Abstract. This paper introduces an embedded architecture and the low-level video processing algorithms developed for an intelligent node that is a part of a distributed intelligent sensory network for surveillance purposes. In this paper, details of the architecture developed for this node are given, together with the results obtained after their implementation. The video board has been developed using two DSP processors for video processing tasks, as well as a FPGA dedicated to image capture (VGA size) and to dispatch them to the DSP processors. The low-level software includes acquisition, segmentation, labeling, tracking and classification of detected objects into three main categories: Person, Group and Luggage. Also, additional features are extracted from each object in the frame. The unit has to communicate the classification results and the main features obtained using XML streaming to upper levels, as well as the processed frames, using a JPEG stream. All these functionalities are currently running in the built prototypes.

Keywords: distributed embedded systems, distributed intelligence, low-level video processing, smart cameras, tracking, low-level classification, surveillance systems.

I. INTRODUCTION

Distributed smart cameras have received increasing focus in the research community over the past years [1-3]. The notion of cameras combined with embedded computation power and interconnected through wireless communication links opens up a new realm of intelligent vision-enabled applications [4].

Real-time image processing and distributed reasoning made by distributed smart cameras can not only enhance existing applications but also instigate new applications [6-8]. Potential application areas range from home monitoring and smart environments to security and surveillance in public or corporate buildings. Critical issues influencing the success of smart camera deployments for such applications include reliable and robust operation with as little maintenance as possible.

In this line, the SENSE [9] project undertakes the task of developing a distributed intelligent network of sensory units that aid to describe their environment in a cooperative way. This paper describes the video node in this SENSE architecture, together with the obtained results in the current developed prototypes. In Section II, the SENSE project is summarized as well as the main components of the embedded platform. In Section III the video processing algorithms developed are detailed. In Section IV, the embedded architecture that performs the low-level video processing is presented and some of their main features are discussed. In Section V, the distribution of the software between the components of the architecture aimed to achieve enough processing frame rate is also presented. Finally, in the Section VI, the obtained results with real tests are presented.

II. SENSE PROJECT DESCRIPTION

A. Project Overview

SENSE intends to overcome problems with current centralized networks. SENSE uses a completely decentralized approach. The system (depicted in Fig.1) consists of a number of identical, autonomous acting entities, or nodes, mounted at fixed locations.

![SENSE System Overview](image_url)

Each entity has sensors with static sensing parameters (i.e. intelligent camera and microphones modules), gathers information from its surroundings, and interprets it. Consequently, each entity can be seen as a standalone system. However, entities can share their knowledge with neighboring nodes, acquiring information indirectly from other sensors. By fusing it with its own information, a global view is created autonomously.

Each node within the overall SENSE system will be able to process its own sensory data and communicate with other local nodes to build a shared understanding of objects and events, how they are related across nodes and modalities, and how they are related to the environment. Key to this distributed intelligence is the concept of a (sensor) node interacting with its neighbors.

For example, if a person walks in front of one sensor in a given direction, then that person may also walk in front of a neighbor sensor a short time later, in a direction...
influenced by the positioning of the node sensors relative to each other. Frequent repetition of this pattern will result in the two sensors detecting this correlation, and using it both to increase the dependability of their own observations, and to establish common views which finally should help to learn about e.g. usual paths over sensor boundaries. The topology of the network is thus developed over time, and reflects the degree to which nodes can correlate their observations and thus help each other to draw conclusions about their environment, rather than a designer-defined notion of neighborhood.

B. Overall SENSE node architecture

![Fig. 2. SENSE node design](image)

The components of a SENSE node are organized modularly in terms of their functionality as shown in Fig. 2. These components are:

RDU (Reasoning and Decision-making Unit): This module correlates information from all sensorial components in the node as well as information received from other SENSE nodes working in the neighborhoods. This module is the responsible of trigger alarms and selects which information is offered to the rest of SENSE nodes. It decides the working mode (e.g. indoors, parking area, etc.) and propagates this modality to the sensorial components.

EVS (Embedded Video Subsystem): It acquires and processes video images extracting features in a modal way. The features extracted are communicated to the RDU to enrich the perceived state of SENSE node surroundings. This component offers an interface with higher level software to control the modality, QoS and other special features.

EAS (Embedded Audio Subsystem): It acquires and processes multiple audio signals extracting features in a modal way. As the previous module, it sends its computed features to the RDU and offers an interface to higher level Software.

WCS (Wireless Communication Subsystem): This module controls the wireless communications flow in a neighborhood of SENSE nodes.

CIM (Communications and Interface Module): This module is the hardware and software communication interface that provides the way to share information and control among modules in a SENSE node.

The hardware platform is the realization of the design in Fig. 2, including some compromises due to availability of hardware components. Following the policy of using off-the-shelf components, Freescale iMX31 has been selected to develop the RDU module and Blackfin DSP processors for video and audio intelligent modules.

III. LOW-LEVEL VIDEO PROCESSING ALGORITHMS DESCRIPTION

Video surveillance, either indoors or outdoors, is an active research topic in computer vision and various surveillance systems have been proposed in recent years: [3, 5]. The video surveillance process may be divided into the following steps: environment modeling, motion detection, object classification, tracking, behavior understanding, human identification and data fusion, (see Fig. 3).

From the SENSE point of view, the low level video processing sends information to upper levels in the form of Low Level Symbols (LLS). At low level, LLS are elaborated to include a draft classification into reduced pre-defined subsets matching the limited number of visual objects that can be detected.

Therefore, the low level video processing is not focused to directly solve the problem of video surveillance. Instead, the low level processing is focused on providing to high processing level with a simple object’s description in the scene (including object’s classification and features). In the demonstration application of SENSE, (airport surveillance), attention must be paid to individuals standing alone, groups of people and luggage. With respect to video processing, a SENSE system consists of a set of cameras running low-level vision algorithms, covering the complete airport.

The general framework proposed for video processing is shown in Fig. 3. As depicted in the figure, Low Level Video Processing is responsible of object’s identification and feature extraction while upper levels of semantic processing and multimodal integration are in charge of evaluating the behavior of detected objects.

Some techniques and algorithms intended for low level
video processing have been evaluated in order to perform the necessary steps to detect target objects in a scene, track them and classify them. The implemented algorithms have been chosen with the aim of being fast, but without sacrificing accuracy. Also, though most of them do not require parameters, in order to allow them to be more flexible, some parameters are needed to constraint the working operation of the surveillance process. These algorithms are introduced in the next sections.

A. Environment model and adaptive background

Producing a precise background reference image is a crucial task in computer vision applications such as video surveillance. The performance of other processes, as segmentation and tracking, included in the surveillance system depends on having a good background model. The main approaches to background modeling which can be found in literature are:

- Statistical approach: statistical temporal functions on a sequence of the most recent frames such as mean, mode or median.
- Parametric or non-parametric mixture model of k Gaussian distributions
- Image model approach.

This work uses the following definitions for moving objects, background pixels and so-called ghosts given in [10]:

- Moving object: a set of connected points in the input image (frame), which in comparison with the static camera, are currently characterized by non-null motion and a different video appearance from the background.
- Ghost: is a set of connected points, detected as in motion but not corresponding to any real moving object.
- Background: All pixels in every input image which neither belong to moving objects nor ghosts or their cast shadows.

Moving objects, ghosts and their cast shadows are considered as foreground objects (or regions) hereafter. Environment modeling may be also called background modeling, and both terms will appear in this paper indistinguishably. By B_i and F_i, will be represented a background image and an acquired frame respectively, the subscript i indicates the instant of time when they have been computed or acquired and p_{ij} makes reference to a value pixel with image coordinates i and j.

Background modeling starts by creating a first background model B_0, which is adapted over time to cope with light changes. B_t may be obtained from a sequence of initial and consecutive input frames ($F_1,F_2,F_3,...,F_t$) containing no moving objects, and compute the arithmetic mean, median or mode of these images

$$B_t(p_{ij}) = \text{median}(F_t(p_{ij})); \quad k = 1...t$$

(1)

Evidently, simple temporal arithmetic mean does not yield correct results if the used images contain moving objects. However, a selected set of frames can produce better results and it is a simple but efficient technique. Using frames containing no moving objects must be preferred when trying to build B_t. In order to optimize resources and to obtain a representative model, a periodic but not necessarily consecutive sequence of frames as $F_1, F_{1+2}, F_{1+4},...,F_{1+2n}$ can be used instead. This approach has been graphically represented in the Fig. 4.

Once the first model B_t is created, it is updated automatically after a certain amount of frames in order to introduce the illumination changes in the scene into the model. This update is performed according to:

$$B_{t+1}(p_{ij}) = \begin{cases}
B_t(p_{ij}) + \alpha_B \left(F_t(p_{ij}) - B_t(p_{ij})\right) & \forall p_{ij} \in \Omega(F_t) \\
B_t(p_{ij}) & \forall p_{ij} \notin \Omega(F_t)
\end{cases}$$

(2)

where B_t and B_{t+1} are the previous and newly calculated background models; $\Omega(F_t)$ is an image which only contains the background pixels of the last frame acquired and α_B is the updating rate of the background model. It is important to point out that only the pixels labeled as background pixels are updated in the background model and the other pixels are not updated. Values of α_B can vary in the range $[0, 1]$, and typically a value between 0.02 and 0.05 provides good results.

Another aspect that is necessary to study is the time ω_B between two consecutive background model updates (see Fig. 4). This time can be considered constant for the surveillance system or computed as a function of the frame parameters. Usually in indoors situations this time may be long, as long as illumination changes won’t occur in small periods of time. The laboratory experiments show that $\omega_B=3$ minutes would be enough in many cases. However, it is still an open line to determine whether these parameters, α_B and ω_B, should be predefined in the application or should adapt themselves to illumination evolution.

The first solution would require having both as parameters of the application and has the advantage of being simple; but the second one has the advantage of flexibility, giving each node the possibility to adapt to each situation without reprogramming. In the light of SENSE, where self-configuration is an important feature, this later is the preferable alternative

B. Local Object Tracking

After motion detection, the next step is to track moving objects. In our case, this tracking must be considered as low-level tracking, aimed to improve the low level
classification results. This must be not confused with the Object Tracking performed at the intermediate level showed in the Fig.3. First, a preprocessing of the segmentation result is performed [1,7,11], this is done because objects may be broken into different pieces in the presence of segmentation failures. In an effort to reduce tracking errors due to this issue, an intermediate step analyzes the segmentation result and reconstructs objects according to their current position and their spatial relationships with objects in the past frames. The tracking algorithms usually have considerable intersection with motion detection during processing. Tracking over time typically involves matching objects in consecutive frames using features such as points, lines or blobs. Tracking methods are divided into four major categories: region-based tracking, active-contour-based tracking, feature-based tracking and model-based tracking [12].

We have implemented a tracking system based on the bounding box region. The bounding box (BBox) is the minimal rectangle that contains a blob (see Fig.11). For each blob R_c^x obtained in the motion segmentation process, its BBox is calculated. We assume that the movement of the object in two successive frames is such that they overlap each other. Tracking is performed by checking which bounding boxes in the current frame overlap with those in the previous one. This way, we can detect easily and with a good confidence degree which blob has moved and where, without any further test. This criterion has been found to be effective in other approaches and does not require the prediction of the blob’s position [1, 7]. The following situations are considered:

i) New blob in the scene: When a blob R_c^x in the previous scene does not overlap with any other R_{c-1}^x in the previous scene, it is supposed to be a new blob.

\[
\text{let } R_c^x, \forall R_{c-1}^y \text{ if } (R_c^x \cap R_{c-1}^y) = \emptyset \Rightarrow \text{ a new blob (6)}
\]

ii) A blob leaves the scene: When a blob of the previous scene has not any overlap with any other in the current scene, it is supposed to be out of the scene.

\[
\text{let } R_{c-1}^x, \forall R_c^y \text{ if } (R_c^x \cap R_{c-1}^y) = \emptyset \Rightarrow \text{ a blob left the scene (4)}
\]

iii) Two or more blobs join: When two or more different blobs in previous frame overlapped on a single blob in the next frame, we say that they have joined (people picking a suitcase up or people crossing or joining).

\[
\text{let } R_{c-1}^y, \forall R_c^e \text{ if } (R_c^e \cap R_{c-1}^y) \neq \emptyset, \text{ and } (R_c^e \cap R_{c-1}^y) \neq \emptyset \Rightarrow R_c^e, R_{c-1}^y \text{ have joined in } R_c^e (5)
\]

iv) Two or more blobs split: When a single blob in previous frame overlapped with two or more different blobs in current, we say that they have split. Splits happen when someone leaves a suitcase or a group of people unravels.

\[
\text{let } R_c^x, R_{c-1}^e ; \forall R_y^e \text{ if } (R_c^x \cap R_{c-1}^y) \neq \emptyset, \text{ and } (R_c^x \cap R_{c-1}^y) \neq \emptyset \Rightarrow R_c^x, R_{c-1}^e \text{ split respect } R_c^e (6)
\]

The joint/split detection is performed with the aim of detecting blobs joining (which could correspond to a person picking up an object or several people joining into a group) or splitting (which could correspond to someone leaving a suitcase or a group of people separating). These cases are represented by several bounding boxes which overlap one with each other.

Blobs are also labeled to point out which area of the scene they are standing in. The Kalman filter is applied to each object in order to try guessing trajectories when objects cross and it becomes impossible tracking them separately. The result of the Kalman filter is used in the case that two objects join into one and separate again. The system assumes the Kalman filter predicts accurately the position of both blobs and then distinguishes both of them according to these predictions.

Once blobs are assigned with a label (either new or coming from the previous scene) they are considered as tracked objects, (or objects, for brevity). The result of the local tracking step is a number of objects which inherit some properties from those of the previous scene related with them, or objects which are new in the scene. For each object, either new or not, a feature set and a membership probability for each class (see Fig. 11) are calculated in order to ease the final classification done by higher processing levels.

C. Assigning Membership Probabilities to found Objects: Classification

Calculation of membership probability is performed for each object in each frame. Objects which had matches with objects in the previous scene, update their probabilities again to give more confidence to previous calculations. This membership assignment constitutes a low-level classification, which is passed out to the upper reasoning levels in the overall architecture, together with the rest of calculated features, in order to aid in the final classification of each object.

The main features that have been used in low-level classification are:

- **Dispersedness**: calculated as the square of the perimeter divided by the area of the blob (see [13] for more details). This feature is useful to distinguish compact blobs (such as bags and similar objects), with reduced perimeters from others with more human-like dispersed contour, having more long perimeters (such as in persons and groups). **Dispersedness** relates the square of the perimeter with the area of the object. A circle is the element with the lowest dispersedness. As the perimeter grows, having the same area, the object becomes more dispersed.

- **Extent**: Calculated as the amount of foreground pixels of the object divided by the bounding box area. The **Extent** of a Blob (also known as Filling Factor) is somewhat similar to the **Dispersedness**, and gives higher values for class Luggage objects, while for Groups offer more reduced values and Persons show intermediate values.

- **Number of heads**: Number of heads of the blob. It corresponds to the number of local X-maxima in the silhouette of the blob based in the x-projection.

The Number of heads is a feature that intends to separate the class Group from the Person and Luggage classes.
Intuitively, it seems evident that a person has only one head, whereas a group must have as many heads as persons contained in the group. Also, in the case of a luggage’s blob, it is not unusual to found one local maximum. However, this is a simplified theoretical approach, because real blobs show many defects due to noise or failures in segmentation process. These imperfections can lead us to obtain wrong head numbers. Thus, if this parameter is to be used in a classifier, a previous pre-processing of the blob is mandatory to obtain robust estimations for its value.

Currently, in our approach, the upper part of the blob’s silhouette is low-pass filtered to avoid noise peaks and little objects to be confused with heads. Also, these local x-maxima must have a minimum of height from the adjacent local minima (the shoulders) to be considered. Finally, these maxima must have enough blob area under them to avoid confusions with other small objects adjacent to the persons, as luggage, raised hands, and so on…

The Number of heads has proven to be very efficient to discriminate in a first step Groups of persons from Luggage or single Person. After that, the Dispersedness and the Extent are used to discriminate between Luggage and Person by using a K-NN classifier. The Fig. 5 shows the decision tree used in the current low-level classification. To use these two latter features (Dispersedness and Extent) in the K-NN classifier a previous normalization was required, in order to manage dimensionless numbers between 0 and 1.

The Extent is already obtained normalized between 0 and 1, but the Dispersedness has not an upper bound. Thus, we have normalized it by using its inverse and a normalizing factor. Despite the upper bound of the Dispersedness is undefined, the lower bound is obtained as the Dispersedness of the circle, which is the object with the minimum Dispersedness possible, being this factor:

\[
\text{Dispersedness of the circle} = \frac{\text{perimeter}^2}{\text{area}} = \frac{(2\pi r)^2}{\pi r^2} = 4\pi
\]

Thus, we define the Inverse Dispersedness(ID) as:

\[
ID = \frac{1}{\text{Dispersedness}}
\]

Thus, Luggage blobs will normally exhibit high ID values (near to 1) while Persons will have lower values (near to zero). To illustrate the benefits of these features, in the Figs. 6 and 7, the statistical distribution of their values for the blobs of the training database, are represented.

IV. VIDEO PROCESSING ARCHITECTURE AND IMPLEMENTATION

The video board has been developed using DSP processors for video processing tasks as well as a FPGA dedicated to image capture and sharing the images with the DSP processors. This cooperation between DSP and FPGAS has been also reported recently in different applications related to video processing [12,14,15].

In Fig. 8 the outline of the video board of the SENSE node is depicted. The actual implementation of the video board uses two Blackfin DSP processors. The idea is to have a dedicated dual core BF561 to process images and feature extraction. The features extracted will be sent to another DSP (BF537) through SPORT connection (no video is sent by this channel). The BF537, that has Ethernet interface, will be dedicated to video compression tasks as well as to external communication interface.

Blackfin core modules provide a PPI port to connect digital cameras following YUV, YCbCr and RGB standards. The camera programming can be done through I2C interface using the Serial Camera Control Bus (SCCB) standard. The used camera in the current prototype is the Omnivision OV7660 (Colour, VGA resolution).

In order to provide flexibility to the design, all Blackfin PPI, camera output and analog video encoder are connected to a FPGA chip (SPARTAN III 3S250e). This configuration allows different connections among these buses. In particular, the FPGA is programmed to perform
The video board is charged with the tasks corresponding to the compression of live images and the extraction of characteristics of the video detected objects, as well as digital video capture. Some of these functions are provided directly by the hardware, and the rest are done by software running on both DSP processors. Mainly, these tasks are:

- Video compression and streaming (JPEG).
- Real-Time processing the images to identify objects.
- XML encoding the image features and transmitting them to the main board (RDU) trough Ethernet (CIM module).

The FPGA interface is responsible for pin assignments through all the board. This approach enhances the versatility, making that some changes can be made into the hardware without affecting the software. It is also responsible of getting the frames (video capture) and delivering them to both cores. The result of video processing done in BF561 is transmitted to BF537 through a SPORT connection.

A. Image and features alignment

Object identification and video compressing services work in separate processors. As each processor has its own clock, we need a mechanism to align the XML messages with JPEG compressed frames. For this purpose, a 64-bit frame counter has been included into the board. This counter is incremented with each vertical sync signal coming from the camera. For each frame, the FPGA writes the time stamp provided by the counter in the first byte of the image. As the processors share the frames, they will have a common time stamp for each frame. This is a simple way of getting a common time measure, and it does affect neither the detection of objects nor the video compressing algorithms.

V. LOW-LEVEL VIDEO SOFTWARE IMPLEMENTATION

A. Software for feature extraction unit (BF561)

The feature extraction unit is responsible for detecting objects in each frame and tracking them, creating a list of low level items with all the features found. The work can be divided into five main phases, as described in previous section: Acquisition, Segmentation, Labeling, Tracking and Classification.

The BF561 processor has two cores. This means that at least two tasks can work concurrently. Tasks are assigned through the cores according to their computational weights. The algorithm as a whole must be executed in a sequential way, i.e. each frame goes through the five processing phases in order. Another important issue is that the acquisition is done via a Direct Memory Access (DMA) transfer. This means that it doesn’t consume processor time, and that this task could work concurrently with others even into the same core. According to their CPU usage ratios, the tasks have been divided into three main working units, all of whom can work concurrently, so their performance is maximized. These working units are:

- Acquisition. Running on Core A.
- Segmentation. Running on Core A.
- Labeling, Tracking and Classification (LTC). Running on Core B.

The system runs as a software pipeline. Traditional pipelines are implemented as independent phases. Phases are interconnected by buffers. Each one reads data from the input buffer, performs some processing and writes the results into the output buffer. For the phases to be able to work concurrently, each buffer should maintain several data objects. The main advantage of this approach is its ease of implementation. But, with several phases and buffers, two main problems arise:

- **Restricted access**: Should the last phase need some data from the first buffer, the data may be lost.
- **High latency**: With different running times for each phase, there will be a bottleneck when the processing time of phase i is lower than the processing time of phase $i + 1$. At this point, the communication buffer gets full, so the data has to go through longer queues and so the required time to cross the system increases.

Thus, based on the control logic of a segmented processor, a modified pipeline will aid to solve these problems. The new pipeline, based on a circular buffer (main buffer) is described in the Fig.9.

![Fig. 8. Video Board Hardware Outline](image)

![Fig. 9. Software pipeline used to reduce the latency. Sequence shows cycles k and $k+1$. Note that main buffer is circular and in each cycle, one of the 4 frames remains unused.](image)
defines event E_i as a function of event bits B_{45}, B_{46} and B_{47}. When all these bits are true, E_i becomes true. In our system, each phase has an associated event bit. We have defined the event nextcycle as the conjunction of the event bits associated to each phase:

$$nextcycle = B_{acquisition} \land B_{segmentation} \land B_{LTC}$$ (10)

The first task of all in video processing is to acquire the frames. As we have seen before in Fig 8, each processor gets the frames through the PPI parallel port. At this phase we have to:

- Get the frames
- Recover the time stamp included on the first line of the frames by the FPGA

Due to some restrictions, system initialization is done at the beginning of this phase: memory allocation, camera driver initialization and first background model creation. The frame acquisition is done via a DMA-PPI transfer.

Data comes from the camera, through an 8-bit parallel port to the PPI device. This device works as a bridge from the camera to system memory. It must be taken into account that the first line of each image has some extra data: the time stamp. This data must be recovered and saved into the frame structure.

The frames are transferred in YUV format. For each single frame, we have 640x480 Y values, 320x480 U values and 320x480 V values.

B. Software for compression and Ethernet interface unit (BF537)

The BF537 processor is responsible of node communications with two main tasks:

- Compressing the incoming frames into JPEG format
- Generating the XML messages with the data obtained by the other processor.

All these data are sent through an Ethernet connection. The system has been designed to keep working even if there are no Ethernet connections available. Also, only one connection is allowed for each service. Each service is managed by means of a thread and a semaphore.

Compressed video is sent in JPEG frames. The first part developed has been the JPEG video service. Four threads manage the service, which has been developed as a pipeline with some special issues. The JPEG thread includes the time stamp generated by FPGA. This is done by modifying the header of the generated JPEG and inserting the time stamp.

The data obtained from the scene processing will be transferred using XML messages. The XML Stream service works receiving serialized scene data through the Serial Port and generating an XML ASCII message. This service is managed in a similar way as the JPEG.

The data obtained from the scene processing will be transferred using XML messages. The XML Stream service works receiving serialized scene data through the Serial Port and generating an XML ASCII message. This service is managed in a similar way as the JPEG.

VI. EXPERIMENTAL RESULTS

In this section, the measured results obtained from a first prototype of the node working in a real scenario are given as a demonstration of the possibilities offered by our video platform.

A. Time spent in each phase of video processing

The Figure 10 shows the time spent in the main phases of the video processing in the Core B of the BF561 processor during a short sequence taken from a scene with normal activity, as well as the total time between frames.

As can be seen from this figure, the mean total time spent is about 133ms approx. This time is not casual, as it is due to the fact that the capture frame rate has been adjusted to 7.5 fps (that is: 133.33ms per frame) to avoid irregular frame rate in overloads. From the data used to plot the Figure 10, we can obtain the following mean values for each phase (these values are approximate, as the times are dependent on the complexity of the scene):

- tracking: 0.25ms
- labeling: 45.25 ms
- classification: 12.15 ms

B. Low-level classification results obtained from real prototype

The previous section III described algorithms for segmenting scenes, tracking objects, low-level classifying objects and adapting the scene background to changes in light conditions. All these algorithms have been implemented and tested in a first development stage inside the Matlab environment. Afterwards, these algorithms have been embedded into the DSP processors.

Most of the experiments done are aimed to test the quality of the final classification of objects, as this is the goal of the complete process. The current results are satisfactory, but improvements are still possible and desirable. Thus we continue working on these issues, enhancing the current silhouettes databases and obtaining more videos with ground truth, to make better evaluation tests. To evaluate the real behavior of the prototype, a short real sequence was taken in our School main hall, with about 3000 frames. The obtained classification results as well as the images have been recorded and the classification results have been inspected frame-to-frame.
in a manual way. From this short scene, a total of 643 persons, 202 groups and 390 luggages were detected and classified by the prototype. The classifications results obtained have been summarized in the Table I.

TABLE I: CLASSIFICATION RESULTS OBTAINED DURING REAL EXPERIMENTS.

<table>
<thead>
<tr>
<th>Object Class</th>
<th>Person</th>
<th>Group</th>
<th>Luggage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>91.9%</td>
<td>19.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Group</td>
<td>6.8%</td>
<td>80.7%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Luggage</td>
<td>1.3%</td>
<td>0%</td>
<td>99.2%</td>
</tr>
</tbody>
</table>

A client application connected directly to the video processing module (see Figure 11) has been used for “black box” testing purposes. The preliminary tests carried out on this prototype show satisfactory results in the full video processing, achieving frame rates up to 8 frames per second including JPG video images as well as XML streaming. Also, we expect that future work will improve the current achieved results.

Fig. 11. Image obtained from a client application showing information provided by low level video processing services. Each detected object has a label with the object identifier number and the assigned membership probability. Each BoundingBox is drawn with a color that represents the class, and the detected heads have been marked with a cross.

VII. CONCLUSION

In this paper, the details of the implementation of the video algorithms in the SENSE node have been described, including the theoretical foundations and the experiments carried out to evaluate the results of the elected algorithms that have finally been implemented in the video board. These algorithms include: algorithms for segmenting scenes, tracking objects, low-level classifying objects and adapting the scene background to changes in light conditions. All these algorithms have been implemented and tested in a first development stage inside the Matlab environment and currently are embedded into the DSP processors.

Classification results, as being the output of the process, may be measured as a whole, considering the total amount of objects expected to be segmented, tracked and classified as a single stage. The results obtained in our real experiments seemed very satisfactory, as expected from our previous off-line experiments with Matlab environment. Table I summarizes the classification results obtained. In any case, for all tested videos, the True Positive rate in all classes is higher than 80%, being this the limit agreed to ensure high level robustness.

REFERENCES