
Task period selection to minimize hyperperiod

Vicent Brocal† Patricia Balbastre† Rafael Ballester‡

Ismael Ripoll†
†Universitat Politécnica de Valencia, Spain

‡CFIS (Centre de Formació Interdisciplinària Superior), Universitat Politècnica de Catalunya

Abstract

In this paper a new task model with periods defined as

ranges is proposed with the main goal of drastically re-

duce the hyperperiod of the task set. The model is focused

to be applied in cyclic scheduling, where the length of the

major cycle of the plan is determined by the hyperperiod.

But it also can be applied in synthetic task sets generation,

where having a small hyperperiod reduces complexity and

simulation time. A new algorithm, which allows to calcu-

late the minimum hyperperiod of such a set of tasks, is pre-

sented. This algorithm calculates the minimum value even

with a large number of tasks, where exhaustive search be-

comes intractable.

1 Introduction

The periodic work model is the base of the real-time
scheduling theory. This model has been shown to be prac-
tical and rigorous. It properly represents the fundamen-
tal timing behaviour of the real world, and also, it has
been shown to be a formal model where rigorous theo-
retic analysis can be done. The system is described as a
set of periodic tasks, which, in the basic model, consists of
two parameters: Ci and Pi; the worst case execution time
(WCET), and the period, respectively. Liu and Layland’s
seminal paper [5] established the basis of priority-driven
schedulability analysis of periodic task models.

The periodic task model has been widely used because
it copes with many application requirements. Nearly all of
existing analysis theory assume that periods and compu-
tation times are fixed and known values. This assumption
greatly simplifies the feasibility analysis, but limits the ap-
plicability of the results. Relaxing the classical assump-
tions on static task sets with fixed periods and deadlines
can give higher resource utilisation, better control perfor-
mance, energy saving, and can be used to adapt to dy-
namic environments, different operating conditions, over-
load situations, etc..

The basic model has been augmented to consider also
deadlines shorter than periods, starting offsets, prece-
dence, exclusive shared resources protocols, etc.

In this paper, we exploit the idea of period variation but
with a different goal: to reduce the length of the hyperpe-
riod. The hyperperiod H is calculated as the least com-
mon multiple (lcm) of the tasks’ periods. Leung and Mer-
rill [4] proved that the schedule produced by any preemp-
tive scheduling policy over a periodic task set is cyclic,
that is, a periodic real-time system repeats its arrival task
pattern after an interval that coincides with the hyperpe-
riod H . The first feasibility analysis consisted on check-
ing the schedulability in the interval [0, H) [4]. This test
was improved later by Baruah et al [1] and by Ripoll et
al [7] making the schedulability interval more accurate for
EDF (earliest deadline first) scheduling algorithm.

In cyclic scheduling the hyperperiod is referred as the
major time frame, which is the interval at which the en-
tire schedule is repeated. The designer shall verify that the
temporal constraints are met along the major time interval.
Once the schedule is built, it is stored in a table which will
be consulted on-line to select the active tasks. The shorter
the hyperperiod the shorter the table, and consequently the
smaller the memory footprint. For these two reasons, it is
important to have a relatively small hyperperiod. In pe-
riodic systems with precedence constraints, the system of
periodic tasks is usually described by a graph where de-
pendent tasks are connected by precedence constraints.
In order to reduce the complexity of the heuristic algo-
rithm, the hyperperiod has to be a small value to reduce
the number of operations in the dependence graph [3]. On
the other hand, simulation experiments of real-time sys-
tems often require to have a bounded hyperperiod. That is,
task load generators are implemented in such a way that a
task set is dismissed when its hyperperiod exceeds a given
limit. This is necessary to keep the simulation time within
reasonable bounds. If task periods do not have common
divisors, the hyperperiod can be a large value. In fact, as
shown in [6], the hyperperiod grows exponentially with
the greatest period and with the number of tasks.

For the above mentioned reasons, a task set with a
small hyperperiod is a desirable feature. The most com-
mon technique is to select task periods to be harmonic,
that is, all the periods have large common divisors. For
example, in radar dwell applications, assigning for every
task a harmonic period has the low overhead of maintain-

ing constant temporal distance and schedulability analy-
sis but is usually over-reserving the resources. To over-
come this disadvantage, in [8] an algorithm is developed
to transform task periods into synthetic ones, but they do
not have to be harmonic. In partitioned systems, tasks of
different partitions may have different time scales and dif-
ferent temporal requirements, therefore the usage of har-
monic periods is not always possible.

1.1 Motivating example
Let’s suppose three tasks whose periods are 20, 28 and

93. The hyperperiod is H = lcm(20, 28, 93) = 13020.
The goal of this example is to show the reduction achieved
in the hypeperdiod by means of a minimal modification
of a task’s period. In order to simplify the example, we
will focus on the third task. If task period is given as
a range, for example [90, 95], then it is easy to see that
H = lcm(20, 28, 90) = 1260. We have chosen the period
inside the range that produces the smallest hyperperiod.
This means that, although the desired period of the third
task is 93, we admit a period between 90 and 95 if we
benefit of an hyperperiod reduction.

By defining task periods as ranges of valid periods, it
is possible to have a small hyperperiod by conveniently
selecting the period from each task’s range.

Let’s extend the previous example so that all task pe-
riods are given as ranges, that is, the task set periods are
[17, 21], [25, 30], [90, 95]. Which is the set of task periods
that leads to the smallest hyperperiod? We would have to
take into account all possible period combinations inside
period ranges and compute the lcm for all of them.

Listing 1 shows how to calculate the minimum hyper-
period (Hmin) of a set of periods ranges by checking all
the possible combinations. For large task sets or wide pe-
riod ranges, the cost of this algorithm may be unaffordable
in most practical applications.

1.2 Contributions and outline
In this paper we propose an extension of the basic pe-

riodic model where the periods of the tasks are defined
as a range of valid periods. We also present an efficient
method for finding the set of periods from a given set of
ranges that produces the minimum hyperperiod. The re-
sult of the proposed algorithm is a task set with fixed pe-
riods (the classical task model) which has the minimum
hyperperiod.

The proposed algorithm can be used as a preprocessing
step in any application where a long hyperperiod is not
desirable.

The rest of the paper is organised as follows: Section 2
presents the problem to be solved and the system model.
In section 3 the algorithm to find the minimum hyperpe-
riod is presented. Finally, we summarise our conclusions
in section 4.

1
2 Hmin:integer:=integer’last;
3 L,L’:integer;
4 function ComputeLCM(L,i) is
5 if (i>n) then
6 if (L<Hmin) then
7 Hmin:=L;
8 end if;
9 return;

10 end if;
11 for x in li..ui loop
12 L’=LCM(L,x);
13 ComputeLCM(L’,i+1)
14 end loop;
15 end ComputeLCM;
16
17 function MinHyperExhaustive(τ) is
18 ComputeLCM(1,1);
19 end MinHyperExhaustive;

Listing 1. Exhaustive search algorithm

2 System Model and Assumptions

Let τ = {τ1, ..., τn} be a periodic task system with n
tasks. The period of each task τi ∈ τ is defined as a range
Ti = [li, ui] of integers. Note that a range of periods does
not mean that the task have a variable execution rate, but
that the scheduler can select any value from this range.
Once the period is selected, it is fixed and honored for all
the schedule. That is, each task will be executed always at
the same rate.

Definition 1 Let H = {lcm(t1, · · · , tn)}, where ti ∈
[li, ui].

H is the set of integers that are the lcm of all possible

combinations of valid tasks periods.

In what follows let h ∈ H.

2.1 Problem statement
The problem we want to solve is to find Hmin =

min(H).
The minimum element of the set H can be found by

calculating the set H, sorting it and then selecting the
first element. However, the cardinality of H, given by
|H| =

�n
i=1 (ui − li + 1), may be a quite large num-

ber. Listing 1 shows the implementation of the algorithm
that calculates the set H and obtains the minimum element
Hmin.

For a large number of tasks, or wide periods ranges, the
problem of finding Hmin quickly becomes intractable.

2.2 Complexity of the problem
The cost of finding Hmin is bounded by O(O(lcm) ·

|H|), that is, the cost of the computing the lcm of n inte-
gers multiplied by the cardinality of H.

The problem of computing the least common multiple
reduces to the problem of computing the greatest common
divisor (gcd). In this sense the gcd problem is analogous
to the integer factorization problem, which has no known
polynomial-time algorithm, but is not known to be NP-
complete.

In our case, the problem of finding the minimum hyper-
period of a set of range of periods can be also reduced to
the integer factorization problem. Let’s suppose two tasks
{τ1, τ2} with range periods: T1 ∈ [x, x] and T2 ∈ [2,

√
x].

Let’s suppose that exists T2 such that x = aT2, being
a ∈ N. Then, Hmin = x and the problem of finding
Hmin has been reduced in this case to the problem of in-
teger factorization (in particular, the problem of factorize
the integer x).

The complexity of the integer factorization is not ex-
actly known. The tightest asymptotic bound known for b
bits number is:

O

�
exp

��
64

9
b

� 1
3

log(b)
2
3

��

There are published algorithms that are faster than
O((1 + �)b) for all positive , i.e., subexponential time [2].

3 Fast hyperperiod search method

We propose an heuristic, the Fast Hyperperiod Search
algorithm (FHS) that efficiently calculates the minimum
hyperperiod of a set of ranges. It is important to note
that the proposed algorithm calculates the exact solution
rather than an approximated one. We call it heuristic be-
cause, there are few cases in which the algortihm takes
infinite time in finding the solution. In these situations,
the minimum hyperperiod is a huge value (greater than a
lon long integer). The algorithm, when detects this situ-
ation, stops and returns a valid hyperperiod although not
the minimum.

Definition 2 Let g be the least common multiple of inte-

gers (t1, .., tm), where ti is a valid period for task τi and

1 ≤ i ≤ m < n.

g = lcm(t1, . . . , tm) / ti ∈ [li, ui], 1 ≤ i ≤ m < n

Definition 3 Let G be the set of all possible least common

multiples for m tasks, that is, all possible values of g for

m tasks.

G = {lcm(t1, . . . , tm) | ∀ti ∈ [li, ui], 1 ≤ i ≤ m < n}

Initially, the algorithm pre-computes a set G containing
all the valid hyperperiods for a subset of m tasks. This is
the purpose of the EnumerateLcm() function used in
Listing 2, though it is not explicitly shown.

Since each g is the least common multiple of periods
for a subset of tasks,

1 function FHS (τ , m)
2 begin
3 Hmin := 1
4 for τi in τ loop
5 Hmin := lcm (Hmin, li)
6 end for
7
8 G := EnumerateLcm (τ , m)
9 d := 1

10 while Hmin > min (d ∗ G) loop
11 Hmin := FindLcm (τ , d ∗ G, m, Hmin)
12 d := d + 1
13 end while
14 return Hmin

15 end FHS
Listing 2. FHS algorithm

Property 1 Each h ∈ H can be expressed in terms

of the last common multiple of g and a set of periods

(tm+1, . . . , tn) from tasks not in the initial set of m tasks.

∀h ∈ H → ∃g ∈ G / h = lcm(g, tm+1, . . . , tn)

From this it holds that h is a multiple of g.

Definition 4 Let D be the set of values by which some

g ∈ G is multiple of some h ∈ H.

D = {d ∈ N | h = dg}

Property 2 Since each h is a valid hyperperiod, it is pos-

sible to find at least one period in the range defined for

each task ti ∈ [li, ui], which is a divisor of dg.

∀τi ∈ τ → ∃ti ∈ [li, ui] / dg mod ti = 0

The algorithm works by increasingly enumerating val-
ues of d ∈ N and using property 2 to check that they
belong to D by using the FindLcm (Listing 3). Addi-
tionally, this function returns the minimum value of dg
that happens to be a valid hyperperiod h. The algorithm
iteratively converges to the minimum hyperperiod Hmin

by storing the value returned by FindLcm() for each d.
The algorithm stops when the current minimum found is
lower that the minimum value for d ∗G.

Although in each iteration the minimum gd value is
calculated, as shown in Figure 1 it may happen that this is
not the minimum hyperperiod Hmin. Let’s suppose that
there exist g0 and g1 that belong to G, and it holds that:

g0 < g1
Let’s suppose that dg1 ∈ D, that is, dg1 is a valid

hyperperiod. To be the minimum hyperperiod, it must
hold that:

(d+ 1)g0 ≥ dg1,
and this may not be true.

Figure 1. How the algorithm works

1 function IsLcm (g, τi)
2 begin
3 for t in li..ui

4 if g mod t = 0 then
5 return true
6 end for
7 return false
8 end IsLcm
9

10 function FindLcm (τ , G, m, Hmin)
11 begin
12 for g in G loop
13 if g ≥ Hmin then
14 return Hmin

15 end if
16
17 for i in (m + 1)..n loop
18 found := IsLcm (g, τi)
19 if not found then
20 break
21 end for
22 if found then
23 return g
24 end if
25 end for
26 return Hmin

27 end FindLcm
Listing 3. FindLcm algorithm

4 Conclusions

We have presented an algorithm that allows to calculate
the minimum value for the hyperperiod, given that periods
of tasks are not given as a values but as ranges of valid
values. It has been shown that the algorithms uses a search
heuristic that nevertheless is able to found the absolute
minimum value of such hyperperiod in most of the cases.

We think that in certain applications the hyperperiod
reduction has important benefits and our aim is to con-
tinue exploring the presented interpretation of periods as
ranges of valid values, in order to continue improving the
presented algorithm as well as possibly developing new
ones.

References

[1] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard real-time sporadic tasks on one processor. In IEEE

Real-Time Systems Symposium, pages 182–190, 1990.
[2] R. Crandall and C. B. Pomerance. Prime numbers: a com-

putational perspective. Springer, 2005.
[3] O. Kermia, L. Cucu, and Y. Sorel. Non-preemptive mul-

tiprocessor static scheduling for systems with precedence
and strict periodicity constraints. In Proceedings of the

10th International Workshop On Project Management and

Scheduling, 2006.
[4] J. Leung and R. Merrill. A note on the preemptive schedul-

ing of periodic, real-time tasks. Information Processing Let-

ters, 18:115–118, 1980.
[5] C. Liu and J.W.Layland. Scheduling algorithms for mul-

tiprogramming in a hard real-time environment. JACM,
23:46–68, 1973.

[6] C. Macq and J. Goossens. Limitation of the hyper-period
in real-time periodic task set generation. In Proceedings of

the 9th international conference on real-time systems, pages
133–148, March 2001. ISBN 2-87717-078-0.

[7] I. Ripoll, A. Crespo, and A. Mok. Improvement in feasibil-
ity testing for real-time tasks. Journal of Real-Time Systems,
11:19–40, 1996.

[8] C.-S. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and
L. Sha. Scheduling real-time dwells using tasks with syn-
thetic periods. pages 210 – 219, dec. 2003.

