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Abstract: Robustness properties for different uncertainties of a predictor-based control of
time-delay systems are analyzed in this paper. First, a time-varying delay dependent stability
condition is expressed in terms of LMIs. Then, uncertainties in the knowledge of the plant
parameters and the sampling time period are considered. In addition, the resulting closed-loop
system is shown to be robust with respect to these uncertainties. Moreover, this scheme has
been tested in a real-time application to control the roll angle of a quad-rotor mini-helicopter.
The experimental results have demonstrated the good performance of the proposed scheme and
the robustness even in presence of long delays uncertainties.

Keywords: Unstable time-delay systems; Time-varying delay-dependent stability; Jitter in
digital implementation; Linear matrix inequality (LMI).

1. INTRODUCTION

In designing any control system the process behavior
imposes some unavoidable performance limitations (see,
for instance (Seron et al. (1997))). This is clearly the case
when dealing with systems with time delays. The Smith
Predictor (SP) (Smith (1959)) and the Finite Spectrum
Assignment (FSA) (Manitius & Olbrot (1979)) may be
considered as the main control methods for linear processes
with time delay in either the input or the output, see (Gu
& Niculescu (2003); Richard (2003)). A careful analysis
of these methods and their modifications show that they
all use, in an explicit or explicit manner, prediction of the
state in order to achieve the control of the system.

As explained in (Palmor (1996)), the use of an explicit
unstable prediction model in the SP approach determines
the internal stability of the closed-loop system. Palmor
also suggested how to implement the control law using the
so-called integral form. In (Manitius & Olbrot (1979)),
this approach was also introduced in the framework of
spectrum assignment with distributed delays. However, as
shown in (Mondie et al. (2001)), the implementation of
these control approach on a digital computer can result
in an unstable behavior. In the survey paper presented by
(Richard (2003)), this problem was considered as one of
the open problems in the control of time-delay systems.
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Afterwards, in (Zhong (2004)), two approaches are in-
troduced to approximate the distributed delay, one in
the s-domain and another in the z-domain. Additionally,
in (Gudin (2007)), it is shown that, the initial reported
difficulties to implement distributed delays using a digital
hardware where caused by the incorrect approximation
methods. This fact was illustrated experimentally using
a pendulum and the approximated control law proposed
by (Mirkin (2004)). In this work it is also analyze another
approximation in the s-domain proposed by (Mondie et al.
(2001b)).

In (Lozano et al. (2004)), a discrete-time (DT) controller
for continuous-time (CT) plants with time delay is pro-
posed and the closed-loop stability is proved. The ro-
bustness with respect to small variations in the sampling
period, the delay and the delay/sampling period ratio is
also proved. Since a computer is normally used to imple-
ment the control law, (Astrom & Wittenmark (1997)),
it is justified to study whether instabilities may appear
in DT control algorithms. Note that small variations in
the sampling period may be such that the closed-loop
behavior will be described by a quasi-polynomial in the
complex variable z. The zero location of quasi-polynomials
are known to be very sensitive to small changes in the
polynomial parameters and can easily move from the sta-
ble region to the unstable region. Therefore it is important
to prove robustness also with respect to small variations
of the sampling period. The proof of robust stability in
the approach presented in (Lozano et al. (2004)) allows



positive or negative variations in the delay but they must
be bounded by the sampling period size.

In (Garcia et al. (2006)) the previous results were enlarged
for a general case, i.e. when the delay uncertainties are
longer than the sampling period. In this paper, we extend
this previous analysis to processes with time-varying de-
lays in the measurement. The real-time performance of the
control scheme is illustrated by controlling a lab helicopter
prototype.

In this paper, the robustness properties for different uncer-
tainties of a predictor-based control of unstable time-delay
systems are analyzed. The problem statement is outlined
in the next section. Then, the stability condition for time
varying delays is derived and a design approach is pro-
posed. The robustness of the design is then studied. The
promising results are applied to a lab helicopter prototype
and some experimental results are reported. In the last
section, some conclusions are drafted.

2. PROBLEM FORMULATION

Let us consider the following CT state space representation
of a delayed system

ẋ(t) =Acx(t) +Bcu(t− τ1) (1)

y(t) =Cx(t− τ2(t)) (2)

where the nominal plant parameter matrices are Ac ∈
ℜn×n, Bc ∈ ℜn×m, C ∈ ℜp×n. τ1 > 0 is the control time-
delay, assumed to be time-invariant, and τ2(t) > 0 is the
measurement delay, assumed to be time-varying.

2.1 Discrete time model based predictor

It is assumed that the input/output delay is the same for
all the input/output channels. In a computer-based con-
troller implementation the sampling time, tk, is periodic,
being T = tk+1 − tk the sampling period.

Discretized variables are denoted as, for instance, xk =
x(kT ) and, without loss of generality, the time delays
satisfy

τ1 = d1T, (d1 ∈ Z+) (3)

τ2k
= d2k

T, (d2k
∈ Z+) (4)

The delay between the state measurement and the control
calculation τ2k

> 0 is assumed to be randomly time-variant
between known lower and upper bounds (d2m

and d2M
,

respectively), that is, d2m
≤ d2k

≤ d2M

Then, the DT version of (1), is given by

xk+1 = Axk +Buk−d1
; yk = xk−d2

k
(5)

where A = eAcT , and B =
∫ T

0
eAcσdσBc.

For the sake of simplifying the notation, on the sequel we
define the entire delay as dk = d1 + d2k

and its lower and
upper bounds as dm = d1 + d2m

and dM = d1 + d2M
,

respectively.

The control structure proposed here consists of a state
feedback law based on the h-step ahead prediction of the

nominal model. Thus, this h ahead state prediction has
the following form

x̄k+h = Ahxk−d2
k

+Ah−1Buk−h + · · · +Buk−1 (6)

where h ∈ Z+ is the assumed discrete delay (for example,
the mean of dk). Hence, the control law is

uk = −Kx̄k+h (7)

where K ∈ ℜm×n.

The goal is either to stabilize the closed-loop system (5)-
(7) or to improve its dynamic behavior. One of the design
parameters is the value of h, that should be in principle as
near as possible to the mean of dk.

Assumption A1 The lower and upper bounds dm and dM

of the time delay dk are perfectly known.

Assumption A2 There are no uncertainties in the process
model (Ac, Bc).

Assumption A3 The sampling/updating time instants,
tk, are regular. It is assumed that there is no jitter
in the control computation, leading to slightly different
sampling/updating periods (Tk).

Remark 1. Assumptions A2 and A3 will be treated in
Section 4

2.2 Closed-loop time delay system stability

Concerning the stability of the closed-loop system, the
following Lemma can be stated.

Lemma 1. The closed-loop system composed of (5), (6)
and (7), leads to

xk+1 = (A−BK)xk −BKAhxk−dk
+BKAhxk−h (8)

where {h, dk} ∈ Z+. and dm ≤ dk ≤ dM

Proof 1. Delaying the control law d1-sampling periods, (7)
yields,

uk−d1
= −Kx̄k+h−d1

(9)

and by using (6), it yields

uk−d1
= −K(Ahxk−dk

+Ah−1Buk−h−d1
+ · · ·+Buk−1−d1

)
(10)

Introducing (10) into (5) the closed loop realization is
obtained as follows

xk+1 = Axk −BKAhxk−dk
−BKΦk (11)

where Φk = Ah−1Buk−h−d1
+ · · · +Buk−1−d1

.

On the other hand, the process state, xk, depending on
xk−h can be expressed as

xk = Ahxk−h − Θk (12)

where Θk = Ah−1Buk−h−d1
+ ...+Buk−1−d1

.

Let us observe that, Θk and Φk are identical. It is due to
the fact that d1 is time-invariant. Therefore, from (12) and
(11) the closed-loop realization can be easily obtained by
eliminating the common term Θk = Φk, leading to

xk+1 = (A−BK)xk −BKAhxk−dk
+BKAhxk−h (13)



3. TIME-VARYING DELAY-DEPENDENT
STABILITY CONDITION

In this section, a robust delay-dependent stability condi-
tion using the h-step ahead prediction-based control (7)
is proposed. The scheme prediction stabilizes the system
subject to time-invariant delays, between controller and
process, and also time-variant delays, between the plant
and control algorithm, even in presence of time delay
uncertainties.

The goal of this section is to propose an analysis procedure
(based on the solution of a set of LMIs) to obtain, with
low computational cost 1 , one sufficient condition to assure
the stability of the closed-loop system under bounded
variations of the measurement delay.

Define M = (A−BK) and A1 = BKAh, hence, from (8)
it yields

xk+1 = Mxk +A1xk−h −A1xk−dk
(14)

Theorem 1. For a given control gain, K, designed to sta-
bilize (5)-(7) for some h in the h-step ahead predictor, if
there exist positive definite matrices P , Q1, Q2, Z1 and Z2,
and matrices X1, X2, Y1 and Y2, such that the following
LMI constraints hold













Γ −Y1 −Y2 MT P dM (M − I)T Z1 h(M − I)T Z2

∗ −Q1 0 AT
1 P dM AT

1 Z1 hAT
1 Z2

∗ ∗ −Q2 −AT
1 P −dM AT

1 Z1 −hAT
1 Z2

∗ ∗ ∗ −P 0 0
∗ ∗ ∗ ∗ −dM Z1 0
∗ ∗ ∗ ∗ ∗ −hZ2













< 0

with Γ := −P +dMX1 +hX2 +Y1 +Y T
1 +Y2 +Y T

2 +(dM −
dm + 1)Q1 +Q2

(

X1 Y1

Y T
1 Z1

)

≥ 0

(

X2 Y2

Y T
2 Z2

)

≥ 0, (15)

then, the close-loop system (14) is asymptotically stable
for any time-variant delay, dk, satisfying dm ≤ dk ≤ dM .

Proof 2. Denote

νj = xj − xj−1

then, the delayed values of the state can be expressed by

xk−h = xk −

k
∑

j=k−h+1

νj

Consequently, (14) can be written as

xk+1 =Mxk −A1

k
∑

j=k−h+1

νj +A1

k
∑

j=k−dk+1

νj (16)

Following a procedure similar to that in (Garcia et al.
(2006)-Gao et al. (2008)), let us define the following
Lyapunov function candidate, V (k) = V1(k) + V2(k) +
V3(k) + V4(k), where

1 Notice that the dimension of the set of LMIs to evaluate does not
depend on the delay considered but on the order of the system to
evaluate.

V1(k) = xT (k)Px(k)

V2(k) =

k−1
∑

i=k−dk

xT (i)Q1x(k) +

k−1
∑

i=k−h

xT (i)Q2x(k)

V3(k) =

−dm+1
∑

j=−dM +2

k−1
∑

i=k+j−1

xT (i)Q1x(i)

V4(k) =

−1
∑

i=−dM

k−1
∑

m=k+i

νT (m)Z1ν(m) +

−1
∑

i=−h

k−1
∑

m=k+i

νT (m)Z2ν(m)

Note that an extra term has been included in V2 and V4 to
take into account both delays, h and dk. Then, the system
(14) or (8), will be asymptotically stable if

∆V (k) = ∆V1(k) + ∆V2(k) + ∆V3(k) + ∆V4(k) < 0

After some tedious algebraic manipulation the following
result is obtained

∆V = ∆V1 + ∆V2 + ∆V3 + ∆V4 ≤ λT (k)Ωλ(k) (17)

where

Ω =

(

Ψ11 Ψ12 Ψ13

∗ Ψ22 Ψ23

∗ ∗ Ψ33

)

(18)

Ψ11 =MTPM + Γ + dM (M − I)TZ1(M − I)

+h(M − I)TZ2(M − I)

Ψ12 =−Y1 − dM (M − I)TZ1A1 −MTPA1

Ψ13 =−Y2 + h(M − I)TZ2A1 +MTPA1

Ψ22 =AT
1 PA1 −Q1dMAT

1 Z1A1 + hAT
1 Z2A1

Ψ23 =−AT
1 PA1 − dMAT

1 Z1A1 − hAT
1 Z2A1

Ψ33 =−AT
1 PA1 −Q2 + dMAT

1 Z1A1 + hAT
1 Z2A1

and

λT (k) = (x(k) x(k − dk) x(k − h)) .

After some manipulations and making use of the Schur
complement (Boyd et al. (1994)), the inequalities (15) are
obtained.

Example 1. Let us considered the following second order
DT system, already studied in (Gao et al. (2008)),

xk+1 =

(

0.5450 −0.0392
0.6225 −0.1696

)

xk +

(

1.0000
−2.2159

)

uk−d1

where xk = [ x1k
x2k

]
′

is the state vector, fully accessible
(C = I). The control law proposed in this example is
uk = −Kxk−d2

k

where

K = [−0.2392 − 0.1842 ]

The input delay d1 is assumed to be time-invariant and
the output measurement delay d2k

is assumed time-
varying. The total delay dk = d1 + d2k

ranges between
dm = 3 and dM = 31, following the pattern dk =
9, 11, 16, 9, 27, 8, . . . , 9, 15, 12, 29, 15.

By applying the LMI constraints proposed in (Gao et al.
(2008)) (in Theorem 1), stability can be proven for all
dM ≤ 7.



If we introduce the proposed predictor-control scheme with
h = 3, by applying Theorem 1 the closed-loop stability can
be assured for all dM ≤ 31.

The selected value for the delay predictor have been chosen
in this example h = 3 since with this value we have
obtained a feasible solution guaranteeing the closed-loop
stability until dM = 31.

In Figures 1 and 2 the responses are depicted for the pro-
cess state. The initial conditions assumed in the simulation
are x1(0) = 1 and x2(0) = 2.

The simulations results show the improvement introduced
by the predictor if there is a random time-variant delay as
proposed in this example.

4. ROBUST-STABILITY OF THE CLOSED-LOOP
SYSTEM

Robustness of the designed control to small variations on
the time elapsed between sampling instants is analyzed
in this section. The study also takes into account the
maximum delay that fulfills Theorem 1, i.e. when d = dM .
Afterwards, the analysis is extended to the case where
there are small uncertainties in the nominal matrices of
the plant model.

Let us define tk as the k-th sampling instant, such that

Tk = tk+1 − tk + ζk

where ζk is a small variation of the time elapsed between
sampling instants, and can be positive or negative but
always bounded as follows |ζk| ≤ ζ̄ ≪ T .

A similar procedure as used in (Lozano et al. (2004)) will
be here employed. Then, (8) can be stated as

xk+1 = (A−BK)xk −BKAhxk−h +BKAhxk−d + Γ
′

γk

being the control input

uk−d =−K[xk +Ahxk−h −Ahxk−d] + Γ
′′

γk

where Γ
′

and Γ
′′

are matrices whose elements are bounded
by ζ̄ (consequently, Γ

′

and Γ
′′

converge to zero as ζ̄ goes
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to zero), and γk the extended vector that collects the next
and current state, as well as the past states and the delayed
inputs, i.e.

γk = [ xk, · · · , xk−h, · · · , xk−d, uk−d−1 · · · , uk−2d−1 ]

With obvious notation, the closed-loop system can be
written as

γk+1 = Āγk + Γ̃γk (19)

It can be seen from (19) that, if d = h the eigenvalues of Ā
are given by the set of the n eigenvalues of (A−BK) and
((d+ 1)(n+m) − n) eigenvalues at the origin, due to the
introduced delays. On the other hand, if d 6= h, but the
LMI constrain (15) is fulfilled, Ā is also a Schur matrix,
i.e. Ā has all its eigenvalues strictly inside the unit circle.
Thus, it follows that, for every Q > 0 ∃P > 0 such that
the following Lyapunov equation holds

ĀTPĀ− P = −Q.

Then, other than the time delay, if uncertainties in the
plant model, Ac, Bc, and ζk are small enough such that

−Q+ ‖2Γ̃TPĀ+ Γ̃TP Γ̃‖ < −ηQ

for some η > 0, the closed-loop system (19) remains stable.

5. EXPERIMENTAL RESULTS

A 3D helicopter, built by Quanser (Quanser (Online)),
has been used to validate the proposed control scheme.

The 3D Hover system consists of a frame with four
propellers mounted on a 3 DOF pivot joint such that
the body can freely roll, pitch and yaw. The propellers
generate a lift force that can be used to control the pitch
and roll angles. The total torque generated by the propeller
motors causes a yaw to the body as well. Two propellers
in the system are counter-rotating propellers such that the
total torque in the system is balanced when the thrusts of
the four propellers are approximately equal.

All electrical signals to and from the body are trans-
mitted via a slipring thus eliminating the possibility of
tangled wires and reducing the amount of friction and



loading about the moving axes, more details see (Quanser
(Online)). The three rotations are measured using optical
encoders.

The angular dynamics of the helicopter, assuming small
angles, can be expressed as (see Castillo et al. (2005))

η̈ = K̄ηuη ∀η = ψ, θ, φ

where η = ψ, θ, φ are the Euler angles (yaw, pitch, and roll
respectively), uη is the angular control input and K̄η is a
constant that contains the inertia moment of the body and
a constant gain that is proportional to the relation between
force and voltage. The control objectify is to stabilize, in
a desired position, only the roll angle of the helicopter,
that is, we assume fixed pitch and yaw angles. Thence, it
follows

φ̈ = K̄φuφ = K̄φ(Vr − Vl)

where K̄φ = 0.4235 and Vr , Vl are the right and left

voltages of the motors respectively. Define x = [φ φ̇]′,
thus, the above yields,

ẋ(t) = Acx(t) +Bcu(t)

with

Ac =

(

0 1
0 0

)

; Bc =

(

0 0
K̄φ −K̄φ

)

; u(t) =

(

Vr

Vl

)

To stabilize the above system, it is proposed the follows
control law

u(t) = −

(

136.5 45.3
−136.5 −45.3

)

x̂(k)+Kr

∫

(y(t)−r(t)) (20)

where x̂ is defined as x̂ = [φ
ˆ̇
φ]′ and Kr = 0.6 is

a constant. Remember that, the sensor only gives the
angular orientation and by consequence, the angular rate
can not be directly measured. However, a reduced order
observer with the following form is designed to estimate
this state (Quanser (Online)),

ˆ̇
φ(t) =

125.72s

s2 + 150.8s+ 125.72
(21)

To improve the experiments, we propose like a desired
position a square wave function. Figure 3 illustrates the
well performance of the controller in the ideal case, i.e.
without delay.

Afterwards, some virtual delays, in the input channel uk

(time-constant delay τ1) and in the output channel yk

(random time-varying delay τ2k
), have been introduced to

the system.

In order to know the maximum delay supported by the
system before to be unstable, we change on-line, in the
experiments, the constant delay, for this, τ1 yields,

τ1 = dT + ∆i

In the application, the following values are used: d = 80,
T = 1 ms, ∆i = 0, 10, 20, 30 ms and T ≤ τ2k

≤ 20T .
Figure 4 shows the system response when adding virtual
delays. Notice that the system becomes unstable for a
delay τ1 ≥ 0.110s.

The implementation of the predictor (6) is doing with the
following values:

• the sampling period considered is T = 1 ms,
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0
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Fig. 3. Closed-loop system response without delay (nom-
inal case) using a square wave function as a desired
angle.

• h is computed using the average value of τ2k
, that

is 0.01 plus the value of τ1 that yields the system
unstable. Then the nominal value is h = 120,

• the matrices A and B are the discretization of Ac and
Bc respectively.

With the aim to prove robustness against uncertainties in
the delay, we have considered different input delay. Figure
5 shows clearly the improvement achieved by the predictor
scheme but also the robustness of the proposed prediction
scheme even in presence of uncertainties in the input delay.
In addition, the obtained closed-loop system behavior is
very similar to delay-free case.

This result shows that the predictor scheme could be pur-
sued to restore the desired closed-loop behavior, even when
time-varying delay-range is subject to some uncertainty.
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Fig. 4. Closed-loop system response without predictor,
time-varying output delay T ≤ τ2k

≤ 20T , and input
delay τ1 = dT + ∆i. The arrows indicate when the
input delay is modified.
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Fig. 5. Closed-loop system response with predictor (h =
120) and time-varying output delay T ≤ τ2k

≤ 20T .
Initially the input delay is τ1 = 0.10s. The arrows
indicate when the input delay is modified.

6. CONCLUSIONS

In this paper a discrete-time state prediction based con-
trol scheme for stabilizing unstable continuous-time delay
systems has been analyzed. This control scheme has been
shown to be robust with respect to time-varying delays in
the sensor output channel, besides the possible paramet-
ric model uncertainties. A sufficient condition for time-
varying delay-dependent stability has been provided when
the errors in the delay are larger than the sampling period.

The prediction control strategy has been validated in
a quad-rotor helicopter. Real-time experiments have en-
lighten the performance of the prediction based controller
and have satisfactorily demonstrated its robustness with
respect to plant delay errors larger than the sampling
period and the presence of random variations at sensor
output delay. Also, unavoidable measurement noise has
not been a major problem.

One of the main contributions of this work concerns the
digital implementation and the experimental validation of
the proposed algorithm in a real prototype. Note that, this
prototype is unstable with very fast dynamics where the
lost of one sample could be critical.

REFERENCES

Astrom K.J. and B. Wittenmark Computer-Controlled
Systems Theory and Design Pretince-Hall, third edi-
tion,1997.

Boyd, S. and Ghaoui, L.E. and Feron, E. and Balakr-
ishnan, V. Linear Matrix Inequalities in System and
Control Theory SIAM Studies in Applied Mathematics,
Vol. 15, 1994.

Castillo P., Lozano R., and Dzul A., Modelling and control
of mini flying machines Springer-Verlag, 2005.

Gu, K. and Niculescu, S.I. Survey on Recent Results in the
Stability and Control of Time-Delays Systems Journal
of Dynamic Systems, Measurement, and Control, Vol.
125 , 2003, pp 158-165.

H. Gao, J. Lam, C. Wang and Y. Wang Delay-dependent
output-feedback stabilisation of discrete-time systems
with time-varying state delay IEE Proc.-Control Theory
Appl., Vol. 151, No. 6, November 2004.

Garcia, P. Castillo, P. Lozano, R. and Albertos, P. Robust-
ness with respect to delay uncertainties of a predictor-
observer based discrete-time controller in Proc. of the
45th IEEE Conference on Decision and Control, 2006.

Gudin R. Robust control using dead-time
compensators, Master’s thesis, Faculty of Me-
chanical Eng., TechnionIIT, Nov. 2007[Online]
http://library.technion.ac.il/thesis/mec/2292113.pdf.

Lozano, R. Castillo, P. Garcia, P. Dzul, A. Robust
prediction-based control for unstable delay systems:
Application to the yaw control of a mini-helicopter
Automatica, Vol. 40, 2004, pp 603-612.

Pan, Y-J. Marquez, H.J, Chen, T. Remote Stabilization of
Networked Control Systems wiht Unknown Time Vary-
ing Delays by LMI Techiques 44th IEEE Conference on
Decision and Control and the European Control Confer-
ence, Seville, Spain, Decembre 2005, pp. 1589-1594.

Manitius, A. Z. and Olbrot, A.W. Finite spectrum Assign-
ment problem for Systems with Delays IEEE Transac-
tions on Automatic Control, AC-24 (4), 1979, pp 541-
553.

Mirkin, L. Are distributed-delay control laws intrinsically
unapproximable? 4th IFAC Workshop on Time-Delay
Systems (TDS’03), Rocquencourt, France 2003.

Mirkin, L. On the approximation of distibuted-delay
control laws Systems and Control Letters, Vol. 51, 2004,
pp. 331-3422.

Mondie, S., Dambrine, M., and Santos, O. Approximation
of control laws with distributed delays: a necessary
condition for stability IFAC Conference on Systems,
Structure and Control, Prague, Czek Republic, 2001.

Mondie, S., Lozano, R., and Collado, J. Reseting process-
model control for unstable systems with delays 40th
Conference Decision and Control, Orlando, 2001.

Mondie, S. and Michiels, W. Finite spectrum assignment
of unstable time-delay systems with a safe implementa-
tion IEEE Trans. Automat. Contr, Vol. 48, 2003, pp.
2207-2212.

Palmor, Z.J. Time delay Compensation-Smith predictor
and its modifications The Control Handbook (W.S.
Levine, Ed.), pp. 224-237, CRC Press, 1996.

Quanser Manual, Quanser, 3D Hover System: Manual
[Online] http://www.quanser.com/english/downloads/
products/3DOF Hover.pdf.

Richard, J.P. Time-delay systems: an overview of some
recent advances and open problems Automatica, Vol.
39, 2003.

Smith, O.J.M. Closer Control of loops with dead time
Chemical Engineering Progress, Vol. 53, 1959, pp 217-
219.

Seron, M., Braslavsky J., and Goodwin G.
Fundamental Limitations in Filtering and
Control [Online] http://www.eng.newcastle.edu.au
/ jhb519/book/download.html

Zhong, Q.C On Distributed Delay in Linear Control Laws-
Part I: Dicrete-Delay Implementations IEEE Trans.
Automat. Contr., Vol. 49, 2004, pp. 2074-2080.


