCERA components. Since most of the systems
where the OCERA architecture will be used are embedded and industrial systems, we
decided to support the other two processors architectures. The ARM processor family
is widely used in handheld and embedded computers, and PowerPC is recognised as an
high-quality industrial processor.

OCERA. IST 35102 13

Chapter 5. Fault-Tolerance Management
The goal of the fault-tolerance in OCERA is intended to provide basic functionalities to
develop robust applications. In order to achieve this objective, specific components will
be developed allowing task monitoring, redundancy management and dynamic reconfig-
uration.

5.1. Applications characteristics
OCERA applications can be deployed to one or more nodes configuring a distributed
system, where nodes can be connected through CAN/Open bus or RT-Ethernet network.

The application properties tackled within the project will concern: safety, liveliness and
timeliness.

• Safety means that nothing bad can happen, or in other words that if something goes
wrong, we can insure that a safe state can be and is reached.

• Liveliness means that the system required services are provided.

• Timeliness means that services are delivered on time.

We will not consider security issues.

5.2. Faults considered
There are several sources of faults or errors in this kind of embedded applications.

The following hypotheses will be made concerning hardware devices:

• they will be fail-silent,

• byzantine behaviours will not be considered,

• critical hardware components will have a mechanism allowing for safe stop in case of
silent node.

Hypotheses on communications

• communications are atomic,

• in case of a silent node. Communications are silent.

Additionally, it is assumed that kernel crashes results in a silent node.

Prevention of such errors can be done by providing good practice programming rules
that can be used for the development of tasks or drivers. Code analysis tools and specific
compilation techniques with appropriate segmentation strategies can also reduce this
risk. By the end of the project guidelines will be written to help developers write safe
rt-tasks.

Fault-tolerance in OCERA will focus on the management of timing errors and on er-
rors raised by the RTLinux executive. By timing errors we consider missed deadlines
for time-critical tasks and watchdogs fires. We will mostly handle deadline missing and
provide patterns for default actions (for example provide a default value for a periodic
acquisition task restart for the next period and controlling that this does not occur more

14

Chapter 5. Fault-Tolerance Management

than a given number of successive iterations). Other patterns will be developed for dif-
ferent types of tasks. Specific watchdogs will be used to detect fail-silent components
and will thus reveal a miss-functioning in the system.

The fault-tolerance facilities will analyse the possible consequences of such errors and
apply actions decided by the developer at design time and stored in run-time databases.

An application can define several operational modes that will be predefined at design
time. An operational mode is an attribute of the on-board software as a whole, which
purpose is to adapt the system (set of tasks) behaviour to various sets of external con-
ditions. Tasks may have several alternative behaviours. A mode will encompass a set of
tasks and a statement on which behaviour must be adopted for each task. For instance
some applications may have an initialisation mode and then several possible function-
ing modes. Switching from one mode to another can be decided by the application on
reaching a certain state or can be decided by the Application fault-tolerant monitor.

With respect to timing fails, several strategies are proposed: the task is late because of
temporary overload, a task is blocked, a task is waiting for a failed node. They will also
depend on the nature of the task: periodic acquisition task (in this case a default strategy
can be defined by the developer), command task towards an actuator is not responding
(failure can be assumed), computational task (imprecise computation strategy can be
implemented). Within OCERA a global framework consisting of a set of building blocks
will be developed. These building blocks will implement basic strategies in the beginning
of the project and will be enriched as the project progresses.

5.3. Fault-Tolerance in OCERA
The approach chosen in the project is to provide a declarative way of managing fault-
tolerance. It is based on a first stage which consists in collecting fault-tolerance require-
ments and default strategies at design and use this information to instantiate run-time
fault-tolerance components that will monitor the application and take appropriate de-
cisions at run-time on abnormal situations. The gathering of information and the con-
figuration phase will be supported by a design/build tool set that will settle the fault-
tolerance infrastructure.

As stated in the introduction, we will focus on the development of a framework offering
basic building blocks aimed at two well identified goals. The first goal will be to provide
mechanisms allowing mode management in order to increase applications robustness
and achieve the safety requirements. The second goal will be to implement transparent
redundancy mechanisms between nodes, which will provide continuity of service.

Two sets of components will thus be developed:

• The first one devoted to mode management consisting of two complementary com-
ponents: i) The FT controller will collect low level information on ongoing tasks and
notify the application monitor on tasks completions or abnormal situations. The FT
controller will apply local emergency actions on faulty tasks. ii) The Application FT
monitor will take global decisions on tasks reconfiguration decisions. These decisions
will result in new constraints for the QoS scheduler (stop tasks, start new tasks im-
plementing alternate behaviours, etc...)

• The second set of components will implement transparent redundancy facilities for
critical tasks (declared critical by the user). Such tasks will be automatically repli-
cated, using a passive replication method) and a specific protocol will be defined to
permit synchronisation of replicas states. The controlling structure for the manage-
ment of redundancy will rely on two kinds of components.

These components will consist on: a task redundancy manager that will monitor re-
dundancy of a cluster of replicas and decide when to activate or deactivate a replica;

OCERA. IST 35102 15

Chapter 5. Fault-Tolerance Management

and a task replica manager that is charge of synchronization and communication of a
particular replica with its master for check-pointing.

As a conclusion, the expected results from the fault-tolerance work_package will consist
in a set of design/configuration and run-time components permitting to enhance appli-
cations robustness. Fault-tolerance characteristics targeted are the following :

• A faulty-task will have a degraded behaviour defined at design time and implemented
as a dormant task (with state updates)that will possibly be activated on error detec-
tion. This degraded behaviour will not support a subsequent failure but can be used
to implement a graceful stop.

• A faulty-task or a faulty component that compromise a service may activate a de-
graded service implemented through a mode change activation of several tasks. Sev-
eral cases will be considered : the service can be fulfilled at least partially by a differ-
ent combination of tasks or not, the service is mandatory for the overall application or
not. Different strategies of reconfiguration will be implemented.

• Redundancy mechanisms will permit to insure the continuity of service of a redundant
task. In this case, if the master is faulty, the control will be passed onto the slave and
no degraded mode will be enabled unless the last copy becomes faulty.

OCERA. IST 35102 16

Chapter 6. Component description
In this section, each partner: SSSA, UPVLC, CTU, and CEA will describe by using the
OCERA architecture organisation, what are the components (where are located, what
do they provide, etc)

6.1. Resource Management
The aim of the Resource management components is to provide Quality of Service guar-
antees to real-time tasks. While a hard real-time task must be guaranteed to meet all its
deadlines, a soft real-time task has less strict temporal requirements and some deadline
can be missed without compromising the functionality of the application. However, it is
important to "keep under control" how many deadlines are missed, and how late a soft
task is going to be. A typical QoS requirement for a task is the probability of deadline
miss over a certain interval; another possible requirement is a bound on the "tardiness"
of a task (i.e. how much it is late in proportion to its period). According to this model, we
can consider a hard real-time task as a task with a special case of QoS requirement, in
which the probability of deadline miss must be 0 over any interval.

The Resource Management components are especially useful for soft real-time tasks,
like for example multimedia applications. These applications are usually implemented
as normal Linux processes. In fact, Linux offers many libraries, drivers and tools for this
kind of applications, like sound and video drivers, a standard network protocol stack, etc.
These services cannot be found in RTLinux and it is infeasible to port them.

Therefore, in the OCERA Architecture, the Resource Management components are pro-
vided at the Linux layer as additional services of the Linux kernel. They can be used
both in the soft real-time configuration (if no hard real-time service is needed), or in
the mixed hard/soft configuration (when both hard real-time and soft real-time tasks
coexists in the system). The use of the QoS manager in the mixed configuration can be
useful for those applications that consists of a hard real-time part and a soft real-time
part; the critical part can be executed as a set of threads in the RTLinux executive, and
must be "trusted", because a fault in a thread can compromise the functionality of the
whole system; less critical parts can be implemented as Linux processes, and can use
memory protection, provided by the Linux kernel, and temporal protection, provided by
our QoS component.

However, in the mixed hard-soft configuration, some kind of guarantee must be provided
at the hard real-time level to Linux activities. In fact, Linux is currently scheduled as
background activity in the RTLinux executive, i.e. only when there is no active hard
real-time tasks. If Linux is scheduled in background, no QoS guarantee is possible at
the soft real-time level, because the amount of execution time allotted to Linux is not
distributed evenly and Linux can be delayed by real-time tasks for large time intervals.

As a consequence, if we want to provide QoS guarantees to soft real-time tasks in the
mixed hard-soft configuration, we have to reserve some bandwidth to Linux, and sched-
ule it according to a reservation algorithm. This can be seen as a problem of hierarchical
scheduling: at the hard real-time level, a scheduler selects which tasks has to be exe-
cuted next; if Linux is selected, its scheduler selects which process has to be executed
next.

A description of the Resource management components follows.

Low level Linux components

• Generic Scheduler Patch

� It is a small patch for the Linux kernel that provides useful hooks to the Linux
scheduler. These hooks will then be used by our scheduling module for implement-

17

Chapter 6. Component description

ing sophisticated real-time scheduling policies. This patch has to be minimally in-
vasive for to limit the overhead and to minimise the need to upgrade it for new
versions of the Linux kernel.

� Responsable: SSSA

� Validator: UPVLC

• Integration patch

� This patch will take into account the introduction of the "preemtpion patch" and
"high resolution timers" in the Linux kernel. These new services are very useful
for improving the responsiveness of time-sensitive applications in Linux: however,
they are not compatible with the RTLinux patch. Since these new services are most
likely to be introduced in the next Linux stable release, there is the need to take
into account this problem by modifying the RTLinux executive. Therefore, this com-
ponent will be a patch to the RTLinux executive that makes it compatible with the
future versions of Linux.

� Responsable: SSSA

� Validator: UPVLC

High level Linux components

• Resource Reservation Scheduling module

� It will be a dynamically loadable module for the Linux kernel, that will provide a
resource reservation scheduler for soft real-time tasks in the user space. It will be
based on the Constant bandwidth Server. This module is the core of Workpackage
4, and it will provided in different versions during the course of the project: a first
version will simply provide the CBS scheduler for uniprocessors; a second version
will include mechanisms for reclaiming the spare capacity; a third version will take
into account SMP (simmetric multi-processor systems).

� Responsable: SSSA

� Validator: UPVLC, CEA

• Quality of service Manager

� This component will provide a mechanism for identifying the temporal character-
istics of a task and to adjust its scheduling parameters so to maximise its quality of
service. It will be based on the concept of "feedback scheduler", that is a controller
that measure the QoS experienced by the task and modify its parameters accord-
ingly. It will be provided in two versions, as a dynamically loadable module and as
a daemon process running in the Linux kernel (i.e. as a Linux application).

� Responsable: SSSA

� Validator: VT, UPVLC

Linux applications

• User API

� This component is a set of one or more libraries that will provide a convenient API
to the user to access the Resource Management services. This API will be as similar
as possible to the POSIX API provided by the RTLinux executive: in this way, it

OCERA. IST 35102 18

Chapter 6. Component description

will be possible to move a RTLinux thread from the hard real-time level to the soft
real-time level, and vice versa, with little effort.

� Responsable: SSSA

� Validator: UPVLC

6.2. Real-Time Scheduling
Components at the Low-level RTLinux

• POSIX Signals

� Description:The Real-time signals facility is a deterministic signal extension that
allows asynchronous signal notifications to an application to be queued with some
application-specific data. This component will provide a mechanism by which a pro-
cess or thread may be notified of, or affected by, an event occurring in the system.
Hardware exceptions and specific actions by processes are some of the possible use
of these events.

� Responsable: UPVLC

� Validator: CEA

• POSIX Timers

� Description: High resolution clock access is require to program precise threads acti-
vations. This component can notify a thread when the time, as measured by a par-
ticular clock, has reached or passed a specified value, or when a specified amount of
time has passed. This mechanism can also be programmed in a periodic way.

� Responsable: UPVLC

� Validator: CEA

• POSIX Barriers

� Description: A barrier is a simple and efficient synchronisation utility. It allows
to synchronise multiple threads before trespassing an specific point. A barrier can
be implemented inefficiently by mean of a mutex or a condition variable, but the
proposed implementation will relay on special processor instructions to achieve low
overhead.

� Responsable: UPVLC

� Validator: CEA

• POSIX Tracing facilities

� Description: Tracing facilities can be used for instrumenting the RTOS and the real-
time applications, allowing debugging, maintenance and performance measurement
tools. Also, it can be used to register specific application events and dynamically
take decisions about the system considering how it is working. It is a new POSIX
debugging facility not available in other RTOS.

� Responsable: UPVLC

� Validator: CTU

OCERA. IST 35102 19

Chapter 6. Component description

• Application-defined Scheduler support (ADS)

� Description: This component allows the user application to define its own scheduling
algorithm. This new API will provide the capability of implementing new schedul-
ing policies without modifying the kernel scheduler. Using this facility an applica-
tion thread can decide how other threads should be scheduled. Multiple application
schedulers could coexist in the same real-time application. It is a new RTOS API
proposal (POSIX-like).

� Responsable: UPVLC

� Validator: SSSA

Components at the High-level RTLinux

• POSIX Message Queues

� Description: This component provides a prioritised message passing facility for the
real-time and embedded environments. It should be highly optimised in multithread
environments (only one process and one address space). The following features have
to be considered: message priority scheme, asynchronous notification and fixed size
messages.

� Responsable: UPVLC

� Validator: VT

• RTLinux Dynamic Memory Management

� Description: dynamic memory management is a desirable feature not available in
RTLinux. POSIX system calls as malloc() and free() have to be implemented to
provide to hard real-time threads and drivers the dynamic memory allocation facili-
ties. An efficient way to manage memory considering aspects as resource reservation
will be implemented. This component will provide a highly customisable and fully
deterministic manager that allows hard real-time threads and low-level drivers to
allocate memory dynamically.

� Responsable: UPVLC and SSSA

� Validator: CTU

• RTL-ADA Porting

� Description: C is the language to develop RTLinux applications but Ada is one of the
few languages with real time abstractions. This component will permit to compile
Ada programs for RTLinux using some of the facilities provided by the OCERA
Components as Application Scheduler.

� Responsable: UPVLC

� Validator: VT

Components at the Application-level RTLinux

• Earliest Deadline first (EDF)

� Description: The EDF is a basic scheduling algorithm with a solid theory back-
ground, mainly used in multimedia applications. This implementation relies on the

OCERA. IST 35102 20

Chapter 6. Component description

Application-defined Scheduler component, which makes it almost independent of
RTLinux code, and very easy to port to other OS.

� Responsable: UPVLC

� Validator: SSSA

• Constant Bandwidth Server (CBS)

� Description: Using the facilities provided by the Application-defined Scheduler com-
ponent, this component implements the CBS scheduling algorithm explained be-
fore. As was the case with the previous component, this implementation is highly
portable since it do not modify the RTLinux executive.

� Responsable: UPVLC

� Validator: SSSA

6.3. Fault-Tolerance
Fault-tolerance components provide user’s support for developing fault-tolerant appli-
cations. The functionalities offered will concern degraded mode management in a first
stage and transparent redundancy implementation and management in a second step.

Components at the Low and High level RTLinux

At this level no fault-tolerant component will be specifically developed but the POSIX
Tracing, POSIX Signals, POSIX Timers and Application Defined Scheduling components
described in the Scheduling section will contribute to fault-tolerance thanks to the log-
ging and signalling facilities they will offer.

Components at the Application-level RTLinux

• FT controller

� Description: The FT controller will be in charge of collecting information on the crit-
ical tasks behaviours and controlling their lifeliness and timeliness. This low level
component notifies the Application FT monitor (at the Application-level Linux) of
abnormal situations and will activate emergency actions when required. In con-
nection with the Low-level RTLinux executive, it will detect fail silent situations
through watchdogs and transmit deadline misses to the Application FT monitor.

� Responsable: CEA

� Validator: UPVLC

• Application FT monitor

� Description: The AFT monitor consists of a module that records Task Information
and defines reconfiguration strategies. It will collect information from the system
and tasks. It will decide of reconfiguration on notification of abnormal situations
(from the FT controller) and ask RT scheduler to stop tasks and provide QoS Sched-
uler with a new task set (this set may include already existing suspended tasks).

� Responsable: CEA

� Validator: UPVLC

OCERA. IST 35102 21

Chapter 6. Component description

• Task Replica Manager

� Description: This component will locally monitor interactions of a local replica of a
task with the Task Redundancy manager. It will operate chek-pointing, and local
activation / deactivation of a replica. Passive redundancy will be implemented.

� Responsable: CEA

� Validator: SSSA

• Task Redundancy manager

� Description: The task redundancy manager monitors redundancy of a cluster of
replicas, and decides when to activate or deactivate a replica.

� Responsable: CEA

� Validator: SSSA

Components at the Application-level Linux

• Design tool

� Description: This design tool allows the user to express non-functional features.
The first step will be the definition of a description language in order to specify
explicitly timing characteristics and constraints of tasks, possible alternatives for
tasks, actions to be done on temporal faults, and on errors. The possibility to specify
tasks graphs will be offered. Support for imprecise computation will be offered. A
way to specify critical tasks requiring redundancy will also be defined. The tool will
permit to gather this information along with information on mapping requirements
for tasks. Ways of specifying modes at task and application level will be considered.
A result of this language definition task might be a UML profile for fault-tolerance.
The acquisition tool itself will be developed using standard GUI programming tool.

� Responsable: CEA

� Validator: CTU

• Buiding tool

� Description: The building tool uses information gathered by the design tool and con-
figures the OCERA platform, it will provide tasks information to kernel schedulers,
instantiate FT mechanisms (AFT monitor and FT controllers), and adapt tasks code.
When redundancy will be tackled it will produce code for tasks duplication and
check-pointing mechanisms.

� Responsable: CEA

� Validator: VT

6.4. Communication
Components at the High-level RTLinux

• CANopen device

� Description: OCERA RT CANopen device is a software solution based on OCERA
RT Linux and VCA capable to exchange its data with any industrial CANopen de-

OCERA. IST 35102 22

Chapter 6. Component description

vice following the CANopen communication standard. It can be configured to work
as CANopen master, CANopen slave or CANopen NMT master. Type of CANopen
device is specified by loading appropriate Electronic Data Sheet (EDS) into device
Object Dictionary (OD).

� Responsible: CTU

� Validator: UC

Components at the Application-level RTLinux

• Virtual CAN API (VCA)

� Description: The Virtual CAN API introduces CAN network to the application
threads. Application threads can reside in the soft real-time space or in
the hard real-time space. VCA offers minimal set of functions enabling to
open/close/configure CAN device and send/receive CAN messages.

� Responsible: CTU

� Validator: UPVLC

• EDS parser and CAN/CANopen analyzer

� Description: This component captures the traffic on CAN bus and analyze it on
the level of CAN massages. A CANopen device Electronic Data Sheet (EDS) can be
loaded into analyzer. In that case the analyser can send and receive SDO communi-
cation objects and show its impact in a device Object Dictionary (OD). The analyser
olso offers basic CAN open NMT functionality.

� Responsible: CTU

� Validator: UC

Components at the Application-level Linux

• Real Time Ethernet (ORTE) device

� Description: The Ocera Real-Time Ethernet (ORTE) is open source implementation
of RTPS communication protocol. This protocol has already been submit to IETF as
an informational RFC and has been adopted by the IDA group. RTPS is new applica-
tion layer protocol, which is built on top of standard UDP stack. This protocol stack
adds real-time capabilities to standard Ethernet technology. Publisher/subscriber
mechanism is used to share data between user applications. The component will be
a library linkable against the user applications.

� Responsible: CTU

� Validator: SSSA

• Real Time Ethernet analyzer

� Description: This component enables to developer to capture network traffic and
to analyse it on the level of Ethernet frames, IP and UDP datagrams and RTPS
messages. Real Time Ethernet analyzer is not stand alone application, but it is a
plug-in module for Ethereal network analyzer.

� Responsible: CTU

� Validator: SSSA

OCERA. IST 35102 23

Chapter 6. Component description

Verification

• CAN model by timed automata /Petri Nets

� Description: This component is theoretical study offering methodology tool support
for analysis of distributed system consisting of n independent processors and deter-
ministic communication bus (CAN). In order to verify distributed RT system, appli-
cation designer needs to create model of application tasks and to interconnect this
model with communication bus model provided by this component. Finally he/she
needs to define system properties to be verified (deadlock, missed deadline etc.). The
approach is illustrated in the form of examples in PEP verification tool.

� Responsible: CTU

� Validator: CEA

• Verification of cooperative scheduling and interrupt handlers

� Description: This component is theoretical study offering methodology and tool
support for model checking of real-time applications running under multitasking
operating system. Theoretical background is based on timed automata by Allur and
Dill. As this approach does not allow to model pre-emption we focus on cooperative
scheduling. The cooperative scheduler under assumption performs rescheduling in
specific points given by "yield" instruction in the application processes. In the addi-
tion, interrupt service routines are considered, and their enabling/disabling is con-
trolled by interrupt server considering specified server capacity. The server capacity
has influence on the margins of the computation times in the application processes.
Such systems, used in practical real-time applications, can be modelled by timed
automata and further verified by existing model checking tools. The approach is
illustrated in the form of examples in the real-time verification tool UPPAAL.

� Responsible: CTU

� Validator: CEA

OCERA. IST 35102 24

Chapter 7. Glossary of terms
Please, add all the terms that you think it may be useful to be here:

User space

The execution environment (characterized by restricted privileges, addres-space
protection, etc.) in which Linux applications run.

Kernel space

The execution environment of the Linux kernel (maximum privilege, no address-
space protection, etc.)

Linux module

A object file which can be dynamically linked (and unlinked) into the running Linux
kernel with the insmod command. A module can access to all the Linux kernel
functions and data structures (if they are exported).

Linux kernel

The kernel, as released by Linus Torvalds at kernel.org. The Linux kernel version
currently used in the OCERA project to is 2.4.18. At the end of the project, the
version will probably be upgraded (depending in the kernel evolution) and all the
components will be ported to the new version.

RTLinux layer

The term “RTLinux layer” is used for identifying the RTLinux exectuive and the set
of real-time tasks using it.

Linux layer

The term “Linux layer” is used for identifying all the code running in kernel space
that does not depend on RTLinux.

OCERA component

A piece of software that brings some new functionality or feature in some of the
fields: Scheduling, Quality of Service, Fault-Tolerance and Communications. De-
pending on the type of facility and its role, a component can be: a patch, a stand-
alone module, a library, or a thread.

OCERA framework

The development environment provided to the final user for building and installing
applications using OCERA components.

25

Chapter 7. Glossary of terms

RTLinux executive

The Linux patch and the set of kernel modules that provide the RTOS functionality
out of the scope of Linux kernel. In the strict sense, it is not an operating system,
since it can not boot nor have many of the facilities required take full control of a
computer. RTLinux only manages the set of hardware devices required to provide
deterministic timed behaviour.

Open RTLinux or RTLinux/Open

The version of RTLinux released by FSMLabs covered by the Open RTLinux license.
It is a small RTOS which coexists with Linux kernel and intercepts the low level
interrupts and processor control instructions which allows to have the control of the
computer at any time independently of the Linux kernel state.

OCERA Linux kernel

The Linux kernel containing existing, as well as the OCERA developed, patches to
enhance the real-time capabilities. This kernel will be considered as a Soft Real-
Time system.

RTLinux/GPL

Same than RTLinux/Open. FSMLabs use both terms interchangeably.

RTLinux/Pro

The commercial version of RTLinux developed and distributed by FSMLabs.

Task

A executing unit, which can be a normal process or a thread.

User Space Task (or User Space Application)

Task (or application) running in user space, that uses the Linux services only by
invoking system calls.

RTLinux Task (or RTLinux Application)

Task (or application) running in kernel space, that directly uses the RTLinux ser-
vices

OCERA. IST 35102 26

Bibliography
[Cooperstein02] Jerry Cooperstein, 07/11/2002, The O’Reilly Network, Linux Multi-

threading Advances.

[RTLinux.org] Der Hofrat, Open Source RTLinux Repository.

[RTAI] Paolo Mantegazza, RTAI Home page.

[L4] DROPS - The Dresden Real-Time Operating System Project.

[Dankwardt00] Kevin Dankwardt, 11/2000, Linux Devices.com, Comparing real-time
Linux alternatives.

27

