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a b s t r a c t

In this paper a new dead-time-compensator to deal with unstable time delay systems is presented. The
result is an extension to multiple-input multiple-output systems with multiple and different time delays
of a previous result already reported for single-input single-output systems. There are two key issues: the
system instability and the presence of different time delays in each signal channel. The proposed approach
is developed in three steps. First, a non-delayed output plant is predicted. This predictor is a stable dead-
eywords:
IMO systems
nstable systems
ong time delay
ultiple delays

time-compensator coping with multiple and arbitrary delays in all the signal channels. Then, a stabilizer
controller is easily designed for the resulting non-delayed plant. For this stabilized plant, the control
performance is improved in order to achieve some output tracking and regulation requirements. The
results are illustrated by two examples showing their applicability to unstable multiple-input multiple-
output multi-delayed plants, which is the main novelty of the proposed approach.
tabilization
TC

. Introduction

Most industrial processes are characterized by the presence of
ime delays. These time delays may appear in the input actions
s well as in the measurement paths, but also in the interconnec-
ion between internal variables. Delays can be also introduced in
he controller itself (computation time of the control algorithm,
ommunication networks, sensors and/or actuators induced delays,
tc.). As a result, each signal path between outputs and inputs may
how a different delay. That is, there is not a plant delay. In general,
he control system performance could be very sensitive to these
elays, even more than to other parameters in the model [10,18].

The Smith Predictor (SP) [22], initially proposed for simple
ingle-input/single-output (SISO) systems, is a simple solution to
mprove the performance of classical controllers. The main advan-
age of the SP method is that plant time delay is eliminated from

he characteristic equation of the closed-loop system. Thus, the
ontrol design and analysis problem for processes with delay can
e translated into one for processes without delay. This idea has
een exploited and there are many extensions improving its per-
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�� The authors thank the support given by the project DPI 2008-06737-C02-01
rom Spanish Government.
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959-1524/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
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formance [15]. But it is well-known that the SP presents several
problems if the open-loop plant is unstable. The use of the full
model of the plant, linked to the internal instability of the predic-
tion, result in failing to stabilize unstable systems [17].

During the last years, the control community has carried out
a great effort against such drawbacks. Different modifications
have been proposed [7,8,24], but neither of the proposed schemas
eliminate the time delay from all the sensitivity function of
the closed-loop system. Recently in [3,14] two new generalized
methodologies for SISO time delay systems have been proposed.
Both techniques are based on a stable undelayed output prediction
in the discrete time framework.

Dealing with multiple-input multiple-output (MIMO) systems
is much more involved, if there is not a single common time delay
[20], that is, if there are different time delays in different signal
channels [4]. Subsystem interactions also make the control design
more challenging.

Under some restrictive conditions [19], such as stable processes,
some results were reported in [16] as well as the “generalized
multi-delay compensator (GMDC)” proposed by Jerome and Ray [5].
In this paper, in order to simplify the design, the model is split into
two parts: the so-called fast (non-delayed) part, and the delayed
part. This presumes the factorization of the global transfer func-

tion. If this is not the case, the “fast” part may include some internal
reduced delays. So, the input delays are split into a common part,
denoted as synchronous delays [4], expressed as an input diago-
nal matrix, and the rest, denoted as asynchronous delays, being
included into the fast part. But this makes difficult to tune the con-

dx.doi.org/10.1016/j.jprocont.2010.05.009
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
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roller. The GMDC can also deal with RHP zeroes and with the more
eneral class of models that allow time delays to appear in any form
such as a sum of signals with different delays), but it fails in dealing
ith unstable systems [5].

In [23] a robust control design procedure is provided. It can
e applied to the set of models that can be factorized into a
ational MIMO model in series with left/right diagonal (multiple)
elay matrices. Additional delays may be introduced in the input
hannels to allow the transfer function matrix factorization. The
obustness perspective in the design allows to consider these addi-
ional delays as uncertainties in the delays. Again, the approach is
pplicable only for open-loop stable plants. Another design alter-
ative is the use of a decoupling technique in order to convert
he design problem into a set of SISO control design problems
6,11,16,25,26]. In any case, the main drawback all of these methods
s the use of the full model of the plant to predict the non-delayed
utput. Thus, they cannot be used to control unstable MIMO time
elay systems [19].

In [15], a modification on the scheme proposed by [5] to control
n integrative process is presented. This schema includes an addi-
ional diagonal matrix transfer function filter in both the actual

easurement output and the delayed prediction output.
Unlike the SP based control which can only handle stable plants,

odel Predictive Control [2] can handle unstable MIMO systems
ith multiple delays, even taking into account constraints. How-

ver, as it is shown in [12,13,15], the robustness of MPC can be
mproved if a dead-time-compensator (DTC) is used in the predictor
tructure.

In this paper, a control design procedure to deal with unsta-
le MIMO plants with multiple and different delays in each signal
hannel is presented. The procedure implies three steps: (1) first, a
table DTC provides a delay-free computed output. (2) Based on this
omputed output, that is, for a non-delayed input/output model of
he plant, any classical MIMO stabilizing control design technique
an be applied to get a stable system. (3) In order to cope with the
ctual output plant, an additional control loop allows to improve
racking and regulating performance on the plant already stabilized
y using the computed output. Robustness issues can be tackled by
his external loop.

One example illustrates the control design for tracking and regu-
ation of an unstable MIMO multi-delay plant and a classical process
lready discussed in [15] is used to show the applicability of the
roposed methodology for any MIMO system with multiple and
ifferent delays.

. Problem formulation

A MIMO multi-delayed plant can be represented by

(s) = P(s)u(s) (1)

here u∈Rm is the input vector, y∈Rm is the output vector and the
lements of the transfer function matrix, pij(s) = gij(s)e−Lijs, show
ifferent time delays, Lij. Although most of the development is
pplicable to square or rectangular transfer matrices, a square one
s assumed to deal with the input/output pairing and decoupling.

In [5] the following properties of the Smith Predictor are intro-
uced: (1) the time delay is eliminated from the closed-loop charac-
eristic equation, (2) for set-point changes, it provides the controller
ith an immediate prediction of the effects of its control action on

he system output, which is forecasted L time units into the future:

¯ (t) = y(t + L), and (3) the SP implicitly factors the plant into two
arts: p(s) = g(s)e−Ls, the first is the rational part of the model.

These properties are not always fulfilled for the extension of the
P to MIMO systems. Let us review some of the available solutions
or MIMO stable systems.
Fig. 1. Generalized multi-delay compensator (GMDC).

For open-loop stable plants, some solutions are proposed under
special delay arrangements. If the delays in every row of the
transfer function matrix (output delays) are identical, the plant
model (1) can be factorized as P(s) = Do(s)G(s), where Do(s) =
diag{e−Liis} and G(s) is a rational transfer function matrix. The
undelayed output is given by ȳ(s) = G(s)u(s). Then any typical SP
control structure implementing any controller K(s) designed based
on the stable fast part model G(s), will solve the problem. Thus,
the closed-loop stability is determined by I + G(s)K(s) which con-
tains no delays. In this case the properties above enumerated are
fulfilled.

If the delays are the same for each input channel, we still can
write P(s) = G(s)Di(s), but if a controller is designed based on the SP
setting, the controlled output does not represent the actual output
y at any specific time. It is a totally fictitious value composed of
certain “previous output” variables, due to the internal variables
coupling. Thus, the system is stabilized but strong interactions and
cross delays could lead to unexpected behavior.

In this case, a simple solution is proposed in [5]. It consists in
extracting from P a matrix with the shortest dead time in each row
appearing in the main diagonal, Do(s). Then the solution involves
describing the fast model DF (see Fig. 1), including the remain-
ing delays, such that P = DoDF. In this way, for large controller
gain, |K| → ∞, the closed-loop transfer function matrix becomes
H = PK[I + GFK]−1 →� PK[GFK]−1 = PG−1

F = Do. Then the design is
as before but GF includes some delays. The controller K can be a
diagonal matrix of PI controllers tuned by using any classical or
specific procedure proposed in the literature for the design of PID
controllers for MIMO plants [15].

The problem is more involved if all the signal channel delays are
different. In this case, there is not a unique solution for all cases.
A possible solution is to introduce additional delays in the delay
matrix D̄(s) leading to the same delay for each input.

The Generalized Predictive Control based on the SP [12], has
been shown to be an appropriate tool to deal with these plants,
increasing the robustness of the controlled plant but, as pointed
out in this reference, it applies for open-loop stable plants.

As previously mentioned, there have been several partially suc-
cessful attempts to generalize the SP for the control of MIMO
systems [23]. In any case, neither of these approaches can cope with
the general case of unstable MIMO plants with different delays. As
for the SISO case, the predictor-scheme should be stable to guaran-
tee the closed-loop stability [19].

In what follows, the case of unstable MIMO plants with different
delays in different signal channels is treated. A known model of
the plant is assumed in both the rational transfer function and the
different delays.

3. DTC for unstable MIMO systems with multiple time

delays

Let us first summarize the approach already reported in [3] deal-
ing with unstable SISO delayed system, p(s) = g(s)e−Ls, where g(s)
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s a rational transfer function and L is the time delay. As the infor-
ation processing is done digitally, a zero-order hold device at the

lant input and a sampler with sampling period h at the output will
e considered. The internal model of the plant is (Ac,bc,c), plus the
elay.

.1. Unstable SISO delayed systems

The key feature is to provide an undelayed process output
stimation based on input/output measurements filtered through
table filters, regardless the plant poles and zeros location.1 The
iscretized model of the delayed SISO system is

(z) = p(z)u(z) (2)

(z) = n(z)
d(z)

z−du(z) = g(z)z−du(z) (3)

here g(z) = c(zI − A)−1b is the transfer function2 based on the
nternal representation (A,b,c) and d = L/h is the discrete time (DT)
elay assumed to be an integer without loss of generality.

The idea, in this section, is to use the undelayed part of the
rocess model, g(z), to define a stable and realizable predictor to
ompute an output without delay.

Let us define an undelayed system signal such as:

†(z)=̇g†(z)u(z); g† = n†(z)
n(z)

g(z) = n†(z)
d(z)

(4)

here n†(z) is going to be determined.
This signal (4) should be computed from the plant input and

utput data. That is

†(z) =  d(z)u(z) + y(z) (5)

The following lemma provides a solution.

emma 3.1 ([3]). A delay-free computed output signal, y†(z), can be
btained by (5) if the filter  d(z) is given by

d(z) = cA−d
d∑
i=1

Ai−1bz−i (6)

Thus, this model based estimator is stable, even for unstable
nd/or non-minimum phase systems.

emark. Note that combining (2) and (4) it yields

†(z) =  d(z) + g(z)z−d (7)

hus,

n(z)
d(z)

z−d = − d(z) + n†(z)
d(z)

hat is, the predictor filter d(z) can be obtained as minus the exact
uotient n(z)z−d/d(z), whereas n†(z) expresses the residue.

.2. Unstable multi-delayed MIMO systems

Let as considered a MIMO system with m-inputs and m-outputs
epresented by the transfer function matrix⎡

p11(z) · · · p1m(z)
⎤

(z) = ⎣ ...
. . .

...
pm1(z) · · · pmm(z)

⎦ (8)

1 Remind that the main drawback of the SP for open-loop unstable plants is the
se of the plant model to generate the undelayed output.
2 A = eAch , and b =

∫ h

0
eAc�d� bc .
Fig. 2. Delay-free computed output.

whose elements are

pij(z) = gij(z)z−dij (9)

being gij(z) the undelayed transfer function corresponding to the
output–input pair ij, that is yi(z) =

∑m
i=1gijz

−dij uj(z).
Some of these elements are assumed to be unstable. Thus, any

estimator based on the use of these elements will be unstable and
the corresponding SP will not be internally stable.

Let us denote by matrix G(z) = [gij(z)] the rational model of the
plant, with a minimal internal representation (A,B,C), that is:

G(z) = C(zI − A)−1B =

⎡
⎣ c1...
cm

⎤
⎦ (zI − A)−1 [

b1 · · · bm
]

(10)

Define:

� (z)=̇

⎡
⎣  11(z) · · ·  1m(z)

...
. . .

...
 m1(z) · · ·  mm(z)

⎤
⎦ (11)

with elements

 ij(z) = ciA−dij
dij∑
k=1

Ak−1bjz
−k (12)

defined as in (6) for the SISO case.

Lemma 3.2. Given a MIMO unstable plant, (8), with input vector
u(z) and output vector y(z), with multiple and different delays in each
signal path, dij, a non-delayed output y†(z) can be computed by means
of a stable DTC such that

y†(z) = G†(z)u(z)

where the “auxiliary” transfer function matrix

G†(z) =

⎡
⎢⎣
g†11(z) · · · g†1m(z)

...
. . .

...
g†m1(z) · · · g†mm(z)

⎤
⎥⎦ ≡ (� (z) + P(z)) (13)

with elements g†
ij
(z) ≡  ij(z) + pij(z).

Proof. Applying Lemma 3.1, to each element (9) in (8), a non-
delayed computed plant output, y†(z) = G†(z)u(z), is obtained, as
illustrated in Fig. 2. �

As suggested in the Remark following Lemma 3.1, each element
 ij(z) can be computed as the quotient of the corresponding poly-
nomials.
Remark. The auxiliary transfer function matrix, G†(z), provides
an output without delays with respect to the inputs. Thus, as later
seen, it paves the way to stabilize the system. The price we pay
for that is complex filtering (� (z)) and high gains. If some delays
are left in G†(z) → G†

F (z), as proposed in [5], some simplifications
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Fig. 3. Unstable MIMO stabilization.

an be obtained. First some delays can be homogenized, leading to
ommon input or output delays. Also, the filter order is reduced.
gain, the price we pay for that is a more difficult stabilizer design.

Even this output is not the actual plant output, for the sake of
tabilization, an appropriate controller can be designed without
onsidering the multiple and different delays.

. Stabilization of unstable MIMO systems with multiple
ime delays

Now we are in a position to stabilize MIMO systems with mul-
iple and different delays in the signal channels. Based on the
elay-free computed output, y†(z), any classical control design
echnique can be used to stabilize the plant.

From Fig. 3, the following output/reference response is
btained:

(z) = P(z)K(z)[I + (� (z) + P(z))K(z)]−1r(z) (14)

nd taking into account (13) it yields:

(z) = P(z)K(z)[I + G†(z)K(z)]
−1
r(z) (15)

Denoting the sensitivity function as

m(z) = [I + G†(z)K(z)]
−1

(16)

he controlled plant transfer function matrix is

(z) = P(z)K(z)Sm(z)r(z) = H(z)r(z) (17)

emark. In order to stabilize the plant P(z), the controller K(z) in
ig. 3 is designed such that the matrix

I + G†(z)K(z)] (18)

s Schur.3

Although the plant is unstable, the controlled plant depicted in
his figure is internally stable. In fact, all the partial transfer matrices
yr, Tyq1 , Tyq2 , Tyn, Tur, Tuq1 , Tuq2 and Tun are stable.

emma 4.1 ((Internal stability)). Given the plant (8), any controller
(z) implemented as in Fig. 3, designed to stabilize the undelayed plant
odel (13), that is, such that (18) is Schur, provides internal stability

o the controlled plant.

roof. From Fig. 3 and the equivalence (13) (Lemma 3.2), the
ollowing expressions are obtained:

= Sm[r − q2 − Pq1 − n] (19)

= KSm[r − q2 − Pq1 − n] (20)
= H[r − n] + [I −H]q2 + [I −H]Pq1 ⇒ y = H[r − n]

+ [I +� (z)]Smq2 + [I +� (z)]SmPq1 (21)

3 For simplicity in the notation, in the following, the argument of the functions
z) is suppressed, if there is no ambiguity.
Fig. 4. Proposed DTC-IMC for the control of stabilized delayed MIMO systems.

Thus, as P and G† (in Sm) have the same poles, stability is guaranteed
as far as K is designed to make H stable (17). Any classical control
design approach can be used. �

At this stage, the initial problem has been translated into the
control of the multi-delayed stable MIMO system H, and some of
the design approaches discussed in Section 2 can be applied. So far,
the problem of plant interactions has not been solved and even the
steady-state behavior has not been considered.

As already pointed out, although the computed non-delayed
output y† can be controlled by K to fulfil some requirements
concerning the system behavior, the actual output is a mixed com-
bination of partial delayed outputs and the final result could be
rather unsatisfactory. It is worth to note that the stabilized transfer
function matrix, H(s), can be split into

H(z) = P(z)M(z) (22)

M(z) = K(z)[I + G†(z)K(z)]
−1

(23)

By design, H is stable but the product P.M will introduce additional
delay interactions. That is, if M is not diagonal, the elements of
matrix H will show terms with different delays. This issue has been
treated in [5], but obviously it leads to some undesirable complexity
in the global control design.

5. Control of unstable MIMO systems with multiple time
delays

Let us consider some other features of the controlled plant.

5.1. Steady-state behavior

First, by designing K(z), the plant has been stabilized, but the
static DC gain of the controlled plant cannot be robustly tuned.

In fact, for unitary reference (r = (z/(z − 1))I) the steady-state
output is (17),

lim
k→∞

yk = H(1) (24)

and, even for infinity gain controller, H(1) /= I. Thus, a steady-state
error appears. The same happens for constant disturbances.

As the controlled plant, H, is internally stable an extra controller
can be designed, as for example by the IMC design technique, to
improve tracking and disturbance rejection robustness.

Let us consider a generic output disturbance q. A possible control
structure is depicted in Fig. 4, where F(z) is a reference pre-filter to
smooth the input. The plant output is obtained from

y = HQ (Fr − q) + q (25)

where Q and H are stable transfer function matrices (in the ideal
case, it is assumed that the stabilized plant model matches the

designed one, H̄ = H). Following [9] the system is internally stable
if H and Q are stable.

In this case, the error can be computed from (25) as

e = y− Fr = {HQ − I}(q− Fr) (26)
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hus, in order to cancel the steady-state error it suffices Q (1) =
H(1)]−1.

.2. Robust stability

If the delay is dominant in the dynamic behavior [1], the aux-
liary transfer function matrix G† ≡ P(z) +� (z), may involve high
ains, reinforcing the coupling between variables, even if they were
ot so interactive in the original plant, P(z).

In these cases, it would be interesting to combine the proposed
pproach with some others where extra delays are incorporated
n the fast transfer function matrix, like the already mentioned
MDC. This idea has been also used to control MIMO systems with

ntegrators [15].
Note that the design of the external loop controller Q, can

e focussed into reducing the coupling and getting some extra
equired robust performance.

Combining (17) and (26), it yields

= [PKSmQ − I](q− Fr) (27)

Assuming multiplicative output uncertainties, the process can
e modeled by Pp(z) = (1 +Wo(z))P(z), where Wo(z) is assumed to
e stable. The robust stability condition can be expressed by4

|PKSmQ ||∞ < 1
||Wo||∞ (28)

This suggest to split the Q matrix into two terms:

= Q0F0 (29)

uch that Q0 is a real matrix to fulfill the requirement Q0(1) =
H(1)]−1, and F0 is a filtering matrix with unitary static gain, to
e-shape the sensitivity matrix. In general, F0 is defined as

0 = diag{f11, . . . , fnn}.
This filter could be also put in the feedback loop (see [15]).

.3. Design procedure

In summary, the proposed control design methodology
nvolves:

Given the DT full plant model (8) and following the sequence in
Section 3.2,
◦ Compute the rational transfer function matrix G(z),
◦ Compute the predictor filter � (z) (11),
◦ Get the auxiliary transfer function matrix G†(z) (13).
Stabilize the MIMO system by designing the controller K(z), for
G†(z) (13), such that the controlled plant H(s) is stable (17).

This design is delay-free and any suitable control design tech-
nique can be applied. Additional requirements on K could lead to
a diagonal dominant matrix M (23).
For the previously stabilized plant, H(s), improve the controlled
system performance by, for instance, designing a robust perfor-
mance controller Q(z) (29).

. Examples
By using the proposed approach, unstable multi-delayed MIMO
ystems can be controlled, regardless the position of the unstable
lement in the transfer function matrix. This is illustrated in the
rst example. Moreover, the proposed methodology is applied to

4 Note, that if another kind of uncertainties is considered, a similar robust condi-
ion index is obtained [21].
ess Control 20 (2010) 877–884 881

the example treated in [15], with the same data and conditions used
there, to show its applicability to any MIMO multi-delayed unstable
system.

Example 1. Let us first consider an unstable MIMO plant. Assume
the following plant model, without uncertainties

P(s) =

⎡
⎢⎣

e−0.5s

s− 1
0.5e−0.7s

s+ 1

0.1e−0.3s

10s+ 1
e−0.7s

s

⎤
⎥⎦

A DT plant model, assuming a sampling period h = 0.1s, (8) is

P(z) =

⎡
⎢⎣

0.10517z−5

z − 1.105
0.04758z−7

z − 0.9048

0.000995z−3

z − 0.99
0.1
z − 1

⎤
⎥⎦

The undelayed output generator (13) is given by

G†(z) =

⎡
⎢⎣

0.063786
z − 1.105

0.095829
z − 0.9048

0.0010249
z − 0.99

0.1
z − 1

⎤
⎥⎦

Let us design a stabilizing H∞ controller K for the plant G† to
shape the sigma plot of the loop transfer function G†K to have the
desired loop shape5

Gd(z) =

⎡
⎢⎣

0.1
z − 1

0

0
0.1
z − 1

⎤
⎥⎦

The resulting controller is a high order controller but it could be
simplified to a set of P/PID controllers.6 As a result, the following
controller is chosen

K(z) =
[

3.8625(z − 0.9823)
z − 1

0.97215

−0.070359 0.58583

]

leading to H(z) = P(z)K(z)[I + G†(z)K(z)]−1, which is stable. The
controlled system static gain is:

H(1) =
[

1.6487 0
0.0050 1.0002

]

Thus, the IMC controller is chosen such that Q = Q0 with

Q0 = H(1)−1 =
[

0.6065 0
−0.0030 0.998

]

The reference step responses are plotted in Fig. 5. A pre-filter
F(z) to smooth the set-point tracking have been included in the
reference signals,

F(z) =

⎡
⎣ 0.0198
z − 0.9802

0

0
0.0198

z − 0.9802

⎤
⎦

Now, in order to illustrate the possibility of robustness improve-
ment by using the Q-controller, let us consider a disturbed plant

5 The Matlab® command loopsyn allows this design.
6 By model reduction techniques, as implemented for instance in Matlab® , getting

a minimal realization (minreal) and then reducing the order to one (balreal).
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Fig. 5. Step responses Example 1. K(z) being designed by loop shaping.

uch that the real process is:

p(s) =

⎡
⎢⎣

e−0.6s

s− 1.1
0.6e−0.8s

s+ 1.1

0.1e−0.3s

10s+ 1
1.1e−0.7s

s

⎤
⎥⎦ .

f the previous controllers (K and Q) are used, the system becomes
nstable, but if the Q-controller is chosen such that Q = Q0F0 with

0(z) =

⎡
⎣ 0.01
z − 0.99

0

0
0.01

z − 0.99

⎤
⎦ ,

he result in Fig. 6 are obtained. Note that if the filter is included,
he close loop is stable being the set-point response almost the
ame as before. Thus, the new controller improves the robustness
erformance.
The formal design of this controller is a matter of current
esearch.

It is worth to note in the figure that there are some loop inter-
ctions. This issue is also a matter of further research. In any case,
f an improvement in the decoupling response is required, it is pos-

Fig. 6. Step responses for parametrical uncertainties.
ess Control 20 (2010) 877–884

sible to combine the proposed scheme with the design procedure
proposed in [5].

Example 2. Let us considered the level and temperature control
in a three-stage evaporator system already studied in [15].

The process model is:

P(s) =

⎡
⎢⎣

3.5e−1s

s

−1e−5s

2s+ 1

2−7s

1.5s+ 1
−1e−5s

3.2s+ 1

⎤
⎥⎦ , Pq(s) =

⎡
⎣ 3.5

s
e−3s

−4.5
2s+ 1

e−2s

⎤
⎦

y(s) = P(s)u(s) + Pq(s)q(s)

where the outputs are the level and temperature in the final storage
tank, and the inputs are the juice and steam flows. The input dis-
turbance q(s) is the output flow in the tank. The free-delay model
is:

G(s) =

⎡
⎣ 3.5

s

−1
2s+ 1

2
1.5s+ 1

−1
3.2s+ 1

⎤
⎦

whereas the proposed undelayed output y† is obtained by (13):

G†(s) =

⎡
⎢⎣

3.5
s

−24.3640
2s+ 1

−212.7
1.5s+ 1

−4.7712
3.2s+ 1

⎤
⎥⎦

Note that higher gains appear in G† due to the large delays. The good
news are that this matrix can be used even for unstable plants. To
reduce these gains, some delays can be taken out of the predictor,
as suggested in the GMDC.

For instance, we could assume the following fast model7

G†
F (s) =

⎡
⎢⎣

3.5
s

−2.6380e−4s

2s+ 1
7.5869−5s

1.5s+ 1
−4.7

3.2s+ 1

⎤
⎥⎦ (30)

In [15], the following fast model is considered

GF (s) =

⎡
⎢⎣

3.5
s

−1e−4s

2s+ 1
2−2s

1.5s+ 1
−1

3.2s+ 1

⎤
⎥⎦ (31)

The scheme in Fig. 4 is implemented, with sampling period
T = 0.1 s, where the predictor filter � (z) is computed as

� =
[

 11(z)  12(z)z−4/T

 21(z)z−5/T  22(z)

]

with � ij(z), (6), being computed from the discretized delay-free
model of (30). Note that

� ≡
[

g†11(z) − p11(z) (g†21(z) − p†12(z))z−4/T

(g†21(z) − p†21(z))z−5/T g†12(z) − p12(z)

]

The following Q-controller is applied

−1

[
1 0.6533

]

Q = H(1) =

0 4.8216

7 For the sake of comparison, G, GF , G† and G†
F

are expressed as a function of s.
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Fig. 7. Filtered G
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ig. 8. Comparison between the GMDC proposed in [15] and the DTC-based pro-
osed here. There is an initial set-point change in y1 at t = 5 s, as well as a disturbance

n q = 0.5, at t = 50.

The proposed scheme is compared with the one proposed by
15] (see Fig. 7), where D̄ = I, the fast model is (31) and diagonal

atrix:

r(s) =

⎡
⎣ 1.4s+ 1

(0.2s+ 1)2
0

0 1

⎤
⎦

The same controller design technique suggested in [15] is used
o compared both control schemes, that is,

(s) =

⎡
⎢⎣
k11(T11s+ 1)

T11s
0

0
k22(T22s+ 1)

T22s

⎤
⎥⎦

he parameters are k11 = 0.5/3.5, T11 = 10, k22 = −5/4.7, T22 =
.2, and k11 = 0.5/3.5, T11 = 10, k22 = −5, T22 = 3.5 in [15]. kij and
ij, are the parameter of gij = kij/(Tijs+ 1), in (30) and (31) respec-
ively.

The obtained results are shown in Fig. 8. Note that in both
chemas, to achieve some required performance, the K-parameters
an be easily retuned.

. Conclusions
The presence of multiple and different delays in the
nput/output signal paths makes the stabilization of unstable MIMO
lants a difficult task. The use of dead-time-compensator based on
he SP setting fails due to the plant unstability.

[

[

MDC [15].

In this paper, a MIMO DTC suitable for any linear plant has been
presented. It is applicable for stable and unstable plants, turning
the problem of controlling a MIMO multi-delay unstable plant to
one for stable plants. Then, some already available control design
approaches can be applied to the stabilized plant.

Interaction between variables can be treated by means of ad hoc
approaches and it is a matter of further research.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions on the technical content
of the paper.

References

[1] K.J. Åström, Model uncertainty and feedback, in: P. Albertos, A. Sala (Eds.),
Iterative Identification and Control, Springer-Verlag, 2002.

[2] E.F. Camacho, C. Bordons, Model Predictive Control, 2nd ed., Springer, 2004.
[3] P. García, P. Albertos, T. Hägglund, Control of unstable non-minimum-phase

delayed systems, Journal of Process Control 16 (2006) 1099–1111.
[4] M.J. Grimble, LQG controllers for discrete-time multivariable systems with dif-

ferent transport delays in signal channels, IEE Proceedings-Control Theory and
Applications 145 (1998) 449–462.

[5] F. Jerome, W.H. Ray, High-performance multivariable control strategies for
systems having time delays, AIChE Journal 32 (6) (1986) 914–931.

[6] T. Liu, W. Zhang, F. Gao, Analytical decoupling control strategy using a unity
feedback control structure for MIMO processes with time delays, Journal of
Process Control 17 (2007) 173–186.

[7] T. Liu, W. Zhang, D. Gu, Analytical design of two-degree-of-freedom control
scheme for open-loop unstable processes with delay, Journal of Process Control
15 (2005) 559–572.

[8] X. Lu, Y.-S. Yang, Q.-G. Wang, W.-X. Zheng, A double two-degree-of-freedom
control scheme for improved control of unstable delay processes, Journal of
Process Control 15 (2005) 605–614.

[9] M. Morari, E. Zafirou, Robust Process Control, Prentice-Hall, NJ, 1989.
10] S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer-

Verlag, Heidelberg, Germany, 2001.
11] P. Nordfedt, Hägglund, Decouple and PID controller design of TITO systems,

Journal of Process Control 16 (2006) 923–936.
12] J.E. Normey-Rico, E.F. Camacho, Multivariable generalised predictive controller

based on the smith predictor, IEE Proceedings-Control Theory Applications 147
(5) (2000) 538–546.

13] J.E. Normey-Rico, E.F. Camacho, Robust design of GPC for process with time
delay, Journal of Robust and Nonlinear Control 10 (2000) 1105–1127.

14] J.E. Normey-Rico, E.F. Camacho, Unified approach for robust dead-time com-
pensator design, Journal of Process Control 19 (2009) 38–47.

15] J.E. Normey-Rico, E.F. Camacho, Control of Dead-Time Processes, Springer,
2007.

16] B. Ogunnaike, W. Ray, Multivariable controller design for linear systems having
multiple time delays, AIChE Journal 25 (1979) 1043–1057.

17] Z.J. Palmor, Time delay compensation – smith predictor and its modifications,
in: W.S. Levine (Ed.), The Control Handbook, CRC Press, 1996, pp. 224–237.

18] Z.J. Palmor, Stability properties of smith dead-time compensator controllers,
International Journal of Control 53 (6) (1980) 937–949.

19] Z.J. Palmor, Y. Halevi, On the design and properties of multivariable dead time
compensators, Automatica 19 (1983) 255–264.

20] G.D. Seborg, An extension of the smith predictor method to multivariable lin-

ear systems containing time delays, International Journal of Control 17 (1973)
541–551.

21] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control Analysis and
Design, 2nd ed., Wiley, 2005.

22] O.J.M. Smith, Closer control of loops with dead time, Chemical Engineering
Progress 53 (1959) 217–219.



8 f Proc

[

[

84 P. García, P. Albertos / Journal o
23] R.S. Sánchez-Peña, Y. Bolea, V. Puig, MIMO smith predictor: global and struc-
tured robust performance analysis, Journal of Process Control 19 (2009)
163–177.

24] Q.-G. Wang, H.-Q. Zhou, Y. Zhang, Y. Zhang, A comparative study on control
of unstable processes with time delay, in: 5th Asian Control Conference, Mel-
bourne, Australia, July, 2004, pp. 2006–2014.

[

[

ess Control 20 (2010) 877–884
25] Q.G. Wang, Y. Zhang, M.S. Chiu, Decoupling internal model control for multi-
variable systems with multiple time delays, Chemical Engineering Science 57
(2002) 115–124.

26] Q.G. Wang, B. Zou, Y. Zhang, Decoupling smith predictor design for multivari-
able systems with multiple time delays, Chemical Engineering Research and
Design Transactions, Part A 78 (4) (2000) 565–572.


	Dead-time-compensator for unstable MIMO systems with multiple time delays
	Introduction
	Problem formulation
	DTC for unstable MIMO systems with multiple time delays
	Unstable SISO delayed systems
	Unstable multi-delayed MIMO systems

	Stabilization of unstable MIMO systems with multiple time delays
	Control of unstable MIMO systems with multiple time delays
	Steady-state behavior
	Robust stability
	Design procedure

	Examples
	Conclusions
	Acknowledgments
	References


