
ARINC-653 APEX based on XtratuM

M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll and A. Crespo

Instituto de Automática e Informática Industrial
Universidad Politécnica de Valencia

{mmasmano, yvaliente, pbalbastre, iripoll, alfons}@aii.upv.es

Abstract. The ARINC-653 standard defines a general-purpose APEX (APpli-
cation/EXecutive) interface between the Operating System (O/S) of an avion-
ics computer resource and the application software. This interface provides the
services to build partitioned systems and has been used successfully in avionic
systems. In recent years, the space domain is considering the incorporation of
Time and Space partitioning (TSP) based upon the Integrated Modular Avionics
(IMA) concept. This concept is fully supported by ARINC-653 and it is taken
as the reference standard. XtratuM is a hypervisor for real-time systems that has
been designed following the safety and security criteria for partitioned systems.
XtratuM provides a virtual machine to execute partitions that have been para-
virtualised. In this paper, we present LithOS, a real-time guest operating system,
which executes as a XtratuM partition, that provides the ARINC-653 API. We
describe the services provided by LithOS and some additional features that have
been included in the API. Finally, an evaluation of LithOS is shown, comparing
the performances of LithOS with other execution environments.

Keywords: ARINC-653, RTOS, partitioned systems, para-virtualisation.

1 Introduction

The technological innovation in the computer industry has driven to the availability
of new high-speed processors, an increasing computing power, memory sizes and low
cost on-chip memory. Accelerated computing is a framework that drives to use these
resources in the integration of many applications, hence the interest to enable multiple
applications, to share a single processor and memory, protected in time and space. In
order to fully exploit the performance improvements of modern processors in safety-
critical applications, it is advantageous to enable the integration of applications at mul-
tiple levels of critically and security on the same processing resource.

Partitioned software architectures represent the future of secure systems. They have
evolved to fulfill security and avionics requirements where predictability is extremely
important. The separation kernel proposed in [9] established a combination of hardware
and software to allow multiple functions to be performed on a common set of physical
resources without interference.

The MILS (Multiple Independent Levels of Security and Safety) initiative is a joint
research effort between academia, industry, and government to develop and implement a
high-assurance, real-time architecture for embedded systems. The technical foundation



adopted for the so-called MILS architecture is a separation kernel. Also, the ARINC-
653 [1] standard uses these principles to define a baseline operating environment for
application software used within Integrated Modular Avionics (IMA), based on a par-
titioned architecture. The IMA partitioning concept emerges for protection and separa-
tion among applications from the spatial and temporal point of views. Spatial isolation
protects the memory of a partition. A partition cannot acces memory out of the scope
of its own memory specified on partition configuration. Temporal isolation means only
one application at a point of time has acces to the system resources, whereas is not
possible to an application run when another application is running.

The closed requirements in aeronautical industry with the space industry has done
the ARINC-653 standard a good candidate to solve the problems present in the aerospace
sector. It provides a standard environment independent from the implementation and the
underlying hardware and offers to the developers a clean and portable interface to de-
velop secure applications [10]. The importance of virtualisation is growing every day,
particularly it is gaining considerable interest in the embedded domain. Virtual machine
(or hypervisor) technology can be consider the most secure and efficient way to build
partitioned systems. XtratuM is a hypervisor which allows to execute several applica-
tions according to the Integrated Modular Avionics(IMA) concept. XtratuM implements
a partitioned based architecture which provides protection to safety critical applications.
The increased importance of the ARINC-653 and the IMA concept prompts for a re-
placement of the non-standard XtratuM’s API with a standard specification.

This paper presents the architecture of LithOS, a new real-time operating system
for developing partition applications on top of XtratuM, which provides an Application
Interface(API) compliant with the ARINC-653 specification.

2 The ARINC-653 specification

ARINC-653 specification[1] provides a standarized interface between the OS within
IMA and the application software which specifies the interface and the behavior of
the API services but leaves implementation details to OS developers. In this way, the
Application Execution(APEX) not only standarizes the definition of services, but also
the interface of the underlying OS. Therefore, the ARINC-653 specification defines an
independent interface of hardware and Operating System(OS) and provides significant
benefits: portability, reusability, modularity and integration of software building blocks.

One key aspect is that all resources have to be clearly specified at the building
time by means of a configuration file (CF). This CF specifies the number of partitions,
memory allocation of partitions, partition schedule, ports and channels, etc.

2.1 Services

The ARINC-653 specification describes the complete set of services. This list of ser-
vices identifies the minimum functionality provided by the OS to the applications and
they are defined in the ARINC-653 Part 1:



– Partition management: The main concept of the ARINC-653 is partitioning. A par-
tition is an execution environment with separate memory space and strictly pro-
tected time, without affecting another partitions on any way, according to the IMA
architecture. Partitions are scheduled according to a cyclic scheduler which is spec-
ified in the configuration file. All resources used by a partition (processes, black-
boards, semaphores, ports, ...) have to be defined at system configuration time and
created and initialised during the initialisation phase of the partition.

– Process management: A partition comprises one or more processes that interact
dinamically to provide the partition functionality. Processes are the execution unit
within a partition of ARINC-653. The scheduler works according a fixed-priority
preemptive policy. A process with an higher current priority can preempt the run-
ning process. These services permit to manage the processes in the partition in a
way that satisfies the requirements of the application. Processes are only visible
inside its partition.

– Time management: is the basic module to manage time in the OS and ensures that
hard real-time requirements are met. Time management module uses the hardware
timers to read the current time and provide the time requests. An application may
request a time-out, delay, periodicity, process scheduling, etc.

– Inter-partition communication: This module defines the communication mecha-
nism between two or more partitions via messages. A port allows a specific parti-
tion to write and read messages from a channel, between a source and a destination
port, specified in the configuration data. Channels, ports, maximum message size
and maximum number of messages are completely defined at system configuration
time. These services include Sampling Port and Queuing Ports.

– Intra-partition communication: These services dene the mechanisms used for com-
munication and synchronization between processes within the same partition. Black-
boards and buffers are provided for intra-partition communication. Semaphores and
events are provided for intra-partition synchronization.

– Health monitoring: the health monitor is the mechanism proposed by the ARINC-
653 for reporting and monitoring errors. The error handling is the highest priority
process and it is invoked whenever a fault takes place. The health monitor may
ignore the fault and log it or call the error handler to manage the error which defines
how the partition should respond.

The ARINC-653 specification Part 2 [3] defines several additional services as ex-
tended. One of these services, developed in Lithos and defined in the standard as Multi-
ple Module Scheduler, is related to the ability to extend the single static module sched-
ule by several scheduling plans defined in the configuration file and the posibility to
change the current scheduling plan.

3 XtratuM

XtratuM is a hypervisor for real-time embedded systems that provides virtualised ser-
vices to the partitions and manages their execution environment [4, 5, 7, 8, 6]. XtratuM
virtualises the essential hardware devices (memory, timers and interrupts) to execute
concurrently several OSes, such as LithOS.



As we have seen, the ARINC-653 standard is based on a partitioned architecture.
XtratuM provides the partition concept as an execution environment virtualised to be
executed on top of the hypervisor. Partition developement on top of XtratuM requires
to write the code to be executed inside of the partition. The hypervisor takes control of
the system at boot time and initialises the hardware, then the partition code is started.
This partition code can be:

– An application compiled to be executed on a bare-machine.
– A real-time operating system and its applications.
– A general purpose operating system and its applications.

XtratuM is not a standard hypervisor but some parts are very closed to the function-
alities defined in the ARINC-653 specification. The hypervisor provides the ARINC-
653 partition management, inter-partition communications, health monitor, scheduling
policy and other functionalities to accurately been adapted to the

3.1 Execution environments

Partitions can be executed directly on top of XtratuM by means of a minimal layer called
XAL (XtratuM Abstraction Layer). XAL is a minimal partition development support for
the development of C programs directly on top of XtratuM. This abstraction layer pro-
vides the basic and minimal services to setup a basic “C” execution environment. XAL
is only useful for those partitions that are mono-thread and do not need an operating
systems. All services provided the XtratuM hypercalls are available to the application.
The XAL development environment is integrated by a library with the services and the
minimal runtime to execute the partition and handle the virtualised interrupts.

In addition, XtratuM also supports RTEMS operating system. RTEMS is a free open
source real-time operating system (RTOS) designed for embedded systems and adopted
by the ESA for space applications and space missions. RTEMS (4.8.1) has been ported
on top of XtratuM.

4 Lithos Overview

LithOS is a para-virtualised guest operating system which provides the primitives to
create the system resources (blackboards, buffers, events, semaphores...) and the mech-
anisms to create threads, timers and the process scheduler. This is a non-standard inter-
face designed for the efficient and accurate development of standards which define the
OS personality.

LithOS implements the process concept presented in the ARINC-653 standard which
is not present in XtratuM. Processes may operate concurrently in order to satisfy the ap-
plication requirements. LithOS adds the multi-process support, the communication be-
tween processes and the process scheduler. LithOS uses the services provided by Xtra-
tuM to complete the mechanisms required to develop application based on ARINC-653.

The LithOS architecture supports partitioning in accordance with the IMA philoso-
phy. Spatial partitioning is ensured by the partitions with its own data and context, and



by the configuration file which defines each partition memory area. Temporal partition-
ing is ensured by a cyclic priority scheduler which is periodically repeated. The order
of execution is defined statically in the configuration file.

4.1 Lithos Architecture

The LithOS architecture is shown in Figure ??. The XtratuM layer provides an execu-
tion environment which furnish a set of services, such as partition management, time
management, inter-partition communication and health monitor.

Fig. 1. Lithos architecture

LithOS implements the services to provide multiprocessing and internal mecha-
nisms for synchonisation and communication among processes. The services related to
partition management and interpartition communication are built from the basic ser-
vices provided by XtratuM. Health monitoning and tracing facilities are implemented
using the XtratuM services.

These are the services implemented by LithOS.

Partition management The standard defines basic services related to the partition
such as set the partition mode or get the partition status. The set partition mode
permits to restart the current partition (COLD or WARM RESET). The standard
does not defines a partition identification allowing the services to manage other
partitions (i.e. reset, start, stop, shutdown). In addition, the access to the status of
other partitions is not considered either.



Process management These services are entirely implemented by LithOS to offer
complete the ARINC-653 specification. So, a LithOS partition can create a set
of processes (tasks or threads in other nomenclature) that permit to design multi-
process applications. There is a clear differentiation between the partition initiali-
sation phase (COLD or WARM RESET state) and the execution phase (NORMAL
state). System resources (processes, ports, blackboards, ...) can only be created dur-
ing the initialisation phase.

Time management LithOS uses the basic services provided by XtratuM to retrieve the
current time or arm a timer. Internally, LithOS implements a timer data structure
(heap structure) to build as many timers as needed by the application. The clock
granularity is 1 nanosecond.

Inter-partition communication The inter-partition communication mechanisms (ports
and channels) defined in XtratuM were inspired in the ARINC-653 specification.
So, these services are used directly by LithOS’ internal processes.

Intra-partition communication LithOS layer implements the services to communi-
cate and synchronise processes. Inter-process communication is conducted via buffers
and blackboards which can support the communication of a single message type be-
tween multiple source and destination processes. Buffers are stored using a queue
discipline whereas blackboards only store a message. Inter-process synchronisation
is conducted by using semaphores and events. Semaphores are counting semaphores
and are used to control the access to shared resources. Events are synchonisation
mechanisms which allow notification of an occurrence of a condition to processes
which may wait for it. An event is composed of a bi-valued state variable (up and
down).

Health monitoring (HM) XtratuM defines a HM service inspired in the ARINC-653
HM. Through the configuration file, the predefined HM events are associated to
predefined services. Some of them can be propagated to the faulty partition. LithOS
provide the services to install an exception handler process which is in charge of
manage the raised exceptions. Application based exceptions can be defined, raised
and managed using the services provided by LithOS.

Table 4.1 summarizes LithOS services.

4.2 Extended services

The ARINC-653 standard defines several additional services as extended. One of these
services is related to the ability to define several scheduling plans in the conguration
file and the posibility to change the current scheduling plan. The services related to this
functionality are defined in the standard as Multiple Module Schedule (MMS).

LithOS implements the MMS that permits to extend the single and static module
scheduler to several scheduling plans. Plans are identified by means of a plan identifier.
When XtratuM starts the partition execution, the plan identified as ”0” is set as the
current plan. A partition with the appropriated rights can request a plan change which,
if accepted, is effective at the end of the current major frame (MAF).

The system architect can define as many plans as needed. A partition with the ap-
propriated rights is in charge of conduct the system to the plan needed at each moment.



Partition management Health monitoring
GET PARTITION STATUS REPORT APPLICATION MESSAGE
SET PARTITION MODE CREATE ERROR HANDLER

Process management GET ERROR STATUS
CREATE PROCESS RAISE APPLICATION ERROR
SET PRIORITY Blackboard management
SUSPEND SELF CREATE BLACKBOARD
SUSPEND DISPLAY BLACKBOARD
RESUME READ BLACKBOARD
STOP SELF CLEAR BLACKBOARD
STOP GET BLACKBOARD ID
START GET BLACKBOARD STATUS
DELAYED START Buffer management
LOCK PREEMPTION CREATE BUFFER
UNLOCK PREEMPTION SEND BUFFER
GET MY ID RECEIVE BUFFER
GET PROCESS ID GET BUFFER ID
GET PROCESS STATUS GET BUFFER STATUS

Time management Event management
TIMED WAIT CREATE EVENT
PERIODIC WAIT SET EVENT
GET TIME RESET EVENT
REPLENISH WAIT EVENT

Inter-partition communication GET EVENT ID
CREATE SAMPLING PORT GET EVENT STATUS
WRITE SAMPLING MESSAGE Semaphore management
READ SAMPLING MESSAGE CREATE SEMAPHORE
GET SAMPLING PORT ID WAIT SEMAPHORE
GET SAMPLING PORT STATUS SIGNAL SEMAPHORE
CREATE QUEUING PORT GET SEMAPHORE ID
SEND QUEUING MESSAGE GET SEMAPHORE STATUS
RECEIVE QUEUING MESSAGE Multiple schedule
GET QUEUING PORT ID SET MODULE SCHEDULE
GET QUEUING PORT STATUS GET MODULE SCHEDULE STATUS

Table 1. Lithos Services



Initially, plans are related to the system modes. Plan 0 is defined as the initialisation
schedule plan. In this mode, partitions are initialised and the internal resources are cre-
ated and initialised. One of the partitions with system attributes is in charge of the mode
change requests. Plan 1 is considered as Maintenance mode. By default, this is the plan
executed when a health monitor event selects as action a mode change. Plan 2 and next
ones are operational modes. The system architect can define as many modes as needed
for the system operation. Figure 2 shows the relation of the schedule plan management
and the partition status, while Listing 1.1 shows an example of configuration of a mul-
tiple schedule definition.

Fig. 2. LithOS Multiple schedule.

4.3 Non-portable services

ARINC-653 lacks of some services that can be considered relevant for partitioned sys-
tems. In order to cover these services, LithOS defines a set of non-portable services
which are not included in the standard. These services are mainly related to partition
and time management.

– Partition management
• GET PARTITION ID SELF NP : Provides information about the partition iden-

tifier. System partitions.
• GET PARTITION INFO NP : Provides information about the state of other

partitions. System partitions.



Listing 1.1. XML code of a multiple schedule definition

<CyclicPlanTable>
<Plan id=”0” majorFrame=”80ms”>

<Slot id=”1” start =”20ms”
duration =”20ms” partitionId =”0”/>

<Slot id=”2” start =”40ms”
duration =”20ms” partitionId =”1”/>

<Slot id=”3” start =”60ms”
duration =”20ms” partitionId =”2”/>

</Plan>
<Plan id=”1” majorFrame=”200ms”>

<Slot id=”0” start =”0ms”
duration =”10ms” partitionId =”0”/>

<Slot id=”1” start =”10ms”
duration =”150ms” partitionId =”3”/>

</Plan>
<Plan id=”2” majorFrame=”100ms”>

<Slot id=”0” start =”0ms”
duration =”10ms” partitionId =”0”/>

<Slot id=”1” start =”20ms”
duration =”30ms” partitionId =”1”/>

<Slot id=”2” start =”50ms”
duration =”40ms” partitionId =”2”/>

</Plan>
<Plan id=”3” majorFrame=”20ms”>

<Slot id=”0” start =”0ms”
duration =”5ms” partitionId =”0”/>

<Slot id=”1” start =”10ms”
duration =”10ms” partitionId =”1”/>

</Plan>
</CyclicPlanTable>

• SUSPEND PARTITION NP : Suspends the execution of a partition. System
partitions.

• RESUME PARTITION NP : Resumes the execution of a suspended partition.
System partitions.

• STOP PARTITION NP : Stops the execution of a partition. System partitions.
• RESET PARTITION NP : Performs a reset (cold or warm) of other partition.

System partitions.
• SHUTDOWN PARTITION NP : Requests for the shutdown of a partition.

System partitions.
• GET SLOT STATUS NP : Provides the current slot information: slot identi-

fier, duration, slot attributes. All partitions.
– Time management

• TIMED ABS WAIT NP : Allows the process to suspend itself until the speci-
fied time



• GET EXEC CLOCK NP : Obtains the local clock of the partition
• SECONDS : Returns a time variable with a specified number of seconds
• MILLISECONDS : Returns a time variable with a specified number of mil-

liseconds
• MICROSECONDS : Returns a time variable with a specified number of mi-

croseconds

4.4 Memory model

XtratuM builds a flat memory map for each LithOS partition. The address map of the
partition is specified in the configuration file. At build time, the amount of memory
space required by the partition as well as the partition resources are allocated from the
partitions memory. Associated to each LithOS partition, there is a local configuration
file which specifies the maximum number of local resources allocated to the partition:
number of processes, blackboards, semaphores, events, buffers and the maximum sizes
of messages and maximum number of messages to be sorted (buffers).

4.5 Partition scheduling

Partitions are scheduled under a multi-plan schedule. Each plan schedule is a sequence
of slots which details the slot identifier, partition, slot attributes, offset with respect to
the MAF origin and slot duration. When a LithOS partition is scheduled, the internal
process scheduling is applied. This second scheduling level is a fixed priority scheduling
policy as defined in the ARINC-653 standard.

5 Evaluation

LithOS has been validated according to the coverage of the official specification [2].
The ARINC-653 specification Part 1 defines the mandatory services and describes the
invocation of those services and the data structures. The LithOS tests have been defined
to prove the interface behavior is in compliance with the ARINC-653 specification.

5.1 Conformance tests

Conformance or functional tests are specification-based and are designed to analyse
the specification and the behavior of Lithos. The scope of the conformance tests is to
demonstrate compliance of the API behavior and determine whether the system meets
with the ARINC-653 standard. A total of 625 conformance tests have been imple-
mented. These tests can be grouped according to the functionality in:

– Behaviour tests: These tests, also called stress tests, are oriented to analyse the
behavior of Lithos when a system resource exceeds the system limit creation and
validates the OS system response under this situation. These tests determine the
system robustness in terms of extreme load and determine the performance if the
current load goes well above the expected maximum.



– Definitions tests: These tests are designed to check the libraries, services and at-
tributes provided by the API (Application Programming Interface). The variables
defined in Lithos are instantiated to every possible value.

– Interfaces tests: These tests are designed to judge the operation of a system under
normal and abnormal conditions, which will be defined, and make sure the results
are the expected in order to affirm the correctness of implementation. These pro-
cedures evaluate features like the ability of the OS to catch errors and the reaction
under a specific error condition(return code and error handler). These tests contain
intentionally injected errors to simulate error situations and prove if their behaviour
is the expected by the specification.

– ARINC-653 Part 3: A standard specification for compliance test procedures to
demonstrate and to prove that the interface behavior is in compliance with the AR-
INC 653 specification. Any application, which will be installed upon LithOS, can
rely on this compliance and the portability of applications is more supported.

5.2 Performance tests

Performance or non-functional tests measure the quality of the system, such as overhead
or performance. A complete performance evaluation of LithOS has been carried out
by using as target the LEON3 processor at 50 MHz. Table 5.2 shows some of these
measures. All time measures are in micro-seconds.

Service Avg Min Max SDev
Process context switch 11.4 11 12 0.36
GET PARTITION STATUS 5.26 5 6 0.26
SET PARTITION MODE 12.58 12 13 0.04
CREATE PROCESS 89.20 88 90 2.54
CREATE SEMAPHORE 16.25 15 17 0.11
CREATE BUFFER 18.00 18 18 0.02
CREATE BLACKBOARD 15.75 15 17 0.27
LOCK PREEMPTION 11.00 10 12 0.12
UNLOCK PREEMPTION 24.00 23 25 0.18
DISPLAY BLACKBOARD(16b) 58.50 58 59 0.11
DISPLAY BLACKBOARD(64b) 70.25 70 71 0.16
READ BLACKBOARD(16b) 13.00 12 14 0.22
READ BLACKBOARD(64b) 19.50 19 20 0.11
SEND BUFFER(16b) 36.50 36 37 0.13
SEND BUFFER(64b) 48.00 47 49 0.14
RECEIVE BUFFER(16b) 44.50 44 45 0.13
RECEIVE BUFFER(64b) 51.00 50 52 0.09
WAIT SEMAPHORE 10.50 10 11 0.22

Table 2. LithOS service measurements

Inter-partition communication using ports and channels are not shown due to that
these services are performed by XtratuM. In [6] the reader can find these measurements.



5.3 Comparison with RTEMS and XAL

In this section we perform a performance evaluation of LithOS compared with other
two execution environments: XAL and RTEMS. It is used as reference the number of
operation performed by a C program running on native LEON2 processor. This ref-
erence permits to compare the number of operations executed by the same scenario
built as a bare-C/XAL partition, a RTEMS application and a LithOS application. The
comparison allows to determine the performance loss in each execution environment.

The evaluation scenario for the RTEMS and LithOS consists of three tasks or pro-
cesses (in ARINC -653 terminology):

– Counter task: a background, low priority task that continously increases a counter.
The counter value is global and can be read by other tasks.

– Timer task: a periodic task with an intermediate priority level. The period of the task
is calculated so as to generate a specified number of preemptions of the counter task
in a reader task period.

– Reader task: a high priority service that periodically reads the counter value and
stores the increment in the period. In the experiments the task period has been set
to 1 second.

The C/XAL does not support tasks, in these case, previous tasks Timer and Reader
have been substituted by interrupt handlers associated to internal timers.

These scenario has been executed several times for different values of the number of
preemptions incurred by the counter task in a period of the reader task. The values used
for the evaluation go from 1 to 1000 preemptions per second, which correspond to timer
task periods between 1000 and 1 milliseconds. This scenario has been executed in a slot
in the XtratuM schedule which is longer than the total duration of the experiment, so that
no additional interference due to partition context switch is incurred. Figure 3 shows the
results of the evaluation for the three execution environments with respect to a reference.
The reference is the number of instructions executed in one second by a C program run-
ning on a native LEON2 platform. This figure plots the number of operations (NoO) for
each execution environment with different values of the number of preemptions gener-
ated by the Timer task or interrupts generated by a timer in the C/XAL environment.
The NoO is computed as reference value − measured value/reference value.
The performance loss can be computed as 1−NoO

The above results show that the most performance execution environment is XAL
that performs 0.996 of the reference value when the number of preemptions is 100
which corresponds to a periodic interrupt of 10 milliseconds. In the same conditions,
LithOS perfoms 0.983 of the reference value which corresponds to an overhead of 1.7%.
RTEMS achieves 3.30% in the same conditions.

When the number of preemptions are 1000 (Timer task period of 1 millisecond), the
XAL environment and LithOS perfom 0.964 and 0.853 respectively. The overhead in
these cases is 3.6 % and 14.7 %. RTEMS is not evaluated for number of preemptions
higher than 100 due to the configuration of RTEMS for space application is configured
with a clock resolution of 10 milliseconds.

These results show that the overhead introduced by LithOS at the task frequencies
normally used in space applications (lower than 0.1 Khz) is lower than 2% that could
be considered very low for a virtualisation layer.



Fig. 3. Performance loss comparison

5.4 Footprint

Table 5.4 shows the footprint values of a LithOS partition. The table details the bss
increment depending on the number of resources defined and the size of the data. With
respect to the comparison with the rest of the other exectution environments, Table 5.4
shows the footprints of XtratuM, XAL, LithOS and RTEMS.

code 58 Kb
data 8 Kb
bss 16 Kb
Processes 8 KB * Number of processes (size of the stack)
Events 32 B * Number of events
Semaphores 40 B * No of semaphores
Blackboards 44 B * No of blackboards * Size of message
Buffers 172 B * No of buffers * No of messages * Size of message

Table 3. Footprint measurements

6 Conclusions

In this paper we presented LithOS, a guest real-time operating system ARINC-653 com-
pliant for partitioned systems based on XtratuM. LithOS provides the partition manage-
ment, intra-partition and inter-partition communication, time management and health
monitoring services according to the specification. The ARINC-653 skin focuses on
current developement performed on the ARINC-653 standard, in order to add flexibil-
ity and portability to the applications and provide the whole benefits of the ARINC-653
standard.



Component text data bss
XtratuM 61.4K 6.5K 68.2K
XAL 22.7K 8.0K 0.7K
LithOS 43.1K 8.2K 46.0K
RTEMS 109.3K 3.2K 2.9K

Table 4. Memory footprint.

LithOS includes the multiple schedule services in order to deal with multimode
systems. This service follows the standard defined as extended services.

Additionally, LithOS includes a set of services that are not included in the standard
for partition management. These services are provided by XtratuM and are offered as
services in LithOS. These services are labelled as non-portable in order to emphasise
its non portability.

Finally, a performance evaluation of LithOS has been included to ensure the correct-
ness of the behavior. Tests cases are currently validated by means of the ARINC-653
Part 3 in the standard and the services provided by LithOS are verified in conformity
with the ARINC-653 Part 1. The performance evaluation includes the measurement of
some of the implemented services.

7 References

[1] Avionics Application Software Standard Interface (ARINC-653), March 1996. Airlines
Electronic Eng. Committee.

[2] Avionics Application Software Standard Interface (ARINC-653). PART 3 CONFORMITY
TEST SPECIFICATION, October 2006 2006. Airlines Electronic Eng. Committee.

[3] Avionics Application Software Standard Interface (ARINC-653). PART 2 EXTENDED SER-
VICES , January 2007 2007. Airlines Electronic Eng. Committee.

[4] M. Masmano, I. Ripoll, and A. Crespo. Introduction to XtratuM. 2005.
[5] M. Masmano, I. Ripoll, and A. Crespo. An overview of the XtratuM nanokernel. In Pro-

ceedings of the Workshop on Operating Systems Platforms for Embedded Real-Time Appli-
cations (OSPERT), 2005.

[6] M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. Xtratum: a hypervisor for safety critical
embedded systems. In 11th Real-Time Linux Workshop, Dresden (Germany), 2009.

[7] M. Masmano, I. Ripoll, A. Crespo, J.J. Metge, and P. Arberet. Xtratum: An open source
hypervisor for TSP embedded systems in aerospace. In DASIA 2009. DAta Systems In
Aerospace., May. Istanbul 2009.

[8] M. Masmano, I. Ripoll, S. Peiró, and A. Crespo. Xtratum for leon3: an open source hyper-
visor for high integrity systems. In European Conference on Embedded Real Time Software
and Systems. ERTS2 2010., Toulouse (France), 19-21 May 2010.

[9] John Rushby. Design and verification of secure systems. ACM Operating Systems Review,
15(5):12–21, Dec 1981.

[10] James Windsor and Kjeld Hjortnaes. Time and space partitioning in spacecraft avionics.
Space Mission Challenges for Information Technology, 0:13–20, 2009.


